ﬁ Sensors

Article

Data Fusion of Observability Signals for Assisting
Orchestration of Distributed Applications

Ioannis Tzanettis

check for
updates

Citation: Tzanettis, I.; Androna,
C.-M.; Zafeiropoulos, A.; Fotopoulou,
E.; Papavassiliou, S. Data Fusion of
Observability Signals for Assisting
Orchestration of Distributed
Applications. Sensors 2022, 22, 2061.
https://doi.org/10.3390/522052061

Academic Editor: Marco Picone

Received: 6 February 2022
Accepted: 3 March 2022
Published: 7 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Christina-Maria Androna
and Symeon Papavassiliou

, Anastasios Zafeiropoulos *'*, Eleni Fotopoulou

School of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece;
gtzanettis@mail.ntua.gr (I.T.); andronaxm@netmode.ntua.gr (C.-M.A.); efotopoulou@netmode.ntua.gr (E.F.);
papavass@mail.ntua.gr (S.P.)

* Correspondence: tzafeir@cn.ntua.gr

Abstract: Nowadays, various frameworks are emerging for supporting distributed tracing techniques
over microservices-based distributed applications. The objective is to improve observability and
management of operational problems of distributed applications, considering bottlenecks in terms
of high latencies in the interaction among the deployed microservices. However, such frameworks
provide information that is disjoint from the management information that is usually collected by
cloud computing orchestration platforms. There is a need to improve observability by combining such
information to easily produce insights related to performance issues and to realize root cause analyses
to tackle them. In this paper, we provide a modern observability approach and pilot implementation
for tackling data fusion aspects in edge and cloud computing orchestration platforms. We consider
the integration of signals made available by various open-source monitoring and observability
frameworks, including metrics, logs and distributed tracing mechanisms. The approach is validated
in an experimental orchestration environment based on the deployment and stress testing of a proof-
of-concept microservices-based application. Helpful results are produced regarding the identification
of the main causes of latencies in the various application parts and the better understanding of the
behavior of the application under different stressing conditions.

Keywords: observability; distributed tracing; microservices; distributed applications; edge comput-
ing orchestration; exemplars

1. Introduction

With the introduction of various cloud-native technologies and the advent of micro-
services-based development paradigms for cloud and edge computing applications, mod-
ern applications are becoming more and more distributed [1,2]. The term distributed refers
here to applications that are broken down into a set of components (or microservices)
that work together, while each component is managing a specific part of the application’s
business logic. By taking advantage of virtualization and containerization techniques, each
application component is packaged in the form of a container and can be independently
deployed and managed. Distributed applications are usually deployed over distributed
programmable compute and network infrastructure across the compute continuum, from
Internet of Things (IoT) to edge and cloud computing resources. In some cases, an ap-
plication may cross different types of infrastructure, platforms and technologies. The
environments that host such applications tend to be dynamic, introducing a set of chal-
lenges for performance monitoring, quality of service (QoS) assurance and conformance to
service level agreements (SLAs) [2].

One of the main challenges in optimally managing distributed applications is related
to the need to move from traditional monitoring tools to modern observability tools [3,4].
Traditional monitoring tools do not consider distributed microservice environments and

Sensors 2022, 22, 2061. https://doi.org/10.3390/522052061

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s22052061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8714-3909
https://orcid.org/0000-0003-0286-6564
https://orcid.org/0000-0003-0078-8697
https://orcid.org/0000-0001-7683-4616
https://orcid.org/0000-0002-9459-318X
https://doi.org/10.3390/s22052061
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22052061?type=check_update&version=1

Sensors 2022, 22,2061

2 of 21

container-based interactions since they mainly target monolithic applications. Furthermore,
although tracing techniques are used traditionally by software developers to track metrics
related to the behavior of an application, such techniques are not designed for microservices-
based applications and do not consider the capabilities of applications for horizontal scaling.
To assess the performance of application components of distributed applications, there
is a need for observability tools that are able to monitor the interactions among such
components. The concept of cloud-native observability is emerging to provide indicators
of the health and status of applications inside cloud-native elements such as containers,
microservices and orchestration tools [5,6]. Such a need is also evident in the case of
serverless architectures and applications, where dynamic application workloads lead to
horizontal scaling of the compute resources across the compute continuum, and pose
advanced requirements with regard to observability [7].

However, modern observability approaches must consider the need for integration
with existing or emerging monitoring tools [4,6]. Nowadays, there is a lack of built-in
observability in existing orchestration platforms for cloud-native applications. Several
open-source container orchestration platforms have been made available (e.g., Kubernetes,
Docker Compose), where monitoring mechanisms focus on the management of the deploy-
ment of the distributed applications and the usage of resources per application component.
Such mechanisms are not intended to support sophisticated monitoring, targeted to the
nature of distributed applications and the observation of metrics related to the interaction
among application components. Furthermore, various third-party tools exist for supporting
distributed tracing and logging mechanisms, though without a good level of integration
with the aforementioned monitoring tools.

In the work presented in this paper, we aim to tackle the challenge of the fusion of
data coming from orchestration platforms, distributed tracing and logging tools. The main
objective is to reduce the complexity for system administrators and software developers in
going through a series of monitoring data and logs to assess the performance of distributed
applications. From this perspective, the main contribution of our work in this paper
regards the specification of an open data interlinking scheme to support the collection and
fusion of data related to the usage of resources per container (e.g., CPU/memory usage
per container), service performance metrics (e.g., number of served requests per second),
distributed tracing metrics (e.g., latency on serving a request, latency in the interaction
between two microservices) and logs (e.g., error caused due to a container crash). To
achieve this, the proposed data scheme is able to fuse and correlate data coming from
different types of signals, namely metrics, exemplar metrics (similar to metrics with the
addition of metadata), logs and traces. In this way, we can enable the realization of the
analysis of complex microservices-based applications and the provision of useful insights
into the behavior of the system, including the sources of latency. Continuous profiling of
distributed applications in production can be supported, with only a small overhead from
the applied distributed tracing and logging mechanisms.

Furthermore, we demonstrate how the proposed open data scheme can enable soft-
ware developers and system administrators to implement solutions to collect and analyze
data coming from different orchestration, logging and tracing tools. We provide details
for the implementation of such a solution based on a set of open-source tools. These tools
are based on the Prometheus monitoring engine [8], which is supported by the Kuber-
netes orchestration platform, the Zipkin distributed tracing tool [9], the Fluentd logging
software [10] and the adoption of the Prometheus Python instrumentation library for the
definition of exemplars in the source code [11]. Analysis of the collected data upon the
deployment of a developed IoT distributed application over programmable infrastructure
was performed, validating the suitability and the effectiveness of the proposed modern
observability approach.

The structure of the remainder of the paper is as follows. In Section 2, we provide
a short overview of the basic terms used for the description of various signals in an
orchestration environment, while focusing on the distributed tracing part. In Section 3,

Sensors 2022, 22,2061

30f21

we present related work in the field considering modern observability approaches that
include distributed tracing mechanisms and their integration with emerging cloud and
edge computing orchestration platforms. In Section 4, we detail the proposed orchestration-
based observability approach. We present a generic data fusion schema that can be adopted
and instantiated in multiple orchestration environments, along with its development in an
indicative orchestration environment built upon open-source tools. In Section 5, we provide
details of a distributed IoT application that was developed for experimentation purposes,
the experimentation testbed and the overall validation and performance evaluation results
achieved. Section 6 concludes the paper with a discussion of the main work presented, the
results produced and a set of open future research areas.

2. Background
2.1. Theory and Definitions

Prior to delving into details regarding the available work in the area of modern
observability techniques and our proposed approach, we consider it helpful to provide
short definitions of the main terms used.

2.1.1. Signals, Observability and Instrumentation

Initially, we clarify the concept of observability by borrowing the definition provided
in the area of control theory. According to control theory, observability is a measure of
how well the internal states of a system can be inferred from knowledge of its external
output [12]. It involves the collection, visualization and analysis of a set of signals. In
the case of distributed monitoring and orchestration mechanisms, these signals can be
classified into metrics, logs and traces. Their holistic consideration and correlation helps
system administrators and software developers to identify and better understand the
causes of errors or malfunctions in the provided software (see Figure 1). In this way,
observability moves one step forward compared to monitoring mechanisms, since it can
provide information regarding the causes of the errors and enable their resolution.

Metrics refer to data that are based on numeric representations of state at a specific
timestamp or during a period of time (aggregated numeric representation). They are
usually used for first-response alerting and decision making in an orchestration system
(e.g., rule-based systems for autoscaling based on threshold values [13]). Metrics can be
represented through a counter (e.g., incoming HTTP requests), a gauge (e.g., the current
depth of a queue) or a histogram (e.g., duration of a request). Typical examples of metrics
include resource usage metrics (e.g., CPU or memory usage), traffic served (e.g., incoming
or outgoing traffic per second) and requests served (e.g., HTTP requests served per second).
The vast majority of metrics can be made available through monitoring components of
cloud and edge computing orchestration platforms.

Logs refer to structured information regarding discrete events. Such information is
made available in a textual structured representation and can be easily interpreted by
humans. Logs usually describe usage patterns, events, activities and operations within an
orchestration system (e.g., application debug or error messages). Information collected
through a set of logs can be combined to provide insights regarding situations or events.
Logs are usually made available through third-party tools that are interoperable with cloud
and edge computing orchestration platforms.

A distributed trace regards a set of operations that represent a unique transaction
handled by the application. Thus, traces can be mapped with a request scope. The
transaction/request actually includes a flow of operations that are provided across the
microservices of the application. By examining distributed traces, we can more easily
understand what happened during a distributed transaction and identify the existence of
delays or bottlenecks in the overall flow. Typical examples of information provided through
distributed tracing regard latencies in the execution of software within a microservice, the
interaction between microservices and end-to-end latencies for serving a specific request.

Sensors 2022, 22,2061

4 0f 21

Distributed tracing information is made available through third-party tools with a low level
of integration and interoperability with cloud and edge computing orchestration platforms.

Third Party Distributed
Tracing Tools

measured by

Third Party/Integrated
Logging Tools

Metrics

(aggregated time
series data) aggregated information
related to an event

measured by

Logs
(textual structured
infromation)

represented as

Cloud/Edge Computing

Orchestration Platforms [Counler] { Gauge] [Histogram]

Figure 1. Classification of signals into metrics, logs and traces.

Observability considers the combination of these types of signals (metrics, logs, traces).
In the selection of the set of signals to be monitored, the trade-off between the availability
of rich information and performance or complexity aspects must be considered. Upon
identification of the set of signals, the collection of the relevant information is enabled based
on proper instrumentation of the deployed software. In the case of distributed tracing
especially, instrumentation plays an essential role since it implements the monitoring
interfaces for the collection of information related to the latencies that appear per trace. In
this case, the instrumentation is request-scoped, in accordance with the needs of proper
monitoring of cloud-native distributed applications.

Moving one step further, correlations among the information collected by the various
signals must be supported; however, this is not an easy task. It is especially complex in
large distributed applications consisting of multiple microservices that handle numerous
requests. For instance, as depicted in Figure 1, correlation between metrics and traces can
be realized on a request basis where aggregated time series data can be attributed to a
specific part of the trace. Similar correlation can take place between metrics and logs, while
logs and traces can be also correlated based on aggregated events that are associated with a
specific part of a trace.

To enable this kind of correlation among the signals, the concept of the exemplar is
introduced as an extra signal type. An exemplar is considered to be a metric that can
hold both metric values and further metadata in the form of labels. The labels can include
the request_id or trace_id defined by the applied distributed tracing mechanisms. Each
value of a metric exemplar is also associated with a timestamp. In this way, information
provided through exemplars can act as a glue for correlating information coming from
pure metrics, logs and traces, mainly based on the joint trace_id and timestamp values.
Exemplars can be used for monitoring the numbers of certain errors, as well as latency
values and request ratios in the various microservices and traces. Exemplars facilitate the
interlinking of aggregated metrics in the relevant situation.

An example is provided in Figure 2. In this example, alerting information related
to bad behavior of a container that is hosting a microservice of a distributed application,
combined with numerous errors for failed requests from this container (alerting phase), is
associated with the id of the trace that is related to the failure and the rate of failures, which
is supported by an exemplar for this trace ID (alert examination phase). Subsequently,
examination of the usage of resources in this container takes place to examine the need for
assigning further resources to tackle the problem, while the latencies in the various parts

Sensors 2022, 22,2061

50f21

of the trace are also examined (resources usage examination). As we are able to correlate
the aforementioned signals, we can proceed to a root cause analysis, shed some light on
identifying the main cause of the problem and undertake corrective actions.

@ Metric
@ Log
Trace
® Exemplar
Alert
@, Examination 00, 00,
Alerting Phase Resources Root Cause
Phase " Usage Analysis
: i Examination '
. 4 4 4 4
' ! \
. ! What is the request [
X . id causing the errors b
H based on the log .
I -
' ' and the timestamp?
: P ’ -
I
1
'
!
!
I
I

Who is the initiator of the

. request? Where is exactly the
| triggering point of the error?
|

Figure 2. Exemplar usage example.

2.1.2. Distributed Tracing Terminology

In this section, we delve into a detailed description of the main concepts used in
distributed tracing mechanisms. The term distributed tracing refers here to a method of
profiling and monitoring applications built using a microservices-based architecture. It is a
type of correlated logging that helps to gain visibility into the operation of a distributed
software system [14], pinpoint where failures occur and identify the causes in cases of
poor performance. Through the collection of distributed traces, a complete analysis of the
performance of a distributed application can take place, including root cause analysis of
failures, performance profiling and debugging (identifying inefficient code) in production.
Distributed tracing helps software developers to quickly understand the flow of requests
through the microservices that make up a distributed application.

A distributed application may have a set of distributed traces. As already mentioned,
each trace is related to a set of operations that represents a unique transaction. Each one of
the operations is defined as a span of the distributed trace. According to the OpenTelemetry
specification [15], a trace can be thought of as a directed acyclic graph (DAG) of spans,
where the edges between spans are called references. Each span has a descriptive name
related to the operation that it supports, a start and end time, a set of tags (optional field)
for collecting additional information and a span context that encapsulates implementation
details. The definition of the spans that constitute a trace follows a hierarchical approach,
allowing the assembly of multiple spans into a complete trace [15]. Different types of
relationships may be defined between spans. A span may reference zero or more other
span contexts, based on two types of references, namely the ChildOf and the FollowsFrom
references [15]. In the ChildOf reference type, a parent (or root) span may include a set
of child spans. In the FollowsFrom reference type, a sequential execution of spans can be
defined. By considering both reference types, a specific path is created for showing how
a particular transaction is executed through the numerous components that make up the
application (Figure 3).

Sensors 2022, 22,2061

6 of 21

Trace
.

(Y.--(Root Span)
spana _}(RootSean)

= TracelD
= Parent None /
onidt ety

~ - 5
Span B SpanE
s« TracelD = TracelD
\» Parent Span A) = Parent SpanA)/

el i, Cchildor
Ia ™ Ia ™ £ ™ Ty
Span C Span D Span F Fo."."owstom{ Span G

« TracelD s« TracelD e JracelD [T « TracelD
\» Parent SpanB / | » Parent SpanB)/ = Parent SpanE)/ s Parent SpanF

1 Trace duration |
I | I
- Pt

—‘ Span A

—T> Span B

Root Spanjl

Span C

Trace
A

v

Span E

Span F

Span G

-

Figure 3. Distributed trace structure.

3. Related Work

Various research studies and surveys are emerging in the area of observability mecha-
nisms that include distributed tracing techniques, focusing mainly on the exploitation of the
collected information for analysis purposes. Based on an industrial survey on microservice
tracing and analysis [16], distributed tracing and analysis is considered an important part
of the infrastructure for industrial microservice systems, while the development of efficient
data fusion mechanisms for trace analysis and production of business intelligence reports
is considered challenging. In a similar qualitative study on identifying the challenges and
good practices in the field of observability and monitoring of distributed systems [17], the
main reported challenge was found to be the need for the management of heterogeneity in
the adopted microservices-based development and deployment paradigms, since isolated
monitoring and observability solutions are adopted even across teams within the same
organization. Targeted studies on specific development paradigms are also provided, such
as the study in [7] that focuses on testing and debugging of serverless-based applications.
In this case, distributed tracing techniques are proposed to analyze how a call propagates
through different services, functions and resources and to see transactions as a flow of
many lambda functions.

Several approaches are also available for supporting automated data analysis over
instrumentation frameworks. In [18], Pythia is presented as an automated framework that
suggests the activation of instrumentation tools to manage a newly-observed performance
problem. In [19], the authors propose a solution for correlating information that is present
in multiple traces, considering all traces as a single graph and decomposing tracing data
into multiple vertices and edges. In [20], OpenTelemetry traces are processed to identify

Sensors 2022, 22,2061

7 of 21

bottlenecks in the performance of a distributed application that is deployed across the
cloud continuum. A data-centric perspective on tracing is detailed in [21], where the
authors implement three different approaches to data-centric distributed tracing in a
distributed data processing system built using microservices, and discuss their advantages
and disadvantages. In the work presented in [22,23], tracing data are used to extract service
metrics, dependency graphs and workflows with the objective of detecting anomalous
services and operation patterns. As stated in [23], timely and accurate detection of trace
anomalies is very challenging due to the large number of underlying microservices and the
complex call relationships between them. In addition to anomaly detection, distributed
tracing techniques are applied for privacy risk detection in [24], where a framework is
introduced to identify privacy and security risks associated with the dissemination of data
through the path a service request follows.

Research work is also emerging in the area of development of novel observability
frameworks for assisting orchestration actions. In [25], an observability framework for
microservices orchestration is detailed, utilizing a cloud-based infrastructure, that provides
the means to understand the internal behavior of microservices at different layers and
different lifetime and abstraction levels. These layers are associated with data collection
and retrieval, raw data storage, data processing and correlation and data visualization
and alerting. Multilevel observability is introduced in [26], considering both application-
oriented and infrastructure-oriented metrics to improve automatic orchestration in cloud
environments. The use of distributed tracing techniques to support observability in server-
less applications and provide insights for troubleshooting purposes is examined in [27].
In [28], an approach is provided to evaluate observability of microservices both in an of-
fline and an implementation-agnostic manner. Intra- and inter-service execution paths are
described as a behavioral model of the microservices under observation, serving as input to
an application workload generator that produces realistic trace data. In [29], observability is
considered as one of the main desirable features for supporting autonomic management of
cloud-native applications. In [30,31], a service-mesh approach for supporting observability
features is adopted to avoid custom instrumentation of each application based on the use
of specific software libraries.

In parallel, a set of open-source distributed tracing solutions are emerging under the
umbrella of cloud-native solutions, as managed by the Cloud Native Computing Founda-
tion (CNCF) [32]. To name only a few, these include Zipkin [9], Jaeger [33], Elastic APM [34]
and Apache SkyWalking [35]. Most of the emerging tools follow the OpenTelemetry speci-
fication [15], which is a collection of tools, APIs and SDKs used to instrument, generate,
collect and export telemetry data (metrics, logs and traces) to help software developers to
analyze the software performance and behavior.

An overview of a set of well-known tools for distributed tracing solutions is provided
in Table 1, considering their licensing schemes, the types of signals that they observe,
the main functionalities and analysis types that are supported, their compatibility with
evolving specifications and their popularity. It is evident that a wide range of tools are
under continuous development for tackling observability challenges. However, to the
best of our knowledge, none of the existing open-source tools supports an open data
scheme for data fusion purposes, able to make the collected data available to end users for
analysis purposes.

Sensors 2022, 22,2061

8 of 21

Table 1. Distributed tracing tools list.

Distributed Tracing Tool—Licence

Signal Types

Main Functionalities

Compatible Specifications

Popularity

Elastic APM (Open-source)

Metrics, Logs, Traces

Distributed tracing, Visual
dependency mapping, Root cause
analysis

OpenTelemetry, W3C trace context,
Jaeger

378 Forks, 972 Stars

Pinpoint (Open-source)

Metrics, Traces

Distributed tracing with Bytecode
instrumentation, Topology and data
visualization

3.6k Forks, 12k Stars

SkyWalking (Open-source)

Metrics, Logs, Traces

Distributed tracing, Topology
visualization, Root cause analysis,
Service mesh

OpenTelemetry, SkyWalking agents

5.5k Forks, 18.7k Stars

Jaeger (Open-source)

Traces

Distributed tracing, Trace storage,
Querying and visualization,
Topology visualization

OpenTelemetry, OpenZipkin

1.8k Forks, 15.2k Stars

Zipkin (Open-source)

Traces

Distributed tracing, Trace storage,
Querying and visualization,
Topology visualization

OpenZipkin

2.9k Forks, 15.2k Stars

Aspecto (Commercial)

Logs, Traces

Distributed tracing, Root cause
analysis, Topology visualization,
Trace and logs correlation

OpenTelemetry, Jaeger

Honeycomb (Commercial)

Metrics, Logs, Traces

Distributed tracing, Telemetry data
storage, Querying and visualization,
Alerting

Lightstep (Commercial)

Metrics, Logs, Traces

Distributed tracing, Root cause
analysis, Metrics and traces
correlation, Telemetry data storage,
Querying and alerting

OpenTelemetry, Zipkin, Jaeger

Grafana Tools (Tempo, Loki)
(Open-source)

Metrics, Logs, Traces

Trace and logs storage and querying,
Alerting functions

Zipkin, OpenTelemetry, Jaeger,
OpenCensus

171 Forks, 1.9k Stars

OpenTelemetry (Open-source)

Metrics, Logs, Traces

Instrumentation tools,
Programming interfaces (APIs),
SDKs

Backwards compatible with
OpenCensus

137 Forks, 426 Stars

OpenCensus (Open-source)

Metrics, Traces

Instrumentation libraries

316 Forks, 1.9k Stars

Sensors 2022, 22,2061

9 of 21

4. An Orchestration-Based Observability Approach

The approach proposed in this paper aims to support data fusion of observability
signals in distributed applications. These applications are deployed by cloud and edge com-
puting orchestration platforms over programmable resources in the compute continuum.
We consider different types of signals, as detailed in Section 2.1.1. In Section 4.1, we present
an open and generic data schema that can be used for data fusion of the various types of
signals. The data schema has a proper level of abstraction and is generic enough to support
its easy integration into existing and emerging orchestration solutions for edge and cloud
computing applications management. To validate its proper design and its applicability, in
Section 4.2 we provide details for the development of an observability framework in a real
orchestration environment, based on the use of the proposed data schema. It should be
noted that the presented development is indicative and can be easily replicated based on
the use of alternative observability and orchestration tools.

4.1. Generic Data Fusion Schema

A data schema has been designed aiming to enable the correlation of information
coming from the different types of signals, as depicted in Figure 4. We consider the
management of a distributed application consisting of multiple traces, where each trace is
broken down into a set of spans. A span is associated with a microservice (or a part of a
microservice) and is executed within the container that is hosting the microservice.

Starting with the distributed tracing tool, we are interested in tracing data where, for
each trace ID, we collect information for the set of span IDs that are associated with it. For
each span ID, we collect information for the microservice that it supports, the timestamp
and duration of the execution of the span and the container where the microservice is
hosted. Given that every piece of the collected data is associated with a timestamp, timing
information enables us to filter data for signals within a certain time window.

D Metrics
Logging Tool MonitoringTool)ED_D_D_)

pod
[timestamp | [log message | TracelD
Traces
Distributed Tracing Tool | 1 —{ TracelD m
o)
Z — | | o) f
TraceD *___J_,_f—" Exemplar Value _g
)
o
[spanlD | container
[spanName |
'
(tmestamp)
i wemm
L[service container
error tag \
i i T S—

Figure 4. Data fusion schema.

Based on the information for the container and the timestamp, we can enrich the
dataset with information provided in the form of metrics. These include deployment
metrics given by the monitoring mechanisms of the orchestration platform, exemplars
and application metrics provided through the instrumentation library. In the case of the
deployment and application metrics, information related to the metric name and value

Sensors 2022, 22,2061

10 of 21

in each container is associated with the relevant information from the distributed tracing
tool. In the case of exemplars, correlation is also supported through the metadata that
accompany each metric, including the trace ID.

Similarly, based on the trace ID and the container, logging information can be associ-
ated with the information provided by both the distributed tracing tool and the monitoring
mechanisms. The critical point here is to ensure that the ids reported by the logging and the
tracing systems are exactly the same. In this way, navigation across information collected
through logs and traces and the associated individual request can take place.

4.2. Observability Approach within an Orchestration Environment

Based on the data fusion schema presented in Section 4.1, we proceeded to the design
and deployment of an orchestration environment able to provide data that can be repre-
sented through it. The orchestration environment is based on the Kubernetes orchestration
platform for distributed applications, as depicted in Figure 5. The data collected can be
further categorized into two parts, one concerning signals received from the application
itself such as traces, logs and application metrics, and another concerning metrics collected
by the utilized resources, such as CPU and memory usage.

Five main open-source tools were used and integrated with the Kubernetes-based
orchestration environment for supporting the collection of observability signals. The
deployment metrics were provided by the monitoring components of the orchestration
platform and specifically the Prometheus monitoring engine [8]. Prometheus provides time-
series data for a variety of metrics, including CPU usage, memory usage and incoming and
outgoing traffic per pod. Resource usage and performance metrics are made available to
Prometheus through cAdvisor. cAdvisor is a framework that has been efficiently integrated
with Kubernetes, providing multiple metrics concerning the pods and containers that are
used during the lifetime of the application, and this was exploited for adding deployment
metrics to our overall data schema.

Exemplar metrics were made available based on the use of an instrumentation library
during the development of the distributed application. The exemplar metrics are associated
with the measurement of specific request latencies and error rates, based on the proper
instrumentation probes introduced in the source code. Instrumentation libraries are avail-
able in various programming languages including Go, Python and Java. In our case, we
used the Prometheus Python client [11], where exemplars can be added to counter and
histogram metrics.

Traces awere collected based on the Zipkin distributed tracing tool [9]. For tracing
latency metrics and interactions between application components, we created a trace
for each request received outside the application, including a tree structure of spans
within the functionality of each trace. To keep track of this trace/span structure, unique
trace/spans IDs were used, while parent span IDs were also used to preserve the hierarchy
between the spans.

Logging was supported based on the Fluentd logging software [10]. Fluentd supports
a unified logging layer where different types of logs (e.g., application errors, warnings) are
represented through a JSON format. Fluentd allows various logs to be collected from a
Kubernetes cluster, processes them, and makes them available in monitoring tools such
as Prometheus. Grafana was also used as a main dashboard for visualizing information
coming from the different types of signals [36]. Grafana pulls observability measurements
from all the aforementioned tools according to the data fusion schema, to draw together
meaningful plots of the correlated signals. These can be exploited by the developer to
understand the relations between the heterogeneous observations and to facilitate the
initiation of additional and/or deeper analysis.

Sensors 2022, 22,2061

11 of 21

A

Grafana

(Data fusion

Lobservability approach J‘

Code <f> APP
METRICS
<> .f>
<.f> D Exporters
> Cod.e <;‘> A "
<f>\ (</>
Z I P KI N Prometheus

T_liF

f Iuentd

h 4

(A

Application LDGS

components

) METRICS

k4
! PudHPud >@
.’-

i cAdvisor

Kubernetes

Figure 5. Instrumentation architecture.

It should be noted that, although specific tools were selected for supporting widely
popular open-source monitoring, tracing and logging frameworks, the proposed data fusion
scheme is generic enough to be applicable in different types of orchestration environments.
Different languages and the associated instrumentation libraries can be selected, while the
backend storage solutions for accessing the collected observations can also be differentiated.
Depending on the selected tools, parameters related to the collection of the measurements
can also be fine-tuned (e.g., Zipkin instrumentation allows a variable sampling rate). High
levels of configurability are also supported in terms of the set of monitored signals. For
instance, deployment metrics similar to the CPU and memory usage of the containers that
support specific parts of the application can be monitored. Similarly, different application
and log metrics can be considered, such as byte rates, request queue overflows and bad
request error codes. The exact specification of the signals to be observed is the responsibility
of the software developer and/or the system administrator in each deployment.

Based on the data fusion schema presented in Section 4.1 and the detailed implemented
observability approach developed around the Kubernetes orchestration environment, we
have produced a JSON schema for representing the collected and fused data. The structure
of the JSON schema is shown in Listing 1. The proposed JSON schema includes joint
information coming from the Zipkin distributed tracing tool (information per trace ID
and span_id related to the duration of the spans and the pods where they are executed),
information coming to Prometheus through exemplars (information per trace ID related
to the observed latencies per span or trace), information coming to Prometheus from the
cAdvisor tool (CPU and memory usage per pod) and information coming from the Fluentd
logging system (error messages per trace or span ID).

Sensors 2022, 22,2061 12 of 21

Listing 1. JSON data fusion schema in Kubernetes orchestration environment.

[

"traceID": "exemplar_trace_id",
"timestamp_end(sec)": "exemplar_timestamp",
"latency(sec)": "exemplar_value",
"root_span": {
"span_id": "span_id",
"name": "span_name",
"timestamp(micro)": "begin_timestamp",
"span_duration(micro)": "span_duration",
"error": "error message" "null",
"throughput_avg": "average_throughput",
"pods_metrics_avg": [
{
"pod": "service_name",
"cpu": "cpu_usage_rate",
"memory": "memory_usage"

3,

]

s

"spans": [

"span_id": "span_id",
"name": "span_name",
"timestamp(micro)": "begin_timestamp",
"span_duration(micro)": "span_duration",
"error": "error message" "null",
"throughput_avg": "average_throughput",
"pods_metrics_avg": [
{
"pod": "service_name",
"cpu": "cpu_usage_rate",
"memory": "memory_usage"

-]

4.3. Assisting Orchestration Mechanisms

Upon the fusion of data coming from the various observability signals, assistance in
decision making for taking orchestration actions can be provided [26]. Such assistance
can be given to system administrators based on the interpretation of results or provided
in an automated manner based on the design of intelligent orchestration mechanisms,
usually via the exploitation of artificial intelligence (AI) techniques. Deployment and
scaling policies can be developed taking into account the resource usage profiles of the
application components that compose an application graph. This is especially helpful
in cases where high resource usage is associated with increasing latencies in the serving

Sensors 2022, 22,2061

13 of 21

of requests in a specific span or in the overall trace. Co-location of a set of application
components of an application graph may be also requested in cases of identifying increased
latencies in the interaction among specific components that can be due to congestion in the
networking part of the infrastructure. Security alerts can be also triggered in cases of an
increase in the error rates per application component (e.g., identification of a cyber-attack
with a very bursty workload).

5. Distributed Application Implementation and Evaluation Results

To validate and evaluate the approach proposed in Section 4, we developed a dis-
tributed IoT application and realized a set of experiments by stress testing this application
under various workloads. The developed IoT application, including the source code for
the instrumentation part and the source code for supporting the data fusion mechanism, is
openly available at [37]. The experiments took place over a testbed in a laboratory environ-
ment, where the tools mentioned in Section 4.2 were deployed. Specifically, a Kubernetes
cluster with three nodes was set up, where each node uses a four-core Intel-based CPU,
16 GB of memory and 100 GB of disk storage space. Each application component was
deployed as an independent service in the form of a Docker container within a Kubernetes
pod. The communication among the components was HTTP-based and made use of the
cluster’s internal network. Regarding the applied stress tests for the evaluation part, we
developed two workload profiles based on the use of the Vegeta HTTP load testing tool [38].

It should be noted that the developed novel observability framework is applicable
to monitoring multiple applications in parallel, as they are deployed and managed by
the applied orchestration framework. However, we were interested in proceeding to a
performance analysis with a per-application scope. Specifically, we aimed to examine the
performance of the developed IoT application, focusing on the latencies monitored in the
various traces and spans of the application and the associated usage of resources. Thus,
the presented results are related to a specific deployment of the IoT application over the
provided testbed, and its stress testing based on the produced workload profiles.

5.1. Distributed IoT Application

The distributed IoT application aims to collect and analyze real-time and historic data
streams that are provided by IoT nodes. The application graph is depicted in Figure 6.
It consists of a set of components (or microservices) that support the overall application
business logic. These components are:

¢ Data collection component (IoT Collector): this component is located at the far edge
part of the infrastructure and is directly connected to the IoT nodes to manage collec-
tion and transmission of sensor values. It can be massively replicated according to the
needs of the platform (e.g., how many sensors are in place).

e Data aggregation component (IoT Preprocessor): the data aggregation component
is responsible for aggregating the data collected by the IoT Collector and applying
basic data management functionalities (e.g., data aggregation, data filtering, outliers
removal). It can be replicated according to locality requirements and the number of
IoT data streams served at each point of time. It is deployed at the edge part of the
infrastructure for guaranteeing latency requirements based on processing of data close
to the location of the IoT nodes.

* Backend database (IoT Backend): this is associated with the database system that stores
the data streams for offline analysis, model training, etc. This component is central to
the overall architecture and is deployed in the cloud part of the infrastructure. It can
be scaled up and down according to the server workload profile.

e Data analysis—Forecasting (IoT Predictor): this component is responsible for data
analysis of the collected time-series data. It can be scaled according to traffic and data
volumes. For the purpose of this analysis, a long short-term memory (LSTM) model is
used for predicting future values of the time-series data.

Sensors 2022, 22,2061 14 of 21

%% | wote e |

Span 2.1
Initiate training

Span 1.1: .
Collection Span 1.9
get data

Span 1.3
Preprocessing
data
siream

Span 1.5:
get parameter info

Span 1.8
generate prediction

Span 1.10: Predict

IOT-PREDICTOR Span 2.4: Train

IOT-COLLECTOR

Span1.7:
store and
predict

Span 1.11:
store prediction
Span 1.22 Span 1.4
get_value analysis

Span 1.6:
Retrieve
Parameter info

Span 2.2

get data
Span 2.3
Retrieve data

Figure 6. Distributed IoT application graph.

5.2. Traces Analysis

Two main traces of the distributed IoT application have been identified and selected
for analysis purposes, as depicted in Figure 6. The first trace (trace 1, consisting of the spans
1.1 to 1.11) supports the flow of real-time data collection and analysis. Data are collected
from the IoT nodes (spans 1.1 and 1.2), pre-processed (spans 1.3 and 1.4) and stored in the
database (spans 1.5 and 1.6). Subsequently, they are sent for analysis (spans 1.7 to 1.10),
while the analysis results are also stored in the database (span 1.11). An indicative analysis
of this trace through the Zipkin distributed tracing tool is depicted in Figure 7. It can be
seen that the largest spans in terms of introduced latencies in the application part are the
spans 1.4 (pre-processing data analysis) and 1.10 (prediction process).

|oms |1.490s |2.979s 44695 |

CEENEED (clemEESS S
| get_value [88ps]
5 pecessngiae
anaysis 10015
=) l get_parameter_info [39.511ms]
| retrieve_parameter_info [4.017ms]
= W oo predipess
| store_value [28.702ms]
& oot pedeton 0251
8 (Prepareldats (530.473ms]
[Getidata78s.017ms]
pedcpaes
store_prediction [57.644ms]||

Figure 7. Trace 1 analysis in Zipkin.

The second trace (trace 2, consisting of the spans 2.1 to 2.4) supports the flow of historic
data analysis, where an end user is requesting the offline retraining of the model using the
historical data collected up to this point. The end user initiates a training request (span 2.1),
the data for the training processes are fetched (spans 2.2 and 2.3) and the training process
is executed (span 2.4). An indicative analysis of this trace through the Zipkin distributed
tracing tool is depicted in Figure 8. As expected, the largest span in trace 2 is span 2.4,
where the training process takes place.

Sensors 2022, 22,2061

15 of 21

oms. 4.594s 9.189s 13.783s

=] initiate_training [13.783s]
=) prepare_data [170.904ms]
list_sensorvalues [123.292ms]
train [13.611s]

Figure 8. Trace 2 analysis in Zipkin.

5.3. Validation and Performance Evaluation

In this section we present a set of validation and performance evaluation results that
were produced based on the realization of a set of experiments over the implemented
observability approach and based on the use of the developed distributed IoT application.
Prior to delving into the details of the realized stress tests and the produced results, in
Figure 9 we provide a high-level view of the integrated visualization capabilities based on
the supported fusion of the collected data.

Starting with the production of an error log for the IoT predictor component, we wish
to examine in detail what occurs on the specific trace and to identify the source of the
error (e.g., whether it is due to a performance issue or a misconfiguration). Through the
use of exemplars, the error rate for a specific component can be visualized, providing an
overview of the frequency and the timing of the error production. Based on the ID of the
trace under analysis, we can examine the introduced latencies per span through the Zipkin
visualization tool and identify any irregular behavior. Moving one step further, through the
trace ID and the pods identification, we can examine the performance of the IoT predictor
component in terms of the error production rate (monitored in Prometheus through the use
of exemplars) and the associated usage of resources from this component in the pod where
it is deployed (relevant metrics in Prometheus). A holistic analysis can take place and lead
to meaningful insights for the system administrators and/or the application developers,
similar to the conceptualization that was presented in Figure 2.

Next, we present evaluation results based on the processing of two different types
of workloads by this trace (trace 1 in the analysis in Section 5.2) for the distributed IoT
application. The first workload follows a smooth increase and decrease in the number
of requests to be served, based on the availability of new IoT node readings. The second
workload follows a more bursty behavior, based on the sudden availability of multiple
sensor readings at the same time, with the appearance of two spikes during its execution.
Considering a basic rate A for the submission of requests, the first workload follows the
rates (A-3A-5A-3A-A), while the second workload follows the rates (A-5A-A-5A-A). Both
workloads were prepared based on the use of the Vegeta stress testing tool [38].

In Figures 10 and 11 we present the end-to-end latencies in trace 1 with regard to
the request rate for the smooth and the bursty workload scenarios. For the latencies, we
present the exact latency value based on the collection of exemplar metrics (as shown by
the grey dots) and the latency rate (as shown by the yellow line). In both the smooth and
the bursty workload, it seems that the end-to-end latencies follow the trend of the relevant
workload, with a small delay in the appearance of spikes. This is not a desirable behavior,
given that the change in the values of the latency may have a direct impact on the overall
QoS of the provided application. A potential corrective action involves the application of
a scaling policy for part of the application graph components (or microservices). Further
examination of the main source of latency across the various spans of the trace is required.
This is possible, since through the use of exemplars we obtain information for the exact
trace ID for each latency value, and we can examine in detail the relevant request within
the tracing tool.

Moving one step further, we examine the resource usage (CPU, memory) trends
per component of the distributed IoT application. It should be noted that, in our case,
each pod is managing one application component and is packaged in one container. In
Figures 12 and 13 we present the CPU usage per application component with regard to
the request rate for the smooth and the bursty scenarios, respectively. In both cases, it
seems that the CPU usage follows the trend of the relevant workload for all the application
components. Higher levels of CPU usage are seen for the IoT Backend and the IoT Predictor

Sensors 2022, 22,2061

16 of 21

components, proving indications of the need to apply scaling policies in both components
to better serve the relevant workload and avoid failures in the processing of requests. In
the case of the IoT Backend component, scaling is mainly required due to the high usage of
CPU resources (up to 80%). In the case of the IoT Predictor component, scaling is required
due to the increased latency that is associated with this component, as identified in the trace
analysis part in Figure 7. To confirm this statement, a linear regression model was produced
for examining the correlation between the overall trace duration and the CPU usage of the
IoT Predictor component, as depicted in Figure 14. Once again, the realization of such a
joint root cause analysis was enabled based on the adoption of the proposed data fusion
scheme and the integration of all the collected signals into a unified JSON representation.

g Prometheus

Q rate(errors_total[10s])
Data Fusion Schema

"tracelD": "e2611bce437d8d72",
"timestamp_end(sec)": 1643487843.71,
"root_span": {

"span_id": "b706df122f4137e4",

"name": "collection",

"timestamp(micro)": 1643487831653607,

2022-01-29 20:24:03 +00:00
value: 1

Trace exemplar:
_id: 549ce6674e19a0d4
trace_id: €2611bce437d3d72

Associated series:
errors_total

app: iot-predictor

endpoint: /predict

instance: 10.233.64.2:9002

job: kubemetes-service-endpoints
kubemetes_name: iot-predicior
kubemetes_namespace: default

method: get

ZIPKIN

Duration: 2.021s Services: 4 Depth: 6 Total Spans: 12 | Trace ID: e2611bced37d8d72

673.538ms

oms
8 collecton [2.0215]
get_value [61ps]
preprocessing [2.020s]
analysis [1.001s]
I0T-BACKEND get_parameter_info [45.661ms]

retrieve_parameter_info [3.806ms]

I0T-BACKEND
10T-BACKEND

IOT-BACKEND store_value [9.989ms]
=
=

REPROCESSO

Prometheus

13475

"span_duration(micro)": 2021780,

“error": null,

"throughput_avg": 0.03238072172438847,
"pods_metrics_avg": [

{
"cpu": 0.9428911320731544,
"memory": 122718601.97138315
L
{
"cpu™: 0.3967806796537559,
"memory": 467828736.0

"pod": "iot-preprocessor”,
"cpu": 0.01603595701786556,
"memory": 65130496.0

"pod": "iot-collector”,
"cpu": 0.007154821921858284,
"memory": 65491181.685214624

& DOWNLOAD JSON

» |OT-PREDICTOR
predict
Span 1D 470339936c2878320 Parent . 21co5578206040fc

Annotations

SHOW ALL ANNOTATIONS

store_and_predict [946.043ms]

Tags

generate_prediction [852.469ms]
prepare_data [836.025ms]
get_data [797.376ms]

OSError: SavedModel file does not exist at: models/model13/{s
aved_model.pbtxt|saved_model.pb}

predict [383ys] |

cpu_avg

0.40398071

", Data Fusion Schema

10T-PREDICTOR

memory_avg

467828736.0

throughput_avg

0.2

"span_duration(micro)": 383,
"error": "OSError: SavedModel file

"throughput_avg": 0.2,
"pods_metrics_avg": [

"4703a9936c2878a0",
: "predict”,
imestamp(micro)": 1643487843710402,

does not exist at: models/modell/
{saved_model.pbtxt|saved_model.pb}",

{
'pod": "iot-predictor",
"cpu": 0.403980710053624,
"memory": 467828736.0

}

Figure 9. Integrated visualization capabilities in the orchestration environment.

Sensors 2022, 22,2061

17 of 21

request_rate

Fi

Request rate - Latency rate

7
Sreq/s —e—a
/ 6
4req/s \ \ 5
/ /N —
&
Jreg/s),_.f(‘_-' 4 ;
/ — s &
2req/s y T
_ \ .
1req/ / R -
req/s 414. P—— \]
Oreg/s i N .0
23:25:.00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00 23:31:00
== requests == latency
gure 10. Request rate and latencies variation under the smooth workload.

Request rate - Latency rate

a8
4req/s
6
@ 3dreg/s o
= z
j 2
@ B
ug"_ 2reqfs \ { \ ‘ IS
1 \ Y
- f | ! -"I | I".
1req/s e/ i S A — L 2
/_ . .".. — o - & . \
Oreq/s — - & T N .0
22:15:30 22:16:00 22:16:30 22:17:00 22:17:30 22:18:00 22:18:30 22:19:00 22:19:30 22:20:00
== requests == |atency
Figure 11. Request rate and latencies variation under the bursty workload.
Request rate - CPU usage
5
0.800
a4
£ 0.600 o
o =
o 3 £
5 : 0400 &
g 2 ®
1 v NN .. 0200
o e —— m il _— = ——= — e e, .\ e 0
23:25:00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00 23:31:00
== requests == cpu iot-backend == cpuiot-collector == cpu iot-predictor == cpu iot-preprocessor
Figure 12. CPU usage per application component under the smooth workload.

request _rate

Request rate - CPU usage

0
22:15:30 22:16:00 22:16:30 22:17:00 221730 22:18:00 22:18:30 22:19:00 22:19:30 22:20:00

== reguests == cpu iot-backend == cpuiot-collector == cpuiot-predictor == cpuiot-preprocessor

Figure 13. CPU usage per application component under the bursty workload.

Sensors 2022, 22,2061

18 of 21

Trace duration - Cpu usage iot-predictor

475000 A

450000 -

425000

on

400000

[
375000 A

trace_durat

350000 A

325000 A

300000 -

0.00 0.05 0.10 0.15 0.20 0.25 0.30
cpu_usage_predictor

Figure 14. Correlation between trace duration and CPU usage—IoT Predictor component.

Similar analysis to the CPU usage was performed for the examination of the memory
usage per application component. Indicatively, in Figures 15 and 16 we provide such results
for the IoT Collector component (under the smooth workload) and the IoT Backend compo-
nent (under the bursty workload). It seems that there was no severe impact on the memory
usage in serving the relevant requests in all the examined scenarios. This can also be seen
in Figure 17 in the linear regression model produced for examining the correlation between
the overall trace duration and the memory usage of the IoT Preprocessor component.

Request rate - Memory usage

53.4 MiB
Greq/s ——a
Lreq/s y . 51.5 MiB
& \ F
[. / N El
1 3reg/s P .~ 496MB 2
2 o~ N\, =
B4 / AN =
T 2reg/s I L 2
477MB ®
1 req/s ———d R
y o 45.8 MiB
) S
Oreg/s = . . o - .
23:25:00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00 23:31:00
== requests memeory iot-collector

Figure 15. Memory usage for the IoT Collector component under the smooth workload.

Request rate - Memory usage

117 MiB
4req/s
| 116 MiB
o 3regfs . . %
= 116 MiB 3
ol 2
n f \ f \ =
[i _- \ | \ i =
2 2req/s / / \ 115MiB S
g [] [&
\]
.
. . | 1 115 MiB
1req/s e B] o —a
) 114 MiB
Oreq/s = » * * - J AN .
22:15:00 22718:00 22:17:00 22:18:00 22:19:00 22:20:00
= requests memary iot-backend

Figure 16. Memory usage for the IoT Backend component under the bursty workload.

Sensors 2022, 22,2061

19 of 21

1e6 Trace duration - Memory usage iot-preprocessor

[]
1.2 1
¢ []
- 1.0
°
g
=]
-Olos_
i
v
g
0.6
° =
[]
'] ()
0.4 1 °

6.494 6.496 6.498 6.500 6.502 6.504 6.506
memory_usage_preprocessor le7

Figure 17. Correlation between trace duration and memory usage—IoT Preprocessor component.

Summarizing, it can be argued that through the realization of the analysis of the fused
observability signals, various insights can be extracted regarding improvements that can
be made at both software development and orchestration level. At the software level, the
examination of high latencies in part of the components, along with the associated error logs,
can provide hints to software developers to proceed to improvements in the source code. At
the orchestration level, the examination of high latencies, along with the increased usage
of the available resources, can provide hints to system administrators to better configure
deployment and operational policies to optimally serve the relevant workload.

6. Discussion

In the current work, we have presented a modern observability approach based on
the fusion of data signals coming from different components of a cloud or edge computing
orchestration ecosystem. The approach aims to contribute to the emerging research area of
cloud-native observability by providing a data fusion scheme along with a proof-of-concept
implementation in a cloud-native orchestration environment based on Kubernetes. Based
on the produced artifacts in the current work, an experimentation process was applied
where a set of stress tests were realized to validate and evaluate the efficiency of the
developed data fusion mechanisms.

It was shown that through the proposed approach, new methods of data analysis
are made available to system administrators and software developers, well-suited to the
domain of cloud-native computing and microservices-based applications development.
Through the modern observability approach, we were able to gain a better view of how
distributed applications behave under different stressing conditions and develop mech-
anisms to troubleshoot problems and optimally affect the application status. The overall
data management effort was significantly reduced, since all the data were interlinked and
made available in a common schema. Furthermore, it was shown that the approach can
be easily implemented based on the use of open-source and well-supported monitoring,
tracing and logging tools.

Given the recent efforts made in the development of such observability approaches,
several open areas and challenges can be identified that can be tackled in the future.
These include the development of tools that can easily manage, visualize and analyze the
interlinked observability data, the design of Al-assisted orchestration mechanisms that
take advantage of the plethora of fused data and the examination of the impact of the
introduction of multi-level observability signals on the applications” performance, based
on continuous profiling of distributed applications.

Sensors 2022, 22,2061 20 of 21

Author Contributions: Conceptualization, I.T., C.-M.A., A.Z. and E.F; methodology, A.Z., E.F. and
S.P; software, I.T. and C.-M.A; formal analysis, I.T., C.-M.A. and A.Z.; writing—original draft prepara-
tion, I.T.,, C.-M.A. and A.Z.; writing—review and editing, E.F. and S.P,; visualization, L.T. and C.-M.A.;
supervision, S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CNCF Cloud Native Computing Foundation
DAG Directed Acyclic Graph

IoT Internet of Things

QoS Quality of Service

LSTM Long short-term memory

SLA Service Level Agreement

References

1. Kratzke, N.; Quint, P.C. Understanding cloud-native applications after 10 years of cloudbcomputing—A systematic mapping
study. J. Syst. Softw. 2017, 126, 1-16. [CrossRef]

2. Jamshidi, P; Pahl, C.; Mendonga, N.C.; Lewis,].; Tilkov, S. Microservices: The Journey So Far and Challenges Ahead. IEEE Softw.
2018, 35, 24-35. [CrossRef]

3. Nastic, S.; Morichetta, A.; Pusztai, T.; Dustdar, S.; Ding, X.; Vij, D.; Xiong, Y. SLOC: Service Level Objectives for Next Generation
Cloud Computing. IEEE Internet Comput. 2020, 24, 39-50. [CrossRef]

4. Indrasiri, K.; Siriwardena, P. Observability. In Microservices for the Enterprise: Designing, Developing, and Deploying; Apress:
Berkeley, CA, USA, 2018; pp. 373—408. [CrossRef]

5. Karumuri, S.; Solleza, F.; Zdonik, S.; Tatbul, N. Towards Observability Data Management at Scale. SIGMOD Rec. 2021, 49, 18-23.
[CrossRef]

6. Chakraborty, M.; Kundan, A.P. Observability. In Monitoring Cloud-Native Applications: Lead Agile Operations Confidently Using
Open SourceSoftware; Chakraborty, M.; Kundan, AP, Eds.; Apress: Berkeley, CA, USA, 2021; pp. 25-54. [CrossRef]

7. Lenarduzzi, V,; Panichella, A. Serverless Testing: Tool Vendors’ and Experts’ Points of View. IEEE Softw. 2021, 38, 54-60.
[CrossRef]

8. Prometheus Monitoring System and Time Series Database. Available online: https://prometheus.io/ (accessed on
24 February 2022).

9. Zipkin Distributed Tracing System. Available online: https://zipkin.io/ (accessed on 24 February 2022).

10. Fluentd Open Source Data Collector For Unified Logging Layer. Available online: https://www.fluentd.org/ (accessed on
24 February 2022).

11. Prometheus Python Client for Instrumentation. Available online: https://github.com/prometheus/client_python (accessed on
24 February 2022).

12. Kalman, R. On the general theory of control systems. IFAC Proc. Vol. 1960, 1, 491-502. [CrossRef]

13. Gouvas, P; Fotopoulou, E.; Zafeiropoulos, A.; Vassilakis, C. A Context Model and Policies Management Framework for
Reconfigurable-by-design Distributed Applications. Procedia Comput. Sci. 2016, 97, 122-125. [CrossRef]

14. Parker, A.; Spoonhower, D.; Mace, |.; Sigelman, B.; Isaacs, R. Distributed Tracing in Practice: Instrumenting, Analyzing, and Debugging
Microservices, 1st ed.; O'Reilly Media: Sebastopol, CA, USA, 2020.

15. OpenTelemetry Specification v1.0.0. Available online: https://github.com/open-telemetry/opentelemetry-specification (accessed
on 24 February 2022).

16. Li, B.; Peng, X,; Xiang, Q.; Wang, H.; Xie, T.; Sun, J.; Liu, X. Enjoy your observability: An industrial survey of microservice tracing
and analysis. Empir. Softw. Eng. 2021, 27, 25. [CrossRef] [PubMed]

17. Niedermaier, S.; Koetter, F.; Freymann, A.; Wagner, S. On Observability and Monitoring of Distributed Systems—An Industry Interview

Study. Service-Oriented Computing; Yangui, S., Bouassida Rodriguez, L, Drira, K., Tari, Z., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 36-52.

http://doi.org/10.1016/j.jss.2017.01.001
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/MIC.2020.2987739
http://dx.doi.org/10.1007/978-1-4842-3858-5_13
http://dx.doi.org/10.1145/3456859.3456863
http://dx.doi.org/10.1007/978-1-4842-6888-9_2
http://dx.doi.org/10.1109/MS.2020.3030803
https://prometheus.io/
https://zipkin.io/
https://www.fluentd.org/
https://github.com/prometheus/client_python
http://dx.doi.org/10.1016/S1474-6670(17)70094-8
http://dx.doi.org/10.1016/j.procs.2016.08.288
https://github.com/open-telemetry/opentelemetry-specification
http://dx.doi.org/10.1007/s10664-021-10063-9
http://www.ncbi.nlm.nih.gov/pubmed/34867075

Sensors 2022, 22,2061 21 of 21

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.
34.
35.
36.
37.

38.

Ates, E.; Sturmann, L.; Toslali, M.; Krieger, O.; Megginson, R.; Coskun, A K.; Sambasivan, R.R. An automated, cross-layer
instrumentation framework for diagnosing performance problems in distributed applications. In Proceedings of the SoCC 19
ACM Symposium on Cloud Computing, Santa Cruz, CA, USA, 20-23 November 2019; Association for Computing Machinery:
New York, NY, USA, 2019; p. 165-170. [CrossRef]

Cassé, C.; Berthou, P.; Owezarski, P; Josset, S. Using distributed tracing to identify inefficient resources composition in cloud
applications. In Proceedings of the 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), Cookeville, TN,
USA, 8-10 November 2021; pp. 40—47. [CrossRef]

Cassé, C.; Berthou, P.; Owezarski, P,; Josset, S. A tracing based model to identify bottlenecks in physically distributed applications.
In Proceedings of the 2022 International Conference on Information Networking (ICOIN), Jeju-si, Korea, 12-15 January 2022;
pp. 226-231. [CrossRef]

Popa, N.M.; Oprescu, A. A data-centric approach to distributed tracing. In Proceedings of the 2019 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Sydney, NSW, Australia, 11-13 December 2019; pp. 209-216.
[CrossRef]

Bento, A.; Correia, J.; Filipe, R.; Araujo, E; Cardoso, J. Automated Analysis of Distributed Tracing: Challenges and Research
Directions. J. Grid Comput. 2021, 19,9. [CrossRef]

Bogatinovski, J.; Nedelkoski, S.; Cardoso, J.; Kao, O. Self-supervised anomaly detection from distributed traces. In Proceedings of
the 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 7-10 December 2020;
pp. 342-347. [CrossRef]

Gorige, D.; Al-Masri, E.; Kanzhelev, S.; Fattah, H. Privacy-risk detection in microservices composition using distributed
tracing. In Proceedings of the 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan,
23-25 October 2020; pp. 250-253. [CrossRef]

Marie-Magdelaine, N.; Ahmed, T.; Astruc-Amato, G. Demonstration of an observability framework for cloud native microservices.
In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Arlington, VA, USA,
8-12 April 2019; pp. 722-724.

Picoreti, R.; Pereira do Carmo, A.; Mendonca de Queiroz, F,; Salles Garcia, A.; Frizera Vassallo, R.; Simeonidou, D. Multilevel
observability in cloud orchestration. In Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic
and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference
on Big Data Intelligence and Computing and Cyber Science and Technology Congress, Athens, Greece, 12-15 August 2018;
pp. 776-784. [CrossRef]

Borges, M.C.; Werner, S.; Kilic, A. FaaSter troubleshooting—Evaluating distributed tracing approaches for serverless applications.
In Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4-8 October
2021; pp. 83-90. [CrossRef]

Ernst, D.; Tai, S. Offline trace generation for microservice observability. In Proceedings of the 2021 IEEE 25th International
Enterprise Distributed Object Computing Workshop (EDOCW), Gold Coast, QLD, Australia, 25-29 October 2021; pp. 308-317.
[CrossRef]

Kosinska, J.; Zieliniski, K. Autonomic Management Framework for Cloud-Native Applications. J. Grid Comput. 2020, 18, 779-796.
[CrossRef]

Cha, D.; Kim, Y. Service mesh based distributed tracing system. In Proceedings of the 2021 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20-22 October 2021; pp. 1464-1466.
[CrossRef]

Levin, J.; Benson, T.A. ViperProbe: Rethinking microservice observability with eBPF. In Proceedings of the 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet), Piscataway, NJ, USA, 9-11 November 2020; pp. 1-8. [CrossRef]
CNCEF Cloud Native Interactive Landscape—Tracing Tools. Available online: https://landscape.cncf.io/card-mode?category=
tracing (accessed on 24 February 2022).

Jaeger: Open Source, End-to-End Distributed Tracing. Available online: https://www.jaegertracing.io/ (accessed on
24 February 2022).

Elastic Application Performance Monitoring. Available online: https://www.elastic.co/observability /application-performance-
monitoring (accessed on 24 February 2022).

Apache SkyWalking. Available online: https://skywalking.apache.org/ (accessed on 24 February 2022).

Grafana Observability Platform. Available online: https://grafana.com/ (accessed on 24 February 2022).

Tzanettis, I.; Androna, C.M.; Zafeiropoulos, A.; Fotopoulou, E.; Papavassiliou, S. Distributed IoT Application Gitlab Repository.
Available online: https:/ /gitlab.com/netmode/distributed-tracing-iot-app (accessed on 24 February 2022).

Vegeta HTTP Load Testing Tool. Available online: https://github.com/tsenart/vegeta (accessed on 24 February 2022).

http://dx.doi.org/10.1145/3357223.3362704
http://dx.doi.org/10.1109/CloudNet53349.2021.9657140
http://dx.doi.org/10.1109/ICOIN53446.2022.9687217
http://dx.doi.org/10.1109/CloudCom.2019.00039
http://dx.doi.org/10.1007/s10723-021-09551-5
http://dx.doi.org/10.1109/UCC48980.2020.00054
http://dx.doi.org/10.1109/ECICE50847.2020.9301952
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00134
http://dx.doi.org/10.1109/IC2E52221.2021.00022
http://dx.doi.org/10.1109/EDOCW52865.2021.00062
http://dx.doi.org/10.1007/s10723-020-09532-0
http://dx.doi.org/10.1109/ICTC52510.2021.9620968
http://dx.doi.org/10.1109/CloudNet51028.2020.9335808
https://landscape.cncf.io/card-mode?category=tracing
https://landscape.cncf.io/card-mode?category=tracing
https://www.jaegertracing.io/
https://www.elastic.co/observability/application-performance-monitoring
https://www.elastic.co/observability/application-performance-monitoring
https://skywalking.apache.org/
https://grafana.com/
https://gitlab.com/netmode/distributed-tracing-iot-app
https://github.com/tsenart/vegeta

	Introduction
	Background
	Theory and Definitions
	Signals, Observability and Instrumentation
	Distributed Tracing Terminology

	Related Work
	An Orchestration-Based Observability Approach
	Generic Data Fusion Schema
	Observability Approach within an Orchestration Environment
	Assisting Orchestration Mechanisms

	Distributed Application Implementation and Evaluation Results
	Distributed IoT Application
	Traces Analysis
	Validation and Performance Evaluation

	Discussion
	References

