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Abstract: (1) Background: The use of smart devices to better manage diabetes has increased signif-
icantly in recent years. These technologies have been introduced in order to make life easier for
patients with diabetes by allowing better control of the stability of blood sugar levels and anticipating
the occurrence of dangerous events (hypo/hyperglycemia), etc. That being said, the main objectives
of the self-management of diabetes is to improve the lifestyle and life quality of patients with diabetes;
(2) Methods: We performed a systematic review based on articles that focus on the use of smart
devices for the monitoring and better management of diabetes. The search was focused on keywords
related to the topic, such as “Diabetes”, “Technology”, “Self-management”, “Artificial Intelligence”,
etc. This was performed using databases, such as Scopus, Google Scholar, and PubMed; (3) Results:
A total of 89 studies, published between 2011 and 2021, were included. The majority of the selected
research aims to solve a diabetes management problem (e.g., blood glucose prediction, early detection
of risk events, and the automatic adjustment of insulin doses, etc.). In these studies, wearable devices
were used in combination with artificial intelligence (AI) techniques; (4) Conclusions: Wearable
devices have attracted a great deal of scientific interest in the field of healthcare for people with
chronic conditions, such as diabetes. They are capable of assisting in the management of diabetes,
as well as preventing complications associated with this condition. Furthermore, the usage of these
devices has improved illness management and quality of life.

Keywords: diabetes; wearables; digital health; glucose monitoring; artificial intelligence; machine learning

1. Introduction

Diabetes is a persistent disease in which the level of sugar in the blood is high. It
can be caused by either a lack or absence of insulin production, or by a loss of insulin
effectiveness [1]. The principal hormone that regulates the uptake of glucose present in
the blood by most cells (muscle and fat cells) is insulin. When insulin is not available in
sufficient quantities, glucose can no longer be absorbed by the cells in the body that need it
and therefore its normal use is disrupted [2].

This disease is one of the world’s fastest growing health problems of the twenty-first
century, with the number of diabetics more than tripling in the last 20 years. According to
the International Diabetes Federation (IDF), diabetes infected 463 million people globally
in 2019, which means that 1 in 11 adults (20–79 years of age) has diabetes. Furthermore,
The IDF estimates that 578 million adults will have diabetes by 2030, and 700 million by
2045 [3,4].

The main categories of diabetes are “type 1 diabetes (T1D)”, “type 2 diabetes (T2D)”,
and “gestational diabetes (GDM)”. Type 1 diabetes affects around 8% of all patients of
this disease. In this type, the body produces little or no insulin. The treatment of type
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1 diabetes is insulin injection. T1D can affect people of any age, but it is mainly present
in children and young adults. Type 2 diabetes is the most common and accounts for
about 90% of all forms of diabetes, and it is most frequently diagnosed in elderly people.
Generally, it is characterized by insulin resistance. Lastly, the type 3 gestational diabetes is
a type of diabetes that first appears during pregnancy and usually disappears shortly after
delivery [5–7].

Diabetes is a disease characterized by fluctuating blood sugar levels that increase
or decrease. The persistence of this abnormality over a long period of time increases the
likelihood that the patient with diabetes will develop other health problems. Most of these
complications commonly occur in patients with type 1 or type 2 diabetes. We distinguish
chronic diabetic complications into two broad categories: microvascular complications
and macrovascular ones, the prevalence of which is much higher in the former than in
the latter [8]. Among the microvascular complications are nephropathy, neuropathy, and
retinopathy, whereas those of the macrovascular type are coronary heart disease (CHD),
myocardial infarction, peripheral arterial disease (PAD), and stroke [9].

Over the last decade, there has been a tremendous increase in consumer contact with
technology and artificial intelligence [10]. Consumers’ usage of wearable technology is
part of the current technological revolution. Wearable devices, or simply wearables, are
defined by Wright et al. [11] as smart computers integrated into various accessories, such as
clothing, fashion accessories, smartwatches, and other everyday objects worn by customers.
The application of these technologies in healthcare is rapidly increasing. This is due to the
variety of sensors that these gadgets are equipped with, including those that detect sound,
images, body movements, and ambient light levels [12].

A process called predictive analytics uses a range of machine learning algorithms, data
mining techniques, and statistical approaches to find patterns or signals and predict future
occurrences from current and past data. Predictive analytics, when applied to health data, can
help make critical choices and predictions. Machine learning and regression techniques are
used to perform this predictive analysis. This method aims to diagnose a disease as accurately
as possible, to better care for patients, to make the best use of resources, and to achieve better
clinical outcomes [13]. Machine learning is viewed as one of the most important aspects of
artificial intelligence, as it allows for the design of computer systems that can learn from
previous experience without the need for programming for every situation.

The combination of artificial intelligence approaches and advanced technologies,
such as medical devices, wearable devices, and sensor technologies, could enable the
development and implementation of better chronic disease management services [14].
In this paper, diabetes is the health problem addressed.

In recent years, new technologies have been created for the management of diabetes
and its complications. In this article, in the form of a systematic literature review, we will
give an overview and clearer idea of current technologies (smart wearables) as well as
AI techniques used to help manage this disease. AI has substantial applications in four
primary fields of diabetes care: automated retinopathy detection, clinical decision support,
predictive population risk stratification, and patients’ self-tools [15,16].

The accumulated literature about diabetes management with different tools based on
artificial intelligence is vast and difficult to grasp. In this article, we aim to classify and
review the most relevant works. Our objective is to present in a clear and more relevant
way the advancement of science in the field of diabetes management using smart devices
and machine learning.

Previous reviews dealing with the topic of diabetes management (see Table 1) have
mostly been focused on the use of just mobile applications. We even find, as mentioned in
Table 1, that these reviews cover the subject in less depth. Other studies only focus on a
specific type of diabetes or on a specific age group. The fact that we focused on reviewing
each of the included studies individually, as well as providing detailed results for each,
allows us to provide a more in-depth view, to the point of questioning aspects traditionally
taken for granted.
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Table 1. Previous reviews dealing with the topic of diabetes management (Published on 2021).

Title Year Limitations

Implementation and impact of mobile health (mHealth)
in the management of diabetes mellitus in Africa: a
systematic review protocol [17]

2021
- Related to mHealth and targets a specific region and type
of diabetes. It also did not provide a detailed analysis of
each included article.

Effectiveness of mobile applications in diabetic patients’
healthy lifestyles: a review of systematic reviews [18] 2021 - Presents only the management of diabetes using mobile

applications

Mobile and wearable technology for the monitoring of
diabetes-related parameters: Systematic review [19] 2021 - Focused on the devices rather than machine learning

Mobile apps for the treatment of diabetes patients: a
systematic review [20] 2021 - Presents only the management of diabetes using mobile

applications.

Effects of offloading devices on static and dynamic bal-
ance in patients with diabetic peripheral neuropathy:
a systematic review [21]

2021 - Deals with only part of the fields of diabetes management.

Mobile app interventions to improve medication adher-
ence among type 2 diabetes mellitus patients: a system-
atic review of clinical trials [22]

2021
- Presents only the management of diabetes using mobile
applications.
- Focused only on one type of diabetes.

This paper according to the sections below: methods describing the eligibility criteria
for article selection, choice of data sources, and the study selection/data extraction process;
the results section details the research topic, participants, metrics, smart device types and
models, and AI approaches employed for each included study; and finally the conclusion
offers prospective future pathways for smartwatch research.

2. Materials and Methods

A systematic review is an explicit and reproducible research methodology that identi-
fies all associated experiments and also summarizes the state of the art, in order to answer
one or more fundamental research questions on a particular topic [23,24].

In this section, we will present the detailed methodology utilized to conduct the
systematic review, which was based on the guidelines described in the PRISMA method:
preferred reporting items for systematic reviews and meta-analysis [25].

2.1. Eligibility Criteria

The eligibility criteria for the selection of articles listed below are also summarized in
Table 2:

• Only papers written in English;
• Only papers published in the last 10 years (between January 2011 and May 2021) due

to the fast technological developments in diabetes self-management;
• Only papers with diabetes management and its complications as the main topic;
• Only papers dealing with the management of type 1, type 2, or gestational diabetes;
• Only papers that focus on diabetes self-management using devices which are either

portable or mounted on the body were included;
• Only papers addressing the topic with artificial intelligence (AI)-based techniques.

Scientific interest in the use of wearable technologies in diabetes healthcare has in-
creased over the last decade. The articles included in this review were published between
2011 and 2021. During this period (in the SCOPUS and PubMed databases), 716 articles
were published, while the period before 2011 there were only 159 publications (Figure 1).

Papers were excluded if they: (i) were a short conference/congress abstract; (ii) were
a review article; (iii) were published before 2011; or (iv) were not available in full text. In
addition, studies that do not meet the criteria listed above are excluded from the review.
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Table 2. Summary of inclusion criteria.

Criteria Definition

Language of papers English

Years considered Between January 2011 and May 2021.

Subject The use of smart devices in the management of diabetes.

• Computer science.
Fields • Medicine.

• Artificial intelligence (AI).

• Type 1 diabetes (T1D).
Type of diabetes considered • Type 2 diabetes (T2D).

• Gestational diabetes (GDM).

Age of participants No restrictions related to age.

Types of devices
• Portable.
• Mounted on the body.

Figure 1. Distribution of documents by year (SCOPUS database).

2.2. Data Sources and Search Strategy

For the identification and collection of articles related to the domains of interest of our
systematic review, a literature search was performed in the Scopus and PubMed databases.
We selected these electronic databases by reason of their relevance to the research subject
and scope. The title, abstract, and keywords were the fields considered in the search queries.
The searches were formulated using several keywords falling within the topics already
described in the eligibility criteria, and by using Boolean operators (AND, OR, and NOT)
in order to interrogate the electronic databases of scientific publications. As an example,
the search strings implemented in Scopus and PubMed are provided in Table 3. In addition,
more articles were obtained from the bibliographies of the identified papers.

The electronic search terms used were: (i) Device Type: “wearabl*”; “device*”; “smart
devic*”; “watch”; “smartwatch”; “smart*”; “Portable”; “mobile”. (ii) Control Technologies: “in-
tellig*”; “artificial”; “machine learning”; “AI”; “learn*”; “classification”; “regression”; “ANN”;
“artificial neur*”; “net*”. (iii) Medical Domain: “diabet*”; “hypoglycem*”; “hyperglycem*”.
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Table 3. Search strategies for the selected databases.

Database Search Query

SCOPUS

TITLE ((“wearabl*” OR “device*” OR “smart devic*” OR “watch” OR “smart-
watch” OR “smart” OR “Portable” OR “mobile”) AND (“diabet*” OR “hy-
poglycem*” OR “hyperglycem*”) AND NOT (“systematic review”)) AND
ALL((“wearabl*” OR “device*” OR “smart devic*” OR “watch” OR “smart
watch” OR “Portable” OR “mobile”) AND (“diabet*” OR “hypoglycem*” OR
“hyperglycem*”) AND (“intellig*” OR “artificial” OR “machine learning” OR
“AI” OR “learn*” OR “classification” OR “regression” OR “ANN” OR “artificial
neur*” OR “net*”)) AND (LIMIT-TO (PUBSTAGE,“final” )) AND (LIMIT-TO
(LANGUAGE,“English” )) AND (EXCLUDE (DOCTYPE,“re” )) AND (LIMIT-
TO (PUBYEAR,2021) OR LIMIT-TO (PUBYEAR,2020) OR LIMIT-TO (PUB-
YEAR,2019) OR LIMIT-TO (PUBYEAR,2018) OR LIMIT-TO (PUBYEAR,2017)
OR LIMIT-TO (PUBYEAR,2016) OR LIMIT-TO (PUBYEAR,2015) OR LIMIT-
TO (PUBYEAR,2014) OR LIMIT-TO (PUBYEAR,2013) OR LIMIT-TO (PUB-
YEAR,2012) OR LIMIT-TO (PUBYEAR,2011))

PubMed

(((((((“wearabl*”[Title] OR “device*”[Title] OR “smart devic*”[Title] OR
“watch”[Title] OR “smartwatch”[Title] OR “smart*” OR “Portable”[Title] OR
“mobile”[Title])) AND ((“diabet*”[Title] OR “hypoglycem*”[Title] OR “hyper-
glycem*”[Title] ))) AND ((“wearabl*” OR “device*” OR “smart devic*” OR
“watch” OR “smart watch” OR “Portable” OR “mobile” ))) AND ((“diabet*” OR
“hypogly-cem*” OR “hyperglycem*” ))) AND ((“intellig*” OR “artificial” OR
“machine learning” OR “AI” OR “learn*” OR “classification” OR “regression”
OR “ANN” OR “artificial neur*” OR “net*” ))) NOT (“systematic review”[Title]))
AND ((“2011”[Date—Publication] : “2021/04/18”[Date—Publication])) AND
(English[Language])

2.3. Study Selection

After querying the databases, we used EndNote® X9.3.3 reference management tool to
log references, to eliminate multiple records, and to create a unique database of references.

To select articles from the initial database, we applied a three-step process, as recom-
mended by Stefana et al. [26] in “Inclusion and Exclusion Criteria” section:

1. Evaluation of the title;
2. Evaluation of the abstract and keywords;
3. Evaluation of the full text.

The aim was to remove irrelevant searches during stages (1) and (2), and then review
the remaining documents using the above eligibility criteria during stage (3). Finally, in the
eligibility phase, we assembled the included studies into our final database, and reported
the main reason for the exclusion of other articles on the basis of given criteria.

The entire flowchart for the selection process, including identification, screening,
eligibility, and inclusion, is shown in Figure 2 [27].

2.4. Data Extraction

For each article included, the following information was also included: (i) study focus,
(ii) type of device, (iii) device model, (iv) participants information, (v) AI technologies used,
(vi) approach used, (vii) parameters extracted, and (viii) technological challenges associated
with the use of smart devices for diabetes management. The results were discussed in
order to show the most recent status of wearable-device research for medical purposes
(diabetes management).
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Figure 2. The PRISMA flow diagram.

3. Results

The selected research is 19 in number and was published between 2011 and 2021.
The selection procedure started initially with 1216 articles and multiple elimination steps
were performed. Firstly, 169 were eliminated, mostly due to being duplicates. Secondly,
title/abstract screening reduced the remaining 1047 articles into 424 (excluding 623 records).
From this number, 197 were excluded as we were not able to get the full text. Finally,
190 were removed for unfitting the inclusion criteria to bring about an outcome of 19 articles.
The majority of the selected studies are aimed at solving one of the diabetes management
problems: blood glucose prediction, early detection of risk events, automatic adjustment of
insulin doses, etc. Wearable gadgets combined with artificial intelligence approaches have
been used in this research. This systematic review concluded in 19 articles.

3.1. Diabetes Technology

Diabetes technology describes the hardware, devices, and software used by people
with diabetes in managing the levels of blood glucose, avoiding the complications of
diabetes, reducing the stress of living with diabetes, and making their lives better [28].

“Smart” glucose and blood pressure monitors, activity trackers, and scales have
become the most widely used connected devices in the diabetes world. From “smart” socks,
which are supposed to monitor foot temperature to prevent inflammation and ulcers, to
wearable mini electrocardiographs (ECGs) connected to track cardiovascular health, the
growing number and variety of devices for people living with diabetes is expected to
revolutionize how the disease is managed (Figure 3) [29].

The use of smart technologies to manage diabetes remains a promising area of research
that can significantly improve the quality of life for people affected by this disease [30].
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Figure 3. Wearable devices used to support patients with diabetes.(ECG : electrocardiography).

3.2. Artificial Intelligence Techniques

Artificial intelligence (AI) is a field of computer science that focuses on developing
technologies to do what normally needs to be performed by human intelligence. These
programs can imitate or replicate cognitive behaviors or skills related to human intelligence,
such as reasoning, problem solving, and learning. Today, it is one of the most rapidly
developing branches of computing and computation, with an important potential impact
on healthcare [31].

In the field of health, one of the most significant branches of AI is machine learning.
Machine learning is a field of artificial intelligence (AI) that concentrates on developing
algorithms capable of learning from data and improving their performances over time
without being programmed to do so [32].

The use of AI in healthcare is becoming increasingly more popular, as shown in
Figure 4, based on Google Trends data over the past decade [33]. Here, the x-axis indicates
specific dates, and the y-axis represents the corresponding popularity ranking, which
ranges from 0 (minimum) to 100 (maximum). Based on Figure 4 , it can be seen that the
popularity indicator values for the use of the term “ai healthcare” carried low values in
2012, but has been gradually increasing since.
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3.2.1. Types of Machine Learning Techniques

Machine learning (ML) algorithms are mainly divided into four categories [34] (Figure 5).
These are :

1. Supervised Learning: where the system deduces a function from labeled training data.
2. Unsupervised Learning: where the training system attempts to deduce the structure

of unlabeled data.
3. Semi-Supervised Learning: can be described as a combination of the supervised

and unsupervised methods mentioned above, as it works on both labeled and unla-
beled data.

4. Reinforcement Learning: where the system interacts with a dynamic environment [32,35].

Figure 5 shows the taxonomy of ML techniques [36].

Figure 4. The worldwide popularity rating for the term “ai healthcare” within a range of 0 (min) to
100 (max) in time, where the x-axis represents the timestamp information and the y-axis shows the
corresponding score [33].

Supervised Learning: One of the most powerful data analysis approaches in machine
learning is the supervised learning model. In this type of learning, the system tries to learn
from the labeled data the corresponding function (f ) that maps an input (x) to an output (y)
(Figure 6) [37]. At the end of the learning process, we will get a function:

f : x → y

which the algorithm will use for making predictions on unlabeled data [34]. The output
in this type of learning is obtained by data classification or regression (value prediction).
Classification algorithms, such as the examples given in Figure 5, are designed to predict
distinct classes, while regression algorithms predict numerical values (e.g., the prediction
of blood glucose values) [38].

Figure 6 is an application of a supervised learning model, which allows a classification of
diabetic retinopathy fundus images [39]. This example is based on images obtained on the
Kaggle platform [40].

Unsupervised Learning: Unlike supervised machine learning, in unsupervised machine
learning, the system attempts to find and discover the hidden data structure or the rela-
tionships between variables with no preexisting labels or specifications [41]. The training
data for this method consists of a set of data that is not labeled, categorized, or classified
(Figure 7) [42]. The output of this type of learning is obtained by using one of the following
main ML methods: clustering, association rules, and dimensionality reduction (Figure 5).
The difference between clustering and classification is that clustering attempts to group a
set of objects and determine if there is a relationship between these objects (no pre-defined
classes), while classification attempts to classify new simple objects into known classes [43].
Clustering can be used in healthcare, for example, to identify groups of cohesive and
well-separated patients with diabetes who share similar profiles (e.g., age and gender) as
well as common clinical histories [44].
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Semi-Supervised Learning: Semi-supervised learning is a combination of supervised and
unsupervised methods. The learning in this kind of algorithm uses labeled and unlabeled
data (Figure 5) [45]. This method is generally used to solve problems where the number of
available data is large and only a very limited set of labeled data is present [46].

One of the application areas of semi-supervised learning is in healthcare. To illustrate,
Whu et al. developed a diabetic predictive model using semi-supervised learning (the
Laplacian support vector machine (LapSVM)) [47].

Reinforcement Learning: The reinforcement learning method is a reward- or penalty-
based method [48]. Indeed, its principal objective is to exploit the information and observa-
tions obtained from the interaction with the environment, in order to maximize the reward
or minimize the risk [49]. The reinforcement learning algorithm (agent) is continually learn-
ing by interacting with the environment, aiming to explore the full range of possible states
and to make the most proper decisions [34]. The agent’s actions affect the environment’s
state (Figure 8).

The integration of reinforcement learning in the healthcare industry has often led to better
outcomes [50]. As an example, this type of algorithm is used in people with diabetes
to enhance their health and blood sugar control [51]. Yom-Tov et al. [52] developed a
mobile application that aims to motivate people with diabetes to be physically active. This
application was associated with a learning algorithm, which was able to predict better
messages that would encourage patients to exercise.

3.2.2. Different Techniques Used by ML

Support Vector Machine: A support vector machine (SVM) was developed in the 1990s.
As a simple and important process, this method is used to perform machine learning (ML)
tasks. A set of training samples is provided throughout this procedure, with each sample
split into distinct categories. Support Vector Machine (SVM) is a type of machine learning
algorithm that is commonly used to solve classification and regression issues [53].

Bayes Classification: Statistical classifiers are an example of Bayesian classifiers. Based
on a given class label, naive Bayes determines the probability of class membership [54]. It
conducts a single scan of data, making categorization simple.

Decision Tree: A decision tree (DT) is a classification method that consists of an internal
node and a leaf node that has a class label. The decision tree’s (DT) top nodes are referred
to as root nodes. This technique is popular because it is simple to construct and does not
require any parameters [55].

K-Nearest Neighbors: The K-nearest neighbors method is a popular method for classifying
data. We can calculate the distance measurement from N training samples using this
approach [56].

Logistic Regression (LR): Logistic regression is a typical probabilistic-based statistical
model used to address classification problems in machine learning. To estimate proba-
bilities, logistic regression generally uses a logistic function. It is able to deal with high-
dimensional datasets and performs well when the dataset can be split linearly. A key
disadvantage of logistic regression is the assumption of linearity between the dependent
and independent variables. It may be used to solve both classification and regression issues.
However, it is most often employed to solve classification problems [57].

Adaptive Boosting (AdaBoost): AdaBoost is an ensemble learning technique that uses an
iterative strategy to improve weak classifiers by learning from their failures. Adaboost em-
ploys “sequential ensembling” as opposed to the random forest, which employs “parallel
ensembling”. It generates a strong classifier by assembling multiple low-performing classi-
fiers to get a high-accuracy classifier. AdaBoost is best utilized to improve the performance
of decision trees and the base estimator on binary classification tasks [58].
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Figure 5. Machine learning models and algorithms.
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Figure 6. Supervised learning model. The supervised method consists of learning from labeled data,
where each input data is associated with its output label (Stage 1). Then, the algorithm is validated
on another set of unlabeled data, which the machine has not seen before (Stage 2) (images sourced
from Kaggle’s platform).

Figure 7. Unsupervised learning model (images sourced from Kaggle’s platform).

3.2.3. Examples of Machine Learning in Everyday Life

The technique of machine learning (ML) is a universal concept applied in a large
number of fields; however, we still ignore the fact that we use it regularly.

Recently, machine learning methods are being used to identify and successfully filter
junk emails. Yahoo’s basic methods for finding spam messages include URL (uniform
resource locator) filtering, email body text, and customer spam complaints. Contrary to
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Gmail, Yahoo filters email messages based on domains, not IP addresses (Internet Protocol
addresses) [59].

Figure 8. Reinforcement learning models for diabetes. The state changes cause the agent to act,
resulting in a modification of the environment. A numerical reward is provided to the agent by the
environment, influencing the agent’s next action with the next state.

Plagiarism detection is an excellent example of AI application in the academic domain.
One of the approaches used to combat plagiarism is the multi-agent machine learning
(MML) system [60].

Netflix is an outstanding example of a good ML program in terms of daily usage.
Based on the habits of its users, for example, the platform recommends a series of titles and
visual content tailored specifically to the person watching [61].

Figure 9 illustrates some of the machine learning applications in our daily life.

Figure 9. Examples of machine learning (ML) applications in everyday life.

3.3. Artificial Intelligence and Diabetes

The field of artificial intelligence (AI) is rapidly evolving and its application to diabetes
has the potential to revolutionize the approach to diagnosing and treating this disease [62].
Furthermore, the integration of AI with smart devices, such as medical devices, wearables,
smartphones, and sensor technology, will allow for the building of a machine capable of
supervising and monitoring people with diabetes continuously [63].

Machine learning has the potential to revolutionize the way of managing diabetes, by
permitting faster and more accurate decision making and improving existing healthcare
standards. Table 4 summarizes the various AI application fields in the management
of diabetes.
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3.4. Search Results

Table 5 displays smart device types and models, the various sensor-based methods
used, research subjects, participant information, and the AI technologies and strategies em-
ployed. Table 6 displays the study’s objectives and findings. Sixteen of the nineteen studies
(84%) were about patients. One of the remaining three studies involved the creation of a
smartphone application to assist people with type 1 diabetes in counting the carbohydrates
in their diet, so the database included images of various meal components; the other two
studies used virtual subjects to predict blood glucose levels as well as critical events.

Table 4. AI applications and ML techniques used in various domains of the management of diabetes.

Domain of use Applications Type of ML
Methods ML Technique Used Year Reference

BG Prediction

Predict blood glucose values
to provide early warnings. Regression

ANN 2012 [64]

SVM, RA, ANN 2013 [65]

SVR 2013 [66]

KNN, RF 2017 [67]

Early detection and diagnosis
of diabetes. Classification SVM 2013 [68]

Detection of Adverse
Glycemic Events
(Hypo/Hyper)

Early detection and rapid
response to risky glycemic events. Classification

ANN 2013 [69]

SVM 2013 [70]

RF 2014 [71]

ANN 2016 [72]

Advisory Systems

Identifying clusters of people with
similar forefoot loading patterns. Clustering K-means 2013 [73]

Identification of renal risk clusters in
African American women with type 2

diabetes and categorize the risk
groups (low risk and high risk).

Clustering K-means 2015 [74]

Prediction of the risk for future
occurrence of microvascular
complications (nephropathy,

neuropathy, and retinopathy).

Classification RF, LR 2018 [75]

Detection of Exercise

Automatic detection of the type
(aerobic and anaerobic exercise) and
duration of the exercises performed.

Classification KNN 2015 [76]

The automation of exercise detection
and the management of insulin and
glucagon dosages during activity.

Regression Linear Regression 2015 [77]

Lifestyle and Daily-
Life Support in

Diabetes Management

Help patients with type 1 diabetes
to count carbohydrates in food

using the smartphone
(automatic detection).

Clustering Hkmeans
2015 [78]

Classification SVM
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Table 5. The description of selected articles based on smart device types, models, study focus, participants, AI technologies used, and approach used.

Title Doi Year Authors Study Focus Types of Devices Devices Model Sensors Participants AI Technologies Used Approach Used

A Recurrent Neural Network
Approach for Predicting Glucose
Concentration in Type-1 diabetic

patient

10.1007
/978-3-642-23957-1_29 2011 Allam et al. [79] Blood glucose prediction

Continuous Glucose
Monitoring (CGM)

System

Gaurdian® Real Time
CGM system

(MedtronicMinimed)

CGM sensor (Glucose
sensor)

n = 9, type-1 patient with
diabetes (T1D)

Recurrent neural network
(RNN) Regression

Electrocardiographic Signals and
Swarm-Based Support Vector Machine

for Hypoglycemia Detection

10.1007
/s10439-011-0446-7 2012 Nuryani et al. [80]

Hypoglycemia detection
using the ECG parameters as

inputs
The Siesta System COMPUMEDICS Not specified n = 5, patient with diabetes

with age of 16 ± 0.7 years
Support vector machine

(SVM) Classification

Blood Glucose Level Prediction using
Physiological Models and Support

Vector Regression
10.1109/ICMLA.2013.30 2013 Bunescu et al. [81] Blood glucose prediction

Continuous Glucose
Monitoring (CGM)

System Not specified CGM sensor (Glucose
sensor)

n = 10, T1D patients Support vector regression
(SVR)

Regression

Smartphone

Jump neural network for online
short-time prediction of blood glucose
from continuous monitoring sensors

and meal information.

10.1016/j.cmpb.2013.09.016 2014 Zecchin et al. [82] Blood glucose prediction
Continuous Glucose
Monitoring (CGM)

System
DEXCOM SEVEN PLUS CGM sensor (Glucose

sensor) n = 20, T1D patients Jump neural network Regression

Incorporating an Exercise
Detection, Grading, and

Hormone Dosing
Algorithm into the

Artificial Pancreas Using
Accelerometry and Heart

Rate

10.1177/
19322968
15609371

2015 Jacobs et al. [77]

Detection of exercise
activity Automatic

adjustment of insulin/
Glucagon doses

- CGM system - Dexcom G4 - CGM Sensors

n = 13, T1D patients Linear Regression
Regression (estimate
EE in kilocalories/

minute)
- Android smartphone - Google Nexus - 3-Axis Accelerometer

- Biopatch - Zephyr Biopatch
(Zephyr Technology) - Heart Rate Sensors

- Insulin pump - Not specified

Computer Vision-Based
Carbohydrate Estimation for
type 1 Patients with Diabetes

Using Smartphones

10.1177/
19322968
15580159

2015 Anthimopoulos
et al. [78]

Measurement of the
caloric intake of food Smartphone (application) Not specified

Accelerometer

- Hierarchical k-means Clustering

Gravity sensor

Camera SVM Classification

Classification of Physical
Activity: Information to

Artificial Pancreas Control
Systems in Real Time

10.1177/
19322968
15609369

2015 Turksoy et al. [76]

Automatic identification
of the type and intensity

of exercise

Chest Band
Bioharness-3 (Zephyr

Technology, Annapolis
MD)

Heart Rate Sensors n = 8, subjects are tested
(5 with T1D, 3 without

T1D)
SVM Classification

Fitmate Pro COSMED Breathing sensor

Non-Invasive Blood Glucose Detection
System Based on Conservation of

Energy Method
10.1088/1361-6579/aa50cf 2017 Zhang et al. [83] Blood Glucose Prediction Non-Invasive BG

Detection System Not specified

-Temperature Sensor.
-Radiation Thermometer.

-Humidity Sensor.
-Photoelectric Detector (PD).

-Dual Wavelength LEDs.

n = 180, 45 patient with
diabetes, 91 senior citizens

(36 patients with
hypertension), 54 adults in

good health

Decision Tree Back
propagation neural

network

Classification Regression

Encouraging Physical Activity
in Patients with Diabetes:

Intervention Using a
Reinforcement Learning System

10.2196/jmir.7994

2017 Yom-Tov et al. [52]

Improving health and blood
sugar control.

Smartphone Android Smartphone Accelerometer

n = 27 sedentary type 2
diabetes patients

Linear Regression RegressionMotivate people with
diabetes to engage in sports

activities.
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Table 5. Cont.

Title Doi Year Authors Study Focus Types of Devices Devices Model Sensors Participants AI Technologies Used Approach Used

Development and Evaluation of a
Mobile Personalized Blood Glucose
Prediction System for Patients with

Gestational Diabetes Mellitus

10.2196 /mhealth .9236 2018 Pustozerov et al. [84]

-Blood Glucose Prediction,
-Assistance to Gestational
Diabetes Mellitus (GDM)

patients,

-Mobile App,
-Continuous Glucose

Monitoring (CGM)
System,

Medtronic iPro Enlite sensors (Medtronic,
Minneapolis, MN, USA)

n = 62 participants (48
pregnant women with

GDM and 14 women with
normal glucose tolerance)

Linear Regression Regression

5G-Smart Diabetes:
Toward Personalized

Diabetes Diagnosis with
Healthcare Big Data

Clouds

10.1109
/MCOM .2018

.1700788
2018 Chen et al. [85] Early detection and

prevention of diabetes

Blood glucose device

Not specified Not specified
n = 9594, 469 diabetes

patients and 9081 normal
persons

(Ensemble learning)
Combination of:
- Decision Tree,

- ANN and - SVM.

ClassificationSmartphone

Wearable 2.0 (i.e., smart
clothing)

Intelligent app

Classification of Postprandial Glycemic
Status with Application Insulin Dosing
in Type 1 Diabetes—An In Silico Proof

of Concept

10.3390/bs1914 3168 2019 Cappon et al. [86]

-Predict the future glycemic
status in the postprandial

period.
-Adjusting the insulin bolus
according to the predicted

glycemic status.

Continuous Glucose
Monitoring (CGM)

System
Not specified Glucose sensor Data of 100 virtual adult

subjects
XGB-Extreme Gradient

Boosted Tree Model.

Classification
(hyperglycemia,
euglycemia, or
hypoglycemia)

Diabetes Care in Motion: Blood
Glucose Estimation Using Wearable

Devices

10.1109/MCE .2019
.2941461 2019 Tsai et al. [87] Prediction of blood glucose

levels using the PPG signal
Wearable Health Device

(Wristband) Glutrac Optical Sensors
n = 9 participants with type

2 diabetes, (3 Males, 6
Females)

Random forest Adaboost
Regression

Regression

Classification of Fatigue Phases in
Healthy and Diabetic Adults Using

Wearable Sensor
10.3390/s20236 897 2020 Aljihmani et al. [88]

* Recognizing Rest/Effort
Tasks. * Detection of early

and late fatigue states.

- 3-axial accelerometer
-Arduino

-ADXL 355 -UNO
R3(Adafruit) Accelerometer

n = 40 right-handed adults
(19 males and 21 females),

(20 healthy, 20 subjects with
T1DM)

Ensemble Classifier Based
on Random Subspace

K-NN
Classification

Towards Wearable-based
Hypoglycemia Detection and

Warning in Diabetes

10.1145
/3334480
.3382808

2020 Maritsch et al. [89] Hypoglycemia detection Smartwatch Empatica E4

Optical Sensor
n = 1 one otherwise
healthy individual

with T1DM

Gradient Boosting
Decision Tree (GBDT) Classification

Three-Axis Accelerometer

CGM sensor

Feature-Based Machine Learning
Model for Real-Time Hypoglycemia

Prediction

10.1177/1932296 820922
622 2020 Dave et al. [90] Prediction of hypoglycemic

events.
-CGM System -Insulin

Pumps
-DEXCOM G6 -T-SLIM:

X2
CGM sensor (Glucose

sensor) n = 112 patients Random Forests Classification

Potential Predictors of Type-2 Diabetes
Risk: Machine Learning, Synthetic
Data and Wearable Health Devices

10.1186
/s12859-020-03763-4 2020 Stolfi et al. [91]

Estimation of the risk of
progression from a healthy
state to a pathological state.

-Smart Phones,
-Tablets, -Wearable

Devices, and
-Smartwatches

Not Specified Not Specified n = 46,170 virtual subjects Random Forest Regression

A Smart Glucose Monitoring System
for Patient with Diabetes

10.3390/electronics
9040678 2020 Rghioui et al. [92]

-Diabetic Disease Monitoring,
-Diabetic Assistance,

-Predictions of Blood Glucose
Levels

-Arduino Nano board
-Smartphone

-Smartwatches
-Continuous Glucose

Monitoring (CGM)
System

Not Specified
-Glucose Sensor, -Motion

Sensor, -Temperature
Sensor, -Bluetooth.

n = 55 diabetic patients (39
men and 16 women)

Naive Bayes (NB), J48
Algorithm, Random Tree,
ZeroR, SMO(sequential
minimal optimization),
and OneR algorithms

Classification

Simple, Mobile-Based Artificial
Intelligence Algorithm in the Detection

of Diabetic Retinopathy (SMART)
study

10.1136
/bmjdrc-2019-000892 2020 Sosale et al. [93] Diagnosis of diabetic

retinopathy (DR)
-Smartphone, -Fundus

On Phone camera
-IPhone6, -Remidio
Innovative Solutions Camera n = 900 individuals (252

had DR)
Convolutional Neural

Networks (CNN).
Classification (DR present

or absent)

NOTE: Diabetic retinopathy (DR), Referable Diabetic Retinopathy (RDR), Gestational Diabetes Mellitus (GDM), Type-1 patient with diabetes (T1D), Type-2 patient with diabetes (T2D).
Continuous Glucose Monitoring (CGM), Naive Bayes (NB), Convolutional Neural Networks (CNN), Random Forest (RF), Logistic Regression (LR), Gradient Boosting Decision Tree
(GBDT), Recurrent neural network (RNN), Support Vector Machine (SVM), Support Vector Regression (SVR), Artificial Neural Networks (ANN).
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Table 6. Summary of each selected article.

Authors Summary of Study Results

Allam et al. [79]

In this paper, a new approach for predicting future glucose concentration
levels with prediction horizons (PH) of 15, 30, 45, and 60 min is proposed,
using a recurrent neural network (RNN) and data collected from a continu-
ous glucose monitoring (CGM) device. These predicted glucose levels can
be used to set early hypoglycemia/hyperglycemia alerts to define adequate
insulin doses. The suggested technique’s outcomes are assessed and com-
pared to those produced from a feed-forward neural network prediction
model (NNM). For relatively large prediction horizons, the results show
that the RNN outperforms the NNM in predictions.

Nuryani et al. [80]

In this paper, a hybrid swarm-based support vector machine (SVM) method
for hypoglycemia diagnosis is created by utilizing ECG values as inputs. A
particle swarm optimization (PSO) approach is suggested in this method to
optimize the SVM to identify hypoglycemia. With a sensitivity of 70.68%,
our novel SVM-RBF swarm-based hypoglycemia detection method outper-
forms the competition.

Bunescu et al. [81]

A machine learning model was designed to alert people with diabetes
to impending changes in their blood sugar levels 30 min and 60 min in
advance, giving them enough time to take preventive measures. For this
purpose, a support vector regression (SVR) model was employed. This
approach takes as input previous blood glucose readings obtained with a
continuous glucose monitoring (CGM) device, as well as daily events such
as insulin boluses and meals.

Zecchin et al. [82]

Development of an intelligent system able to accurately predict the future
blood glucose level of diabetic patients with a time horizon of 30 min. This
technique is based on a feed-forward NN, whose inputs are linked directly
to the first hidden layer and the output neuron. This approach takes as input
the CGM data and the amount of carbohydrates that the patient provides
with their meal. The results obtained confirmed that this method provides
a highly reliable prediction of glucose concentration.

Jacobs et al. [77]

The author demonstrates (1) the efficacy of an accelerometer and heart rate
sensor for automated exercise detection, and (2) proposes a new algorithm
for automated adjustment of insulin and glucagon dosages in response to
exercise in this paper. This was based on a validated linear regression model
that took the accelerometer and heart rate as inputs and provided energy
expenditure (EE) as an output. With this model, the detection of the exercise
event was possible with a sensitivity of 97.2% and a specificity of 99.5%.

Anthimopoulos et al. [78]

Development of a smartphone application to assist people with type 1 dia-
betes in counting carbs in diet. The identification of the different elements
of the plate, the calculation of the proportions of the different parts and the
estimation of the caloric intake of the meals are all actions performed using
the images taken by the smartphone, the previous results, and the data pro-
vided by the USDA nutritional database. The assessment of the proposed
system resulted in an average absolute percentage error in carbohydrate
estimation of 10 ± 12%.

Turksoy et al. [76]

Development of a classification system able to detect automatically, in real
time, both the type and intensity of exercise, and to classify it as aerobic or
anaerobic. This system relied on the KNN algorithm, which took data from
the Bioharness-3 chest belt as input. The sensitivity was 98.7% on average.
The use of biometric data and real-time classification of the intensity and
type of exercise can provide helpful information to an AP for the prevention
of hypoglycemia and hyperglycemia caused by exercise.

Zhang et al. [83]

Development of a non-invasive blood glucose detection device with high
accuracy, low cost, and continuous glucose monitoring. This technique
combines the energy conservation method with a sensor integration module
that collects physiological data including blood oxygen saturation (SPO2),
blood flow velocity, and heart rate. The model’s technique uses a decision
tree and a back propagation neural network to classify glucose levels into
three categories and train distinct neural network models for each. The
system’s accuracy is 94.4%.

Yom-Tov et al. [52]

Research study to help patients with type 2 diabetes increase their physical
activity. To this end, patients are given personalized messages based on
each individual using reinforcement learning algorithms. In this paper, a
linear regression algorithm with interactions was used to predict the change
in activity from day t to the day t + 1, in order to select the appropriate
feedback message to send.
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Table 6. Cont.

Authors Summary of Study Results

Pustozerov et al. [84]

Development and implementation of a mobile technology-based
system for data analysis, blood glucose prediction, and assistance
to gestational diabetes mellitus patients (GDM) through a mobile
application. The personalized recommendations are based on the
results of blood glucose predictions. This mobile application was
created using the Java programming language. On the other hand,
blood glucose prediction was obtained using a linear regression
model. This kind of model was chosen due to its high interpretabil-
ity, simplicity, quick tweaking, and appropriate accuracy. Overall,
62 women participated in the study, including 48 pregnant women
with GDM, and 14 others without diabetes.

Chen et al. [85]

Development of an intelligent system called 5G-Smart Diabetes, ca-
pable of predicting blood glucose levels, providing a personalized
diagnosis, and suggesting a suitable treatment for the patient. An in-
telligent application has also been developed to communicate with
all kinds of sensing devices, in order to provide patients with better
services. In this study, three classical ML algorithms—decision
tree, SVM, and artificial neural networks (ANN)—were used, to
create alternative models for diabetes diagnosis. By combining the
three algorithms, better prediction performance is obtained for the
combined model than for each individual model.

Cappon et al. [86]

Development of a novel intelligent approach to classify post-
prandial glycemic status during meals (i.e., hypoglycemia, hyper-
glycemia, and euglycemia), and use its prediction to adapt the
delivery of the mealtime insulin bolus. This method is based on the
use of a classification technique, namely the XGB (extreme gradient
boosted tree) model, able to predict the future glycemic state in
the postprandial period by exploiting data obtained from CGM
measurements, carbohydrate intake estimates, and insulin infusion
recordings. The suggested XGB algorithm might be readily incor-
porated into existing insulin pumps or deployed as a standalone
mobile application.

Tsai et al. [87]

In the present study, researchers used wearable devices to collect
PPG signals from nine type 2 diabetic patients to find a correlation
between blood glucose levels (BGL) and its collected optical sig-
nals. The results of the study showed that 90% accurate glucose
predictions can be obtained. To do so, a random forest regression
model and an Adaboost model were established.

Aljihmani et al. [88]

Development of a system that recognizes and classifies resting and
exertional tasks, and also detects fatigue phases. For this purpose,
an analysis based on advanced signal processing and machine
learning tools, such as k-nearest neighbors (KNN), decision tree
(DT), support vector machine (SVM) and ensemble classifiers (EC),
has been applied to identify appropriate models for the classifica-
tion of rest and effort tasks and the detection of early/late fatigue
stages. Training data were obtained from the wrist and finger of
the participant’s dominant hand using a 3-axis accelerometer. The
ensemble classifier based on the k-NN subspace was considered
the best performer in this example with an accuracy of 96.1% in
recognizing rest and effort tasks, and ~98% in detecting early and
late fatigue stages.
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Table 6. Cont.

Authors Summary of Study Results

Maritsch et al. [89]

Based on data collected from smartwatch sensors (heart rate vari-
ability), this research proposes a machine learning model for de-
tecting hypoglycemia. The classification task of this hypoglycemia
alert system is defined as a binary choice between a normal level
of blood glucose (negative) and a low blood glucose level (posi-
tive). The predictive model used for this task is based on a gradient
boosting decision tree (GBDT), with an average accuracy of 82.7%.

Dave et al. [90]

This study proposes machine learning-based analytical models for
probabilistic prediction of hypoglycemia risk in type 1 patients
with diabetes. Such systems are designed to be integrated into
a smartphone application. The two approaches considered for
prediction are logistic regression (LR) and random forests (RF).
Indeed, when the time frame is 45 to 60 min, the sensitivity drops
from 91% for RF to 58% for LR, giving RF models a considerable
advantage over LR models for longer prediction periods.

Stolfi et al. [91]

The objective of this article is to study the different factors that cause
the development and occurrence of diabetes. To do this, the authors
developed a computer model that summarizes the etiology of the
disease and mimics the immunological and metabolic changes
associated with it. This method will allow early detection of signs
of disease progression, thus providing a tool for self-assessment of
people with diabetes. Researchers used 46,170 virtual subjects to
develop such a model.

Rghioui et al. [92]

Development of an intelligent system that allows continuous moni-
toring of the physiological conditions of diabetic individuals and
gives doctors the possibility to remotely monitor the health status
of these patients, by using sensors integrated in several portable
devices (smartphones, smart watches, etc.). This system is able to
predict future blood glucose levels, determine the severity of vari-
ous situations, and classify blood glucose events. In this study, the
classification algorithms used were naive Bayes (NB), J48, random
tree, ZeroR, SMO (sequential minimal optimization), and OneR.
After various tests, the findings reveal that the system based on the
J48 algorithm performs excellently, with an accuracy of 99.17%, a
sensitivity of 99.47%, and a precision of 99.32%.

Sosale et al. [93]

This article is about a study conducted with 900 participants to
evaluate the performance of the Medios artificial intelligence (AI)
algorithm in detecting different types of diabetic retinopathy (DR).
The technology is a new AI algorithm based on convolutional neu-
ral networks using the fundus camera of a smartphone and operat-
ing offline. The system shows a high sensitivity (DR: 83.3%; RDR
(referable diabetic retinopathy): 93%) and specificity (DR: 95.5%;
RDR: 92.5%) for the diagnosis of both referable diabetic retinopathy
(RDR) and diabetic retinopathy.

The introduction of new technologies such as continuous glucose monitoring (CGM)
devices, smart wearables (bracelets, smartwatches, smart clothing, and patches, etc.), and
artificial pancreas (AP) development, and, arguably, the use of the data collected from these
new tools, have revolutionized the overall diabetes management ecosystem over the past
decade [94]. There are powerful AI methods for designing models that aim to prevent
events such as hypoglycemia, predict the value of blood glucose levels, and predict the
right amount of insulin to administer, all with the goal of improving the quality of life and
illness management of people with diabetes, designing personalized management for each
patient [95], and saving them from complications due to diabetes and early mortality [75].



Sensors 2022, 22, 1843 19 of 24

Advanced tools that are used for diabetes management include continuous glucose
monitors (CGM). Nine studies have used this device to collect the data needed for the
development of smart systems [77,79,81,82,84,86,89,90,92]. Allam et al. [79] collected the
inputs for a system that will be able to forecast future glucose concentration levels with
prediction horizons (PH) of 15, 30, 45, and 60 min using a continuous glucose monitoring
(CGM) device. Similarly, Pustozerov et al. [84] employed the CGM to develop a blood
glucose prediction model to successfully support women with gestational diabetes (GDM).

New deep learning algorithms were developed to automate the diagnosis of DR.
Retinal screening based on AI is an attainable, precise, and highly accepted method for the
detection and monitoring of diabetic retinopathy. A sensitivity (DR: 83.3%, RDR: 93%) and
a specificity (DR: 95.5%; DRR: 92.5%) were reported for both the automated screening of
referable diabetic retinopathy and diabetic retinopathy, as shown in the study conducted
by Sosale et al. [93]. Convolutional neural networks (CNNs) and a smartphone fundus
camera were used to develop such a system.

Artificial intelligence enables patients with diabetes to make daily decisions about diet
and activity. There are many applications designed to analyze the contents of meals and
provide detailed information on the nutritional and caloric value of foods. Anthimopou-
los et al. [78] developed an application for patients to help them assess the quality and
caloric value of the food they eat. The management of diabetes is more effective when
patients take a picture of their own food and evaluate what they eat.

Physical exercise has been identified as one of the most effective initial prevention
strategies for diabetes in high-risk individuals. With wearable devices that record the
number of steps and the duration and intensity of activities, daily activity levels can be
tracked. These technologies allow for the monitoring of daily activity and may encourage
a person to include activity as part of their routine to better stabilize their blood glucose
levels. Yom-Tov et al. [52] designed a reinforcement learning algorithm-based system that
aims to personalize messages for each patient’s situation in order to better encourage them
to practice sports activities.

Among all the articles included, different techniques were employed with the aim of
establishing a device that could properly manage or assist in the management of diabetes.
By analyzing the results of the different papers, we can find that the most commonly
employed function of the smart devices is the “prediction of blood glucose levels”, with
a percentage of (36.84%). We can also see that the most used approach is classification,
with a percentage of 52.6% compared to regression, which was used in 47.4% of the studies.
However, it is necessary to note that in future clinical applications it will be required to
perform longitudinal studies in order to measure both the inter- and intra-subject variability.
On the other hand, to conduct such studies can be challenging because the large-scale
deployment of wearables can be financially and technically challenging.

4. Conclusions

Wearable technologies have sparked a lot of scientific interest in the field of healthcare,
especially for patients with chronic conditions, such as diabetes, during the last two decades.
They are capable of assisting in the treatment of diabetes, as well as preventing problems
connected to the condition. Furthermore, the usage of these devices has improved diabetes
control as well as quality of life.

This article provides a systematic review of intelligent systems developed for use as
diabetes-control instruments. A thorough screening process identified 19 articles. These
papers were evaluated and studied to obtain the various information needed to answer
the review questions. These included the types and models of the smart devices used,
different sensor-based methods, participant information, and the AI technologies and
approach used.

In summary, it can be said that new digital technologies, big data-based analytics, and
the application of AI to diabetes data will revolutionize the way diabetes and diabetes-
related complications are treated, as well as their prevention and control.
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Abbreviations

The following abbreviations are used in this manuscript:

IDF International Diabetes Federation
T1D Type 1 diabetes
T2D Type 2 diabetes
GDM Gestational diabetes
CHD Coronary heart disease
PAD Peripheral arterial disease
AI Artificial intelligence
ML Machine learning
ECG Electrocardiography
LapSVM Laplacian support vector machine
SVM Support vector machine
DT Decision Tree
LR Logistic regression
AdaBoost Adaptive boosting
URL Uniform resource locator
MML Multi-agent machine learning
IP Internet protocol
ANN Artificial neural networks
RA Regression algorithm
SVR Support vector regression
KNN K-nearest neighbor
RF Random forest
Hkmeans Hierarchical K-means clustering
CGM Continuous glucose monitoring
PH Prediction horizons
PSO Particle swarm optimization
EE Energy expenditure
DR Diabetic retinopathy
RDR Referable diabetic retinopathy
NB Naive bayes
CNN Convolutional neural networks
GBDT Gradient-boosting decision tree
RNN Recurrent neural network
AP Artificial pancreas
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