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Abstract: Although the diagnosis and treatment of depression is a medical field, ICTs and AI
technologies are used widely to detect depression earlier in the elderly. These technologies are used
to identify behavioral changes in the physical world or sentiment changes in cyberspace, known as
symptoms of depression. However, although sentiment and physical changes, which are signs of
depression in the elderly, are usually revealed simultaneously, there is no research on them at the
same time. To solve the problem, this paper proposes knowledge graph-based cyber–physical view
(CPV)-based activity pattern recognition for the early detection of depression, also known as KARE.
In the KARE framework, the knowledge graph (KG) plays key roles in providing cross-domain
knowledge as well as resolving issues of grammatical and semantic heterogeneity required in order
to integrate cyberspace and the physical world. In addition, it can flexibly express the patterns
of different activities for each elderly. To achieve this, the KARE framework implements a set of
new machine learning techniques. The first is 1D-CNN for attribute representation in relation to
learning to connect the attributes of physical and cyber worlds and the KG. The second is the entity
alignment with embedding vectors extracted by the CNN and GNN. The third is a graph extraction
method to construct the CPV from KG with the graph representation learning and wrapper-based
feature selection in the unsupervised manner. The last one is a method of activity-pattern graph
representation based on a Gaussian Mixture Model and KL divergence for training the GAT model
to detect depression early. To demonstrate the superiority of the KARE framework, we performed
the experiments using real-world datasets with five state-of-the-art models in knowledge graph
entity alignment.

Keywords: smart home; early detection of depression (EDD); elderly; graph neural networks; graph
representation learning; knowledge graph

1. Introduction
1.1. Background

Depression is the most common psychiatric disorder in adults, accompanied by symp-
toms such as a depressed mood, lack of motivation, changes in appetite, trouble sleeping,
decreased energy, fatigue, fatigue, and anxiety [1,2]. According to the World Health Orga-
nization (WHO), in 2021, 3.8% of the world’s population suffered from depression, and
the rate in the elderly over the age of 60 was 5.7%, 1.5 times the overall level [3]. It should
pay particular attention to depression of the elderly because it is difficult for the elderly
to recognize that they are depressed on their own, so they often complain of physical
symptoms rather than complaining of changes in their emotions [4,5].

Although diagnosing and treating depression is a medical field, rapidly developing
information and communication technologies (ICTs) and artificial intelligence (AI) tech-
nologies contribute to timely diagnosis and treatment through its early detection [6–12].
Early Detection of Depression (EDD) research using ICTs and AI technology is divided into
two aspects. The first one detects depression early by capturing behavioral changes while
continuously monitoring the behavior of the elderly in a smart home environment in which
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various sensors and their network are installed. Researchers in this field detect depression
by recognizing changes in body shape such as a patient’s gait [13,14], head position [15],
and thoracic kyphosis [16]. The method of detecting depression using the sensors is again
divided into obtrusive and unobtrusive; the former has the problem of inconvenience
and the latter suffers from low accuracy [5,17]. The other one detects depression early by
analyzing behavior in cyberspace using various AI techniques [18]. However, unlike the
young, the elderly in cyberspace are mostly passive users who enjoy surfing, watching, and
enjoying, rather than active users who actively express their opinions and participate [19].
For this reason, it may be difficult to detect depression in the elderly at an early stage
with a language model based on text mining and deep learning used in existing sentiment
analysis. In addition, as mentioned previously, although sentiment changes and physical
changes, which are signs of depression in the elderly, are highly correlated [16,20], there is
very little research on them at the same time.

1.2. Motivation

This paper proposes a method for the earlier detection of depression in the elderly
by considering both sentiment changes in cyberspace and physical changes. For this, the
following assumptions are made: the elderly subject lives in a smart home that can monitor
their daily activities, and his/her Internet activity logs and service usage records are all
collectible. The first assumption is for sensor data related to physical changes in the elderly.
The second assumption is for collecting sentiment change-related data required for early
detection of depression. Even if sufficient data have been collected through this process, the
following problems need to be addressed for the detection of depression in the elderly while
considering both sentiment and physical changes. The first is data heterogeneity. Generally,
sensor data are mostly signal data in numerical form, whereas log or service usage history
data are a mixture of categorical and numerical data. Therefore, it is imperative to address
the syntactic heterogeneity of data that are difficult to incorporate in matrix or tabular form
due to the differences in the structures of data elements, as well as differences in terms of
format and temporal characteristics. The second is the integration of changes in cyberspace
and physical space related to the symptoms of depression in the elderly. To achieve this, it
is necessary to use a modeling method for the cross-domain knowledge that connects them
while maintaining the unique characteristics of the spaces. At this time, the cross-domain
knowledge acts as a share point that can detect physical and sentiment-based changes. The
third is the accurate capturing of minute changes in the physical activity and sentiment of
elderly subjects. This requires a new modeling method to represent activity patterns and
their minute changes.

1.3. Main Idea

To address the above issues, this paper proposes knowledge graph-based cyber–
physical view-based activity pattern recognition for the early detection of depression, also
known as KARE. At this time, a knowledge graph (KG) is defined as a multi-relational
graph composed of entities as nodes and relations with labels to represent multidisciplinary
domain knowledge. In the KARE framework, the KG plays key roles in providing cross-
domain knowledge as well as resolving issues of grammatical and semantic heterogeneity
in order to integrate the cyber and the physical world. In addition, it can flexibly express the
patterns of different activities for each elderly subject. The KARE framework consists of two
modules: a knowledge graph-based cyber–physical view representation (CPVR) module
and a personalized activity pattern recognition (PAPR) module for detecting depression,
the latter of which is based on anomaly detection.

CPVR module: The CPVR module is used to integrate views represented by cyberspace
and the physical world as a graph structure using the KG. At this time, a view is defined as
a set of essential information needed to describe an entity in cyberspace and the physical
world, and can include concepts, terms, schema, features, and/or relationships.
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PAPR module: This is a module that represents the activity patterns of the elderly in a
graph and performs prediction model-based learning focused on the recognition of behav-
ioral patterns using a Graph Neural Network (GNN) model. It undertakes the learning of
normal activity patterns and detects depression earlier based on the learned model using
the graphs of the activity patterns and the Graph Attention Network (GAT) model.

The rest of this paper is organized as follows. Section 2 summarizes the related
works. Section 3 presents an illustrative example highlighting that the detection of de-
pression should be carried out through the integration of cyberspace and the physical
world. Section 4 describes the overall architecture of the KARE framework and its compo-
nents. Section 5 demonstrates the performance of the proposed framework through several
experiments. Finally, Section 6 presents the conclusions and future research.

2. Related Works
2.1. Knowledge Graph Alignment

Even though a Knowledge Graph (KG) contains a huge amount of information from
various domains, it has several limitations that impede its widespread use [21,22]. First, the
complexity and high dimensionality of the KG, which hinder the rapid information retrieval,
query answering, and data integration, are caused by the knowledge representation of
various domains with different schemas, vocabularies, and graph structures [23,24]. Second,
the incompleteness and inconsistency of the KG is a very primitive phenomenon that
can occur as the KG’s scale grows and the domain coverage of the KG widens. It may
prevent the performance of reasoning using acquired knowledge as well as the discovery
of new knowledge in the KG [25]. Lastly, the large-scale issue of the KG occurs due to the
huge volume of the RDF data as well as the great diversity of the sources over multiple
domains [26].

To resolve the limitations of the KG, knowledge graph alignment that interprets and
predicts the relationship between two heterogeneous nodes is in the spotlight as a core
technology. However, since the KG is represented as a triple form, it is difficult to align the
KG with its original properties. Thus, knowledge graph embedding was usually adopted
for the KG alignment methods. The KG embedding techniques can be divided into two
categories [27,28]. One is translational distance models, and the other one is semantic
matching models. The former use distance-based score functions. TransE [29], TransH [30],
and TransD [27] are typical translational distance models. Since these models recognize
graph patterns in KGs unidirectionally, the graph patterns that can be captured are limited.
The latter model uses similarity-based scoring functions. RESCAL [31] and Semantic
Matching Energy (SME) [32] are typical semantic matching models. Additionally, there
is research focused on the embedding of RDF graphs into a continuous vector named
RDF2Vec [33]. This method uses neural language models to embed RDF graphs into the
vector. Before training the neural language model, the RDF graph should be transformed
into sequences; graph walks and Weisfeiler–Lehman subtree RDF graph kernels [34] are
mostly used for this translation.

Recently, with the development of the Graph Neural Network (GNN) model, KG align-
ment methods based on GNN representation learning have been proposed to recognize
patterns in complex graph structures [35]. GNN representation learning is a method of
representing KG nodes or graphs as low-dimension vectors that can effectively discriminate
components using the predictive performance of the GNN model. At this time, the types
of the GNN model utilized are the Graph Convolutional Network (GCN), GraphSAGE,
and Graph Attention Network (GAT). The GCN is a model that is inspired by the Convolu-
tional Neural Network (CNN); it receives a subset of the neighboring nodes of a node as
an input and discovers low and dense dimensions that can differentiate nodes, and it is
usually used in cross-lingual KG alignment [36–39]. GraphSAGE minimizes information
loss by concatenating vectors of neighbors rather than summing them into a single value
in the process of neighbor aggregation [40,41]. GAT utilizes the concept of attention to
individually deal with the importance of neighbor nodes or relations [21,42–47]. Since each
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model has different characteristics and advantages, suitable models for KG alignment differ
depending on the components and the topological structure of the KG.

2.2. Graph-Based Anomaly Detection

Since the methods of anomaly detection based on the distribution or pattern of existing
tabular data have fundamental limitations in terms of capturing the complex relational in-
formation of objects, graph-based anomaly detection (GAD) research has recently received
great attention in relation to overcoming the limitations of anomaly detection in tabular
data [48,49]. These GAD studies can be classified according to whether they focus on the
complexities or dynamics of graphs. The GAD studies on the complexity of graphs attempt
to obtain embedding vectors with low dimensions from complex-dimensional graphs
(in particular, attribute networks) and use embedding vectors to perform anomaly detec-
tion. The GCN, which is relatively simple and has low computational complexity, is often
used as the main model because it has to deal with graphs of complex dimensions [50,51].
However, since the GCN has structural limitations in the interpretation of complex and
dynamic relationships in graphs, some anomaly detection studies that hybridize GCN and
GAT using the concept of attention have been proposed [52,53]. Since the GAD for the
attributes network assumes one complex graph in which graphs of various domains are
mixed, they focus on finding a dimension that can interpret the complex dimension of the
graph by hybridizing various models instead of using one GCN model [54]. In other words,
it aims to train a comprehensive and generalized model that can detect various types of
anomalies from various data sources and graphs.

The GAD studies in dynamic graphs focus on dealing with anomalies of time de-
pendence. In particular, some anomalies that can only be found in long-term graphs are
receiving great attention because they show a very latent pattern to be distinguished from
normal patterns, but also impose a fatal risk to the system. The core process of these studies
can be divided into two components. The first one involves the creation of a temporal graph
that can represent the time dependency in the graph structure, and the second one relates
to the design of a model that can capture temporal patterns. NetWalk proposed clique
embedding and reservoir sampling to quickly capture dynamically changing graph dimen-
sions [55]. AnomRank classifies the types of anomalies into structural and node-relational
anomalies and proposes a method to detect anomalies in two ways [56]. In addition, GAD
approaches that incorporate graph clustering or community detection methods have been
proposed for dynamic graphs [57,58]. However, since these methods concentrate on the
time features related to the anomaly, the features that distinguish the nodes are somewhat
overlooked. Therefore, there are cases where the detection of anomalies largely depends
on the topological structure of the graph, and it is difficult to capture the change of the
node itself.

3. Illustrative Scenario

A smart home is a space where devices for the physical world, such as sensors and
devices, are deployed and operated, and a space where services related to the cyber world
such as social media services and over-the-top (OTT) services are executed. Mrs. Jane,
a resident of a smart home in her 70 s, is an active senior who shares her opinions, emotions,
and status with acquaintances through her SNS activities. She recently went to the hospital
for insomnia and loss of appetite, but her symptoms did not improve because she did not
recognize by herself that there were symptoms of depression. Generally, the elderly have
difficulty recognizing signs that they are depressed, so they often complain of physical
symptoms such as insomnia and loss of appetite rather than complaining of emotional
changes [5]. As a result, it is hard to detect depression in the elderly in the early stages, so
treatment time is often missed, leading to serious social problems such as suicide in the el-
derly. To solve the problem, it is necessary to recognize changes in the elderly in cyberspace
as well as in the physical world. Suppose a smart home system can detect keywords such
as “death” and “loneliness” from a person’s Facebook while also finding that the lights in
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their house are darker and more filthy than usual. Then, it could contribute to the early
detection of depression. However, regarding the detection of depression in the elderly at
the early stages, although the objects of the physical space are tightly connected to services
within cyberspace, they are unfortunately implemented and operated separately because
one type is sensor-oriented whereas the other is service-oriented (Figure 1 left pane).
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A challenging issue concerns the connecting of depression-related objects between
physical space and cyberspace while maintaining interoperability between them. This can
be tackled using methods such as data schema, ontologies, and data exchange models [59].
However, these methods have the following limitations: inability to flexibly manage
the schema of newly added or changing objects and difficulty in the interpretation of
relationships between the objects that have different schema. We adopted a knowledge
graph that contains various cross-domain knowledge to overcome the limitations. Since the
entire KG is huge, we propose an intermediary knowledge graph called the cyber–physical
view (CPV) that extracts and represents the core elements (called view) of the KG required
for the early detection of depression (Figure 1 right pane). In addition, we propose a
method to develop CPV.

4. Overall Architecture

As depicted in Figure 2, the KARE framework consists of two modules, namely a cyber–
physical view representation (CPVR) module and personalized activity pattern Recognition
(PAPR) module. The CPVR module integrates the views represented by cyberspace and the
physical world as a graph structure using the KG. The PAPR module delivers the activity
patterns to detect depression earlier. Lastly, the KARE framework detects depression earlier
using the trained Graph Attention Network (GAT) model.

4.1. Cyber–Physical View Representation Module

The CPVR module develops intermediary KG that can integrate the elements of
cyberspace and the physical world that are related to the detection of depression into a
graph structure. The intermediary KG consists of elements of the KG that can connect
cyberspace and the physical world. To identify the elements of the KG, the CPVR module
performs entity alignment with the KG and the physical world and cyberspace, respectively.
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At this time, the entity alignment is performed between attributes of the data schema and
vertices of the KG. Prior to discussing these issues in detail, the attribute-related data used
in the entire KARE framework are defined as follows.
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Definition 1. Attribute-associated data (Ai) comprise the set of all data associated with the ith

attribute, such as its name, its relationships to other entities, and its own instances, in the data
schema. They are simply represented as follows.

Ai = {ei, nai, Ii}, 2 ≤ i ≤ N (1)

where ei is an entity name having Ai as an attribute, nai is a name of Ai, and Ii is an instance
vector for the ithattribute.

Definition 2. Triplets of Vertex
(
Vj
)

is a set of triplets of the jth vertex in the KG. It is simply
represented as follows.

Vj =
{

vj, Pj, Oj
}

, 2 ≤ j (2)

where vj is a URI of the jth vertex, Pj is a predicate vector corresponding to Oj, Oj is an object
vector (

∣∣Pj
∣∣ = ∣∣Oj

∣∣), Pj has predicate labels as elements, and Oj has vertices or Literals as elements

(Oj ⊂
{

vj′ , Literals
∣∣∣ ∀j′, j′ ∈ j, j′ 6= j

}
).

4.1.1. Attribute Representation Learning with 1D-CNN Model

Since the vertices of the KG are graph-natured data and the attributes of the data
schema are tabular data, it is difficult to find the equivalent relationship between the
attributes and the vertices with the conventional entity alignment methods using the
topological structure of the graph. To overcome this difficulty, we propose a novel entity
alignment method to discover the shared space of the attributes and the vertices using
the CNN model. The critical issue of the novel entity alignment method relates to the
means of generating the attributes and the vertices of the fixed dimension as inputs to
the CNN model. Since the vertices can be extracted as vertices of embedding vectors by
applying GCN-based node representation learning [60], we focused only on generating the
attributes of embedding vectors. As with word representation, one-hot encoding must be
performed for each attribute to create an embedding vector for the attributes. However,
as mentioned in Definition 1, the attributes do not exist independently but are related to
several elements, such as other entities, their instances, etc. Thus, the process is required to
generate one-hot encoding vectors for the attributes. In this study, we devised attribute
representation learning with 1D-CNN by borrowing the approach of word representation
learning. In other words, just as word representation learning extracts embedding vectors
by capturing the relationship between the center word and neighbor words, the proposed
attribute representation learning is a method of extracting embedding vectors by identifying
the relationship between the center attribute and its related neighbor attributes. In the
proposed method, the most important thing is to resolve the structural differences between
the words and the attributes. Hereinafter, the solution will be described in detail.
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Step 1: Generation of the attribute sequence
Generally, 1D-CNN sequentially receives a set of center words and neighbor words as

input data according to a specific word sequence. However, the attribute-associated data
are just a chunk of information, and there is no sequence between them. To generate the
sequences of the neighbor attribute, two-phased sub-sampling is performed. The first-phase
sub-sampling is performed to randomly select a set of the instance vectors of neighbor
attributes of a specific attribute called the center attribute. The sampling procedure is as
follows. Let one of Ai be the central attribute Ac. At this time, Ac has l neighbor attributes
Acr that have Icr as an instance vector (r = 1, 2, . . . , l). In addition, Acr′ is a randomly
selected k1 size subset of Acr (r′ = 1, 2, . . . , k1, k1 < l) used to find the relationship between
the central attribute and the neighbor attributes. For all r′, Icr′ is randomly sorted, and an
index p indicating the order of Icr′ is added according to the sorted order (p = 1, . . . , k1) .
Finally, the sequence vector of Acr′ is created as follows.

nAc =
{[

. . . , Ic(r′ ,p), . . .
]
|Ic(r′ ,p) ∈ Acr′ , ∀r′, r′ < l

}
(3)

where k1 is the sampling size of first-phase sub-sampling.
The second-phase sub-sampling is performed for the selection of k2 elements from

Ic(r′ ,p) (∀ p). Let Xc(r′ ,p) be a part of Ic(r′ ,p) with size k2. Thus, the result of the second-phase
sub-sampling—in other words, a sequence of the attribute Ac—is represented as follows.

ASc =
{

. . . , Xc(r′ ,p), . . . |∀r′, r′ ≤ k1
}

(4)

where k2 is the sampling size (
∣∣∣Xc(r′ ,p)

∣∣∣ = k2).
For each i, multiple random sampling is performed as the Ai central attribute and the

results are used to generate a series of sequences ASs
i (s ≥ 2).

Step 2: Vector transformation
Finally, to represent the attribute’s information as an initial input vector, one-hot-

encoding is performed using the instance vector containing the most attribute information.
As a result, k2 × N can be obtained as the input matrix even though only 1× N initial input
vector is needed. Since the matrix cannot be used as input data for the 1D-CNN, vector
transformation is performed as follows. First, 1× N empty vector of k2 is created, similar
to the approach used in one-hot encoding. At this time, N is the number of attributes.
Using ASs

i and its instance vector Xs
i(r′ ,p), the related neighbor r′ is identified and Xs

i(r′ ,p)

is assigned into the r
′th column of the empty vector as a value. All other columns of the

empty vector except r′ are assigned dummy vectors as inputs. This process is repeated in
sequence according to the p value. Finally, a matrix of encoded attribute sequence eASs

i
(k1 × N) is obtained.

However, 1D-CNN uses only a single value as an input, not a matrix. Therefore, the
matrix is converted to a single value through flattening and concatenation. As a result,
matrix eASs

i is converted into f ASs
i (k1 × (N × k2)), which has a single value as an entry.

The f ASs
i is an input sequence for the 1D-CNN training and the filter used for the training

process is as follows.
f ilterh

f l = f (w· f ASs
i [ f l : f l + h] + b) (5)

where f l is the filter index, f is the activation function (relu),. . . , is the dot product,
f ASs

i [ f l : f l + h] is a sub-matrix of f ASs
i , h is the filter size, and b is the bias.

In addition, the loss function based on cross-entropy is as follows.

loss = −∑
i

∑
ι

ys
ι log(ps

ι ) (6)

where ys
ι is the ιth true label of Ai (ys

ι ∈ Ii), and ps
ι is the ιth prediction value.
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The overall procedure for attribute representation learning with the 1D-CNN model is
depicted in Figure 3. Finally, the attributes of the embedding vectors (Eebi) are obtained
for all attributes.
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4.1.2. Entity Alignment with Embedding Vectors and CNN

In the next step, using the attributes and vertices of embedding vectors, entity align-
ment between the attributes and the vertices is performed. To achieve this, descriptive
information such as the name or title of the entities expressed in the ‘rdf:label’ is absolutely
necessary. However, the vertices of the embedding vectors contain descriptive information,
whereas the attributes of the embedding vector contain only information on the relation-
ship between the attributes based on the distribution of instances. Thus, to determine
whether two vectors are equivalent or not, the attributes of the embedding vectors (Eebi)
are first concatenated based on the name of the entity (ei) and the attributes (nai). Next,
the embedding vectors of the pair of the attribute and the vertex that has an equivalence
relationship are concatenated and annotated with the label ‘1.’ This process is repeated
for all attributes and vertex pairs that have a relationship of equivalence. Furthermore,
the pairs of the attributes and the vertices that are not equivalent are randomly selected.
After concatenating their embedding vectors, they are annotated with ‘0.’ Finally, CNN is
performed using the concatenated and annotated vectors as inputs. The overall procedure
of the entity alignment is summarized in Figure 4.

The trained CNN model is used to predict the equivalence of all pairs of the attribute
and the vertex. When a pair of attributes and vertices that have an equivalence relationship
is found, a triplet with the predicate ‘owl:sameAs’ is created and added to KG. In this case,
it is assumed that all attributes can be identified by URI. Integrated knowledge graphs on
which entity alignment has been performed are represented as follows.

Definition 3. An integrated knowledge graph (IKG) is a set of triplets (subject, predicate, and
object) including inferred equivalence relations.

IKG =
{

. . .
(
sq, pq, oq

)
. . .
}

, 2 ≤ q (7)

where sq is a URI of the attribute or the vertex on the subject of the triplet, pq is a predicate label on
the predicate of the triplet (′owl : sameAS′ ∈

{
pp
∣∣∀p
}

), and oq is a URI of the attribute or vertex
or Literals on the object of the triplet.
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4.1.3. View Selection Based on Feature Selection Method

IKG is a vast graph containing various types of information such as concepts, terms,
observations, and relations such as the equivalence of the attributes and the vertices.
However, as already known, the GNN model restricts the structure and size of the input
graph, i.e., the number of hops or nodes, due to inherent limitations. Thus, the large number
of concepts and relationships that IKG has can be non-informative and noisy in terms of
recognizing the graph patterns needed for the detection of depression. To remove the noise,
we propose a method for extracting a sub-graph of the IKG, known as the cyber–physical
view (CPV), composed of informative and representative nodes and relations that are
needed to recognize the graph patterns that link cyberspace and the physical world. The
CPV is represented in triplets as follows:

CPV =
{

. . .
(

sq′ , pq′ , oq′
)

. . .
}

, CPV ⊂ IKG, 2 ≤ q′ (8)

To devise a means of extracting the CPV from the IKG, we borrowed the feature
selection method that finds the most informative and smallest subset of the original feature
set. Applying the existing feature selection method requires prior knowledge such as
label information or specific distance metrics. However, it is not possible to assume prior
knowledge of IKG’s views. Therefore, this paper proposes two methods: unsupervised
pseudo-label generation using GNN representation learning and wrapper-based view
selection. At this time, the first one is used to generate embedding vectors of a full-
size sub-graph connected to an arbitrary node and its partial sub-graphs based on GNN
representation learning. After calculating the distance between the full-size embedding
vector and the embedding vectors of the partial sub-graphs, the partial sub-graphs with
the smallest difference to the full-size embedding vector in terms of size are selected
as a view. The result is a CPV, which is a combination of the graphs made up of only
informative triplets.

4.2. Personalized Activity Pattern Recognition

The behavioral patterns of elderly subjects living in smart homes are very different
depending on their individual interests, habits, and health status. In addition, since the
behavioral patterns are time-dependent, even the same behavior can have different time
intervals. For the early detection of depression based on recognizing minute changes in
the normal activity patterns, an informative and flexible graph of time features as well as
the GNN model are needed. However, since the CPV contains all kinds of informative
and representative nodes and relations that link cyberspace and the physical world, it is
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necessary to identify those related to activity patterns. Three steps are involved in the
discovery of the activity patterns: finding activities of attributes via data-centric approaches,
generating activity graphs using CPV triplet augmentation associated with the activities
of attributes, and arranging activity graphs sequentially. As a result of the discovery of
the activity patterns, activity pattern graphs are acquired and used as inputs to learn the
GAT that can capture the normal activity patterns. Finally, early detection of depression is
performed with the trained GAT performs.

4.2.1. Generation of the Activity Pattern Graphs

It is difficult to find the activities directly in CPV due to the complexity of the graph
structures. Thus, for this stage in the process, we decided to focus on finding the activities
of attributes using data; in other words, instances. At this time, it is important to find the
timestamp and the time intervals of each activity, but it is assumed that they are given
because these aspects are beyond the scope of this paper. The finding of the activities
of attributes via a data-centric approach is performed with the time-window drift and
Gaussian Mixture Model (GMM). Prior to a detailed step-by-step description that follows,
Figure 5 schematically illustrates the generation procedure of activity pattern graphs.
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Step 1: Finding the activities of the attributes
As shown in Figure 5, there are instances for every attribute (e.g., Atra f f ic and Arotation)

along the timeline. However, since not all instances of the attributes are related to the
activities, it is necessary to find only instances that are related to the activities. To achieve
this, the instances are sliced to the size of the time window with a given hyperparameter.
As a result, an attribute-specific dataset consisting of a series of instances with a time
interval w is created. For all instances Ii (for all i) with time interval w, their start time and
end time are assigned and then sorted in chronological order.

Iti
i =

{
xti

iv, sti
i , eti

i

∣∣∣xti
i ∈ Ii, v = 1, 2, . . .

}
, 1 ≤ ti (9)

where xti
iv is the vth instance of Ii in the tith time interval

[
sti, eti], and sti and eti are the start

time and the end time of the tith time interval (sti < eti,
∣∣sti − eti

∣∣ = w), respectively.
Equation (10) shows the probability distribution of the Iti

i value estimated using GMM
and the expectation-maximization (EM) algorithm.

p
(

xti
i

)
=

G

∑
g=1

wg × N
(

xti
i ; µg, σ2

g

)
(10)

where wg is an EM-based estimated probability that the gth Gaussian distribution is selected,
and µg and σ2

g are the EM-based estimated mean and standard deviation, respectively. G is
the number of Gaussian distributions.

To determine whether the instances, which are the elements of the attribute-specific
dataset, contains information on the activities, p

(
xti

i
)

is compared with the distribution of

instances in the sleep state called p
(

xsleep
i

)
, which does not carry any activities. At this

time, it is assumed that p
(

xsleep
i

)
has already been generated using the sleep dataset and

Equation (10). Finally, the distance between the two probability distributions is calculated
using the Kullback–Leibler distances Equation (11).

KLtl
i =

∫ ∞

−∞
p(xnon

i )log
p
(
xnon

i
)

p
(

xti
i
) dxi (11)

If KLtl
i is greater than the threshold δ, the tith activity of Ai is assigned as an element of

AAti∗
i (|ti∗| < |ti|). For all ti and i, the above process is repeated and AAi =

{
AAti∗

i

∣∣∣∀ti∗
}

and AA = {AAi|∀i} are generated.
Step 2: Generation of activity graphs using the CPV
AAr is randomly selected from the set AA (r ∈ i), and subsequently, the node of AAr

sharing the index with AAr is discovered. A sub-graph composed of Ar and its neighbor
triplets is extracted from the CPV. By using the extracted sub-graphs and the AAti∗

i , the
activity graphs AGti∗

i of the ith attribute are created as follows:

AGti∗
i =

{
AAti∗

i ,
{

. . . ,
(

sti∗
i , pti∗

i , oti∗
i

)
, . . .

}∣∣∣sti∗
i , pti∗

i , oti∗
i ∈ CPV

}
(12)

At this time, although AGti∗
i generated from Ai is a graph of the same structure, it is

possible to classify it according to AAti∗
i . The above process is repeated for all ti∗ and i

values to obtain the sets AGi =
{

AGti∗
i

∣∣∣∀ti∗
}

and AG = {AGi|∀i}.
Step 3: Arrangement of activity graphs to represent the activity pattern graphs
To represent the activity patterns in the graphs, the relationship between AGti∗

i is iden-
tified and serialized. At this time, the relationship is of two types: a time series relationship
and a path relationship. The former is the back-and-forth relationship between the AGti∗

i
elements of the set AGi. This relationship is established if the time difference between
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arbitrary values of AGti∗=a
i and AGti∗=b

i is less than the size w (
∣∣∣etl∗=a − stl∗=b

∣∣∣ < w). The

latter establishes a pair of activity graphs (AGti∗=c
i=a , AGti∗=c

i=b ) where AGi=a and AGi=b
share tl∗ but are elements of different sets. It is created by extracting triplets between
Ai=a and Ai=b in the CPV. Finally, the activity patterns in the graphs of APGti∗

i are created:

(
∣∣∣APGti∗

i

∣∣∣ ≥ ∣∣∣AGti∗
i

∣∣∣).
4.2.2. GAT-Based Activity Pattern Recognition

The Graph Convolutional Network (GCN), GraphSAGE, and Graph Attention Net-
work (GAT) are mainly used as GNN models to capture graph patterns [61]. Each method
has the following pros and cons. The GCN has the advantage of being able to preserve
the node or subgraph information of very complex graph topologies, but it is difficult
to capture the relationship between them. GraphSAGE can preserve information on the
relationships between the nodes and their neighbors more effectively than the GCN, but
its generalization performance requires a large amount of data due to the concatenation
process. Finally, the GAT has an advantage in terms of its generalization performance
because it effectively preserves relational information between nodes and their neighbors
with the concept of attention but has a high computational complexity. As mentioned
previously, the input data APGti∗

i to be used for training is a small graph related to the
activities and a temporal graph focusing on the relationship between the nodes along the
timeline of the activities. Since the GAT is suitable for such APGti∗

i data, the GAT and
APGti∗

i are used to train a GAT model so that it can recognize normal activity patterns. By
applying this model, minute changes that are different from normal activity patterns, that
is, symptoms of depression, can be detected earlier.

5. Evaluation

In order to evaluate the superiority of the proposed KARE method, we conducted ex-
periments and evaluations using the state-of-the-art comparative models with experimental
graph datasets covering multidisciplinary domains. We used a system with an Intel(R)
Xeon(R) CPU @ 2.30 GHz processor, a Teslar P100 graphics card, and 12 GB memory

5.1. Experimental Datasets

Experimental graph datasets collected from multiple domains such as the KG were
required, and information such as the label text needed to be attached to the components
of the graph. In addition, label information for anomalies was required to evaluate the
anomaly detection performance. As the most suitable dataset for these requirements, we
used the redditLinks dataset that graphs the relationship between the body of posts and the
topics in multi-topic discussions on the Reddit platform [62].

The redditLinks dataset is the most suitable graph for the KG entity alignment and
anomaly detection that we chose to experiment with, but the structure of the graph, es-
pecially the entity-to-entity connection relationship, is somewhat different. In general,
the relationship between entities in the graph is established directly, but in the redditLinks
dataset, the relationship between entities is composed via posts. We used the posts as a
predicate to connect entities and generate triples. Additionally, on the redditLinks dataset,
the title of the entity is attached, not the ID of the individual entity. After replacing all of
these with IDs, we created relations of equivalence using the entity’s titles. The created
equivalence relations were used as a training and test set for the KG alignment. Finally,
the features or attributes of each entity on the redditLinks dataset were represented as sets
of vectors of features rather than attached in a graph form. We disassembled vectors and
reconstructed them in the form of a graph centered on all entities. Figure 6 shows the
structure of the graph transformed from the redditLinks’s graph for our experiment. The
statistics of the transformed dataset are summarized in Table 1.
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Table 1. The summary of the transformed dataset from redditLinks.

#Entities #Entity Titles #Entity Relations #Predicates #Attributes #Attributes Relations #Anomalies (%)

573,122 35,776 286,561 259,092 86 3,438,732 21,070 (7.93%)

5.2. Knowledge Graph Alignment

We proposed a method of KG entity alignment based on attribute representation
learning. To evaluate the performance of the proposed method, five state-of-the-art models
of KG entity alignment were selected. MtarnsE, TransD, RotatE, and ConvE do not utilize
the relationships of attributes among the entities when embedding the entity. On the
other hand, GCn-align uses the relationships of attributes to embed entities, similar to the
KARE framework. MtarnsE, TransD, RotatE, and ConvE do not utilize the relationships of
attributes among the entities’ relationships for the embedding of entities. On the other hand,
GCN-align uses the relationship of attributes to find the dimensions of entities, similar
to the KARE framework. Each model was trained by limiting it to the epoch 50, and the
default parameters were adopted for the training models. In addition, since the scale of
the experimental dataset was very large, it was sampled and tested. Table 2 shows the
experimental results of the full dataset with the metrics of Hits@k, mean rank (MR), and
mean reciprocal rank (MRR). Hits@k is the percentage of corrected alignment in the top k.
MR and MRR are the averages of ranks and inverse ranks for test sets, respectively. Figure 7
shows the experimental results of the sampling datasets obtained for the five metrics.

Table 2. Results of knowledge graph alignment with the full dataset with 5 metrics.

Methods Hits@1 Hits@5 Hits@10 MR MRR

TransH 0 0.11 0.201 2744.106 0.001517
TransD 0.018 0.11 0.201 2759.899 0.001858
RotatE 0 0.073 0.146 2724.465 0.001502
ConvE 0.018 0.073 0.146 2759.12 0.001571

GCN-align 0.073 0.238 0.384 2763.467 0.002591

KARE 0.091 0.328 0.492 2790.59 0.003123
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• TransH [30]: Translation-based model for a relation as a hyperplane.
• TransD [27]: Translation-based model to improve TransR/CTransR with representa-

tion of a named symbol object.
• RotatE [63]: Relational pattern-based KG embedding model including relationships

of symmetry/antisymmetry, inversion, and composition.
• ConvE [36]: A multi-layer convolutional network model used to improve the perfor-

mance of extracted feature sets from KG for link prediction.
• GCN-align [64]: A graph convolutional network (GCN)-based KG entity alignment

model based on both the structural and attribute information of entities.

As a result of embedding in the full dataset, the proposed KARE model was found
to be superior in all metrics. The MRR metric showed the best performance, and it can be
seen that the KARE model did not perform erroneous alignment for unrelated equivalence
relationships, that is, for relationships in which priority was considered. In other words, the
accuracy and precision of the alignment of the KARE model showed the best performance
compared to the state-of-the-art methods. KARE showed a rather low value for MR, but
the other models fitted the majority equivalence relationship well; these values were found
to be relatively high compared to that obtained for the KARE model.

As the sampling ratio changed, we conducted an experiment to compare the perfor-
mance using five metrics and comparative models. The results of the experiment are shown
in Table 3 and Figure 7.
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Table 3. Results of knowledge graph alignment with the sampling datasets.

Methods
Hits@1

5 10 15 20 25 30 35 40 45 50

TransH 0.091 0 0.052 0 0 0.036 0.097 0 0 0

TransD 0.091 0.065 0.103 0.044 0.077 0 0 0.03 0.054 0.065

RotatE 0 0.194 0 0.044 0.077 0.036 0.032 0 0 0.065

ConvE 0 0.065 0.207 0 0.077 0.036 0.032 0.059 0 0.129

GCN-align 8.719 3.355 1.808 0.709 0.348 0.358 0.226 0.355 0.136 3.355

KARE 10.404 3.95 1.824 0.854 0.436 0.484 0.129 0.355 0.177 0.158

Methods Hits@5

TransH 0.363 0.452 0.052 0.177 0.116 0.143 0.194 0.03 0.027 0.581

TransD 0.182 0.516 0.207 0.089 0.154 0.072 0.065 0.089 0.081 0.516

RotatE 0.182 0.516 0.103 0.222 0.232 0.215 0.194 0.089 0.109 0.452

ConvE 0.636 0.129 0.362 0.355 0.309 0.143 0.226 0.178 0.109 0.194

GCN-align 12.625 5.935 3.512 1.197 1.043 1.002 0.806 0.8 0.298 6.129

KARE 13.901 6.27 3.105 1.537 1.188 1.003 0.581 1.066 0.648 0.606

Methods Hits@10

TransH 1.181 0.968 0.103 0.399 0.232 0.322 0.29 0.237 0.19 0.645

TransD 0.817 0.839 0.465 0.222 0.309 0.394 0.129 0.237 0.271 0.645

RotatE 0.636 0.839 0.258 0.576 0.27 0.322 0.419 0.237 0.217 0.968

ConvE 0.999 0.129 1.085 0.665 0.657 0.215 0.387 0.326 0.271 0.839

GCN-align 14.078 7.097 4.184 1.773 1.584 1.324 1.065 1.066 0.461 7.29

KARE 15.785 7.398 3.647 2.306 1.347 1.626 0.71 1.392 0.804 0.843

Methods MR

TransH 563.444 768.733 981.909 1121.072 1296.727 1384.305 1548.724 1674.015 1860.349 778.442

TransD 551.669 774.206 953.977 1130.202 1265.188 1362.231 1560.129 1686.697 1837.794 774.777

RotatE 548.125 789.419 964.599 1163.451 1270.366 1407.159 1559.162 1653.589 1836.923 773.315

ConvE 547.085 759.823 978.21 1140.227 1271.151 1403.523 1544.462 1656.773 1865.935 765.801

GCN-align 458.357 697.176 926.083 1094.491 1272.667 1399.527 1564.627 1683.827 1858.828 685.275

KARE 453.374 718.921 960.947 1133.846 1243.791 1434.639 1537.697 1688.802 1716.402 1912.765

Methods MRR

TransH 0.006711 0.005399 0.003258 0.003317 0.357837 0.003011 0.003105 0.002225 0.001816 0.005183

TransD 0.006099 0.006153 0.004654 0.003295 0.003643 0.002698 0.002158 0.002255 0.002584 0.005378

RotatE 0.005174 0.006487 0.003308 0.003637 0.003468 0.003138 0.002955 0.002227 0.002078 0.005829

ConvE 0.006539 0.00447 0.006395 0.003954 0.003925 0.002785 0.003282 0.003082 0.002227 0.005568

GCN-align 0.108702 0.049645 0.028628 0.012819 0.009116 0.008219 0.006439 0.007301 0.003622 0.049873

KARE 0.125774 0.053697 0.027173 0.014584 0.009398 0.009434 0.005226 0.008408 0.005283 0.004791

As a result of the experiment, the proposed KARE model showed high accuracy at
many of the sampling ratios. The Hit@k metric decreased as the sampling ratio increased,
because the complexity of the equivalence relationship to be matched increased. On the
other hand, the MR and MRR values moved in opposite directions, because in the case of
MR, they increased when the same equivalence relationship was continuously met, and
MRR fell because the wrong equivalence relationship must have been met. In the interval
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where the sampling ratio was low, the performance of most models deteriorated because
the complexity of the sampling set increased faster than the information required to find the
generalized embedding space. The model that showed the most similar performance to our
method was the GCN-align model. Most of the KARE methods showed higher values than
GCN-align, but in the last 50% of the sampling process, GCN-align showed significantly
higher values. This was because the information about the hyperplane to be discovered by
the GCN-align model exceeded the threshold. In addition, we found a rather low value
in the first 50% of the sampling process because the information loss in the embedding
process was not obtained in this 50% sampling process. However, taking into account the
process of the entire dataset, as shown in Table 2, the proposed KARE method showed the
best performance for the full dataset.

6. Conclusions and Further Research

In this paper, we proposed the use of the KARE framework, which enables the early
detection of the depression in the elderly by integrating data from the physical world and
the cyber world. To achieve this, we developed the KG and the attribute representation
learning method for the alignment of the KG and attributes of the data schema. Since
the integrated KG, which is obtained by alignment, contains many duplicate entities and
unnecessary graph structures for the detection of depression, we utilized graph representa-
tion learning and wrapper-based feature selection to extract CPV from the graph, which
was integrated using the unsupervised method. Lastly, we proposed a method to generate
activity pattern graphs using GMM and KL divergence. Using these activity pattern graphs,
the GAT model was trained for the detection of normal activity patterns, and the early
detection of depression was performed. Since the proposed KARE framework integrates
physical space and cyberspace to detect observable anomalies based on human behavior,
it can be applied in various scenarios in the e-health care sector. In addition, if events are
detected instead of anomalies, the KARE framework can be extended to recommender
systems or decision support systems. When detecting anomalies in system components
rather than humans, it can be applied to various applications within the context of intrusion
detection and cyberattack defense, such as DDoS attacks.

However, this paper has several limitations. To perform alignment of the KG and the
attributes of the data schema, we assumed the existence of relationships of equivalence
between the KG and the data schema. In real world applications, it is hard to assume that
the information on relationships of equivalence exists. Therefore, a method that detects
relationships of equivalence using unsupervised methods is needed to align heterogeneous
graphs. Moreover, our method depends on the numerical space of the instances to generate
the activity graphs. Even though categorical data can be projected into numerical space,
some non-time series data cannot be detected by embedding numerical space, which
preserves the original information. The KNN or decision tree can be appropriate models to
handle categorical and non-linear data and transform original data to the continuous space
to find the best embedding space as a preprocessing model. Therefore, a more robust and
general method is needed to recognize activity graphs.

Further research will be performed to overcome the limitations mentioned above.
First, using natural language processing methods and graph representation learning, the
GNN model will be developed to detect equivalence between heterogeneous graphs, not
between KGs. Secondly, to generate activity graphs from attributes of the data schema, a
multi-view CNN model will be developed and applied to deal with a wide variety of data.
We will continue to conduct research on assistive AI technology that can detect depression
in the elderly at an early stage and lead a safe life within smart homes.
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