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Abstract: Group activity recognition is a prime research topic in video understanding and has many
practical applications, such as crowd behavior monitoring, video surveillance, etc. To understand
the multi-person/group action, the model should not only identify the individual person’s action
in the context but also describe their collective activity. A lot of previous works adopt skeleton-
based approaches with graph convolutional networks for group activity recognition. However,
these approaches are subject to limitation in scalability, robustness, and interoperability. In this
paper, we propose 3DMesh-GAR, a novel approach to 3D human body Mesh-based Group Activity
Recognition, which relies on a body center heatmap, camera map, and mesh parameter map instead
of the complex and noisy 3D skeleton of each person of the input frames. We adopt a 3D mesh
creation method, which is conceptually simple, single-stage, and bounding box free, and is able to
handle highly occluded and multi-person scenes without any additional computational cost. We
implement 3DMesh-GAR on a standard group activity dataset: the Collective Activity Dataset, and
achieve state-of-the-art performance for group activity recognition.

Keywords: 3D human activity recognition; human body mesh estimation; feature extraction; deep
learning; video understanding

1. Introduction

The purpose of human activity recognition is to identify what a human is doing in
a scene using images and video frames or inertial, environmental, and physiological sen-
sors data [1]. It is one of the most active areas of research and an immensely significant
component of computer vision and computer graphics fields. Group activity recognition
(GAR) is a subset of the human activity recognition problem that focuses on a group of
people’s collective behavior resulting from their individual actions and interactions [2].
The GAR is a critical task in many domains for automatic analysis of human behavior,
including intelligent surveillance, crowd monitoring, human-computer interaction, social
behavior comprehension, robotics, sports video analysis, virtual reality, etc. [3]. Addition-
ally, with the increasing population of elderly people, GAR is becoming a powerful tool
to monitor functional, cognitive, and physical health at their homes or in hospitals [4].
Furthermore, it is critical to determine individual activities and interactions of people
when recognizing group activity because these actions and interactions often constitute
the group activity. Recent studies for this task have explored different methods for feature
representations, such as optical flow [5], RGB (i.e., red, green, blue) image sequences [6,7],
human skeletons [8], depth image sequences [9], and audio waves [10].

The majority of group activity recognition models either explicitly or implicitly ex-
amine human actions. Some studies identify individual activities and group activities
in a combined framework using probabilistic graphical models [11] or neural networks
that implement the capability of graphical models [12]. Other approaches simulate the
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relationship between individual persons’ activities and group activities by applying vari-
ous pooling operations such as max-pooling [13] or attention pooling [14] on individual
person representations. The temporal evolution of individual actions and group activities is
another significant component in recognizing group activities. Recurrent Neural Networks
(RNNs) have been used in several studies to recognize individual and group actions over
time [14,15]. This strategy provides a concrete way to model group activities in video
datasets. Moreover, some existing works attempt to inject temporal data via Convolutional
Neural Networks (CNNs) on optical flow fields computed between two consecutive frames
as an additional input to each time step of RNNs [15,16]. Recently, multi-stream convolu-
tional networks beat RNNs in action identification tests [17], where CNN model temporal
information on optical flow fields. However, this method can be expensive due to the
computation of optical flow for numerous individuals and several forward runs of CNNs
on the input optical flow field for all people in the video.

Researchers have proposed new action detection methods that can run on simpler
hardware with few restrictive constraints in recent years. These methods do not need
high-resolution cameras, special bodysuits, or in-studio recording but only require some
scaled cameras for capturing the persons who are doing their everyday activities [18–22].
Moreover, various recent studies have used Deep Neural Networks (DNNs) to create 2D
or 3D skeleton data with pose and shape information from a single RGB image, which
are further used for action recognition tasks [3,8,23]. Unfortunately, most of the previous
methods need more computation power and fail to get the required results for multi-person
action recognition due to high occlusions, complicated backgrounds, a large variety of
scenes and appearances, and depth uncertainties [24]. Additionally, current 3D skeleton
methods show a deficiency in precise modeling of body-bone length distribution, which
may predict impractical body structure such as abnormal limbs proportions and right-left
asymmetry [25].

More recently, 3D human body mesh reconstruction aims to create full-body 3D
meshes of humans in an image or video [26], and further, these meshes are being widely
used for motion re-targeting [27], action recognition [28], virtual try-on [29], etc. A single-
stage 3D mesh reconstruction method called ROMP (i.e., Regress all meshes in a One-stage
fashion for Multiple 3D People) is presented for multi-person scenarios [21]. Therefore, this
paper proposed a 3D human body mesh-based method for multi-person action recognition
called 3DMesh-GAR. Our method is composed of three stages. Stage I contains a 3D
mesh reconstruction network, which takes RGB image frames as the input, applies a mesh
reconstruction network, and regresses the 3D body meshes of all people in the frame. Our
mesh reconstruction network is computation cost-efficient, bounding box-free, and can
learn pixel-level features in an end-to-end fashion. Stage II consists of the concatenation
method and the feature extraction network. During the concatenation, all body meshes
created in Stage I are merged into a single 3D body mesh by averaging them. Next, a feature
extraction network is applied to the concatenated body mesh, converting the complex 3D
mesh parameter into simple 2D trainable features. Finally, these features are treated as the
input of a fully connected Deep Artificial Neural Network (D-ANN) in Stage III, which
decides the action class of the input frame. We evaluate the performance of our method on
a benchmark group activity recognition dataset called the Collective Activity Dataset [30].
The experimental results demonstrate that the proposed 3D mesh-based action recognition
method obtained superior performance to the current state-of-the-art methods.

The rest of this paper is organized as follows: Section 2 contains related studies.
Section 3 explains research materials and methods followed by this study. Dataset, ex-
periments, and result analyses are provided in Section 4. The whole study is concluded
in Section 5.

2. Related Work

We briefly review the recent literature on various deep learning-based and 3D skeleton-
based group activity recognition approaches (Section 2.1). Then, we analyze recent one-
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stage/multi-stage methods designed for a single person and multi-person 3D human body
mesh reconstruction (Section 2.2).

2.1. Group Activity Recognition Approaches

For the last decade, the computer vision research community has widely studied
group activity recognition from video datasets. Most of these studies are based on visual
features extracted using some 2D Convolutional Neural Networks (2D-CNNs) for each
individual in an input frame and then building probability graphical networks on the
prior knowledge for recognizing group activities [31–34]. Recently, CNNs models have
achieved extensive success in activity recognition problems [14,15,35–37]. Additionally,
ResNet [38], derivatives [39], and Inception [40] consolidate explicit knowledge flowing
from initial to later feature extraction layers in the network via skip and summation con-
nections. This strategy allows the training of deeper and more powerful models. With the
advancements in deep learning techniques, feature extraction from input objects has been
jointly optimized with the latest relational modeling methods such as Deep CNNs [41],
Graph Neural Networks (GNNs) [42–44], Recurrent Neural Networks (RNNs) [38,45–47],
and Transformers [48–50].

There have been several attempts to address the problem of group activity detec-
tion using probabilistic graphical models. Sun et al. [51] used a latent graph model for
multi-target tracking, activity group localization, and group recognition. Hand-crafted
features are used as input to the model in the initial probabilistic techniques. With the
recent success of deep neural networks in various computer vision applications, these
networks are now being used as feature extractors and inference engines in probabilistic
group activity detection models. Deng et al. used CNNs as an initial classifier to come
up with unary potentials [52]. They used a deep neural network to create the graphical
model and performed messages traveling through the network to refine initial predic-
tions. The authors presented multi-stream convolutional frameworks for group activity
recognition in [2,53], in which new input modalities are simply included in the model by
adding new convolutional streams. Li et al. proposed a real-time inference method for
multi-person tracking and collective activity detection at individual, interaction, and group
activity levels [54]. Simonyan and Zisserman [5] employed a two-stream CNNs architecture
that can independently attain representation on optical flow assembled frames and RGB
images. Azar et al. represented a CNNs based spatial relational method for group activity
detection [41]. Wang et al. proposed an effective CNNs framework for action recognition
from videos by dividing the input video into many chunks and applying a multi-stream
method to combine each chunk with their corresponding part in a learnable way [17].

Some of the recent studies depend on spatio-temporal information extracted using
RNNs. Ramanathan et al. proposed a multi-stage RNNs model to recognize only similar
events in input videos by extinguishing irrelevant information [14]. Their model learns to
recognize activities in videos while spontaneously attending to the main objects responsible
for an activity. Ibrahim et al. [13] presented a deep architecture for modeling group activities
in a principled structured temporal framework. The first part of their two-stage technique
modeled individual-level activities, then merged all individual-level information to reflect
collective activities. The Long Short-Term Memory (LSTM) network was used to represent
the temporal representation of the model. Ibrahim et al. [37] introduced a hierarchical
relational network that computed relational representations of persons based on graph
structures that describe their potential relationships. Individual human representations
and hypothetical relationship networks were provided to each related layer. Based on their
connections with corresponding graphs, relational representations of each person were
constructed. This method can be used to acquire relational feature representations that
can successfully distinguish between different types of single-person and group activities.
Another study looked into the use of RNNs for message passing [12]. They also proposed
gating functions for learning the graph’s structure. A few studies also look at using
structured RNNs to predict the scene context [15,55] or generate captions [16]. For group
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activity recognition, Li et al. suggested a two-stage semantic-based approach [16]. In the
first stage, they implement the LSTM model to create captions for all video frames, while
in the second stage, another LSTM model is implemented to identify the final activity class
based on the created captions in the first stage.

Although attention mechanisms were originally designed for Natural Language Pro-
cessing (NLP) problems, recently researchers have also proposed them for group activ-
ity detection by consolidating attention via pooling methods [56], graphs [57], or LSTM
models [58]. Tang et al. joined attention mechanisms to get compact representations by
allocating varying pooling weights to the various individual or group interactions [59].
Lu et al. proposed a spatio-temporal attention mechanisms-based method to utilize spatial
configuration and temporal dynamic in a collective scene [60]. Moreover, attention-based
models can also be applied for various modalities, such as motion [58] and pose [61]. Fer-
nando et al. represented a temporal pooling function-based method for learning features of
an input video through ranking machines. Later on, these features were used to recognize
the input video with some classifier such as support vectors machines (SVMs) [62].

Graph Convolutional Networks (GCNs), a semi-supervised learning method, has re-
cently become an emerging research topic in deep learning [63]. Some researchers have ap-
plied GCNs to recognize single-human activity [8,57] and group activity [42]. Wu et al. [42]
proposed a flexible and efficient Actor Relation Graph (ARG) to simultaneously capture
the appearance and position relation between actors. The connections in ARG were auto-
matically learned using the GCNs from group activity videos in an end-to-end manner,
and the inference on ARG were efficiently performed with standard matrix operations.
Vaswani et al. proposed a transformer network that can learn long-term dependencies in
a better way as compared to RNN due to its self-attention mechanism [45]. Girdhar et al.
introduced a transformer network combined with 3D CNN representation for video action
localization and action recognition [64]. Gavrilyuk et al. proposed an actor-transformer
method for group activity recognition, which uses optical flow for temporal dynamics
representation while pose information has been applied for interpreting spatial information
of multiple people [65]. However, using optical flow information as input requires a high
computational cost. Moreover, most of the current studies for group activity recognition
consist of complex multi-stage architecture and required bounding boxes and well-designed
hand-crafted features for each individual in the frame. Our method is simple, easy to use,
bounding box free, and uses 3D mesh features for group activity recognition.

2.2. 3D Human Body Mesh Reconstruction Methods

Previous studies estimate monocular 3D-pose estimation for a single person in the
form of a non-parametric 3D shape [66,67] or body skeleton [68–72]. The SMPL (i.e.,
Skinned Multi-Person Linear model) parametric model [73] has also been widely used
for human body mesh recovery. The SMPL is adapted to convert a highly complicated
3D body mesh into a simple vector with very low dimensions, which can be regressed by
an image [74]. Bogo et al. proposed the first optimization-based method called SMPLify,
which can continuously train SMPL with the learned 2D joints [75].

Some recent studies applied deep neural networks in a multi-stage manner for direct
SMPL parameters regression. These studies first approximate intermediary representations
such as silhouettes and keypoints from the input images and then regress SMPL param-
eters by mapping them [76–78]. Some other studies regressed SMPL parameters directly
from images, either by leveraging temporal learning [79,80] or complex model training
methods [81,82]. Moreover, some researchers employed CNNs-based learning methods
to get satisfactory results for 3D pose estimation [83–85]. Transfer learning methods have
also been implemented to enhance 3D pose estimation using features obtained from 2D
pose datasets [86–88]. Recently, Cha et al. proposed a self-supervised learning based
method for 3D human body pose and shape estimation using only 2D images [89]. Their
method does not require other type of supervision signals such as video-level, multi-view
priors, or 2D/3D skeletons. However, all these methods achieved higher accuracy only
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for single-person problems, and it remains ambiguous how to use these methods for more
common multi-person problems.

For multi-person 3D regression, most of the existing methods are composed of a
multi-stage approach that provides the single-person model with a 2D person identifier to
solve multi-person problems [90,91]. Recently, many researchers have been focusing on
multi-person 3D pose estimation, for which they use a top-down paradigm [92,93]. In top-
down methods, firstly, all individual person instances are detected, and then features are
extracted using the bounding-box method, and finally, body joins locations are regressed
using those features for each person [76,80,81,94]. Different multi-stage methods have
also been proposed for this purpose using Faster Region-based Convolutional Neural
Networks (R-CNN) [95], such as 3D Multi-Person Pose Estimation (3DMPPE) [96] and
Localization Classification Regression Network (LCR-Net++) [93]. Moon et al. applied a
prior person identification step and transferred all resized and cropped images of identified
persons to the 3D pose estimation network [96]. However, top-down methods depend
considerably on human detection for localization of each individual prior to body joint
estimation within the identified bounding boxes [97,98]. These methods have no realization
of persons who are out of the bounding boxes and their possible interaction. Moreover,
human detection becomes unreliable for highly occluded scenarios, resulting in misleading
the pose estimation of the targeted person with the nearby persons.

Recent bottom-up approaches for 3D mesh estimation do not require individual person
detection and thus can achieve higher accuracy in the presence of multi-person scenar-
ios [99,100]. These methods take all persons in a frame simultaneously and distinguish
their joints in a better way. Fabbri et al. proposed a pose estimation method called Learning
on Compressed Output (LoCO) for mapping the images into the volumetric heatmaps
and using these heatmaps to estimate multi-person 3D poses through an encoder-decoder
framework [101]. More recently, Zhang et al. represented a single-stage method that shows
instances of multi-person in the space of spatial depth where all points are associated with
their corresponding body meshes [26]. Their method can directly identify human body
meshes through concurrently localizing human instance points and predicting correspond-
ing 3D meshes. Sun et al. also proposed a single-stage method called ROMP for 3D mesh
regression of multi-person scenarios [21]. ROMP can simultaneously identify mesh param-
eter map and body center heatmap, which are jointly used to predict a 3D person map on
the pixel level. Their method achieved state-of-the-art results on the highly occluded and
crowded dataset. So, we also used a single-stage 3D mesh reconstruction method as the
backbone of our pipeline for 3D mesh regression from the group activity datasets.

3. Materials and Methods

The details of our proposed method are given in this section. Figure 1 illustrates all
the important elements of the proposed learning framework for group action recognition
from 3D human body meshes. We first show how the 3D human body meshes are created
in multi-person scenarios from simple RGB images (Section 3.1). Then, we introduce a
concatenation method to aggregate all the meshes into a single 3D mesh and a feature
extraction network to convert 3D mesh parameters into trainable features (Section 3.2).
Finally, a fully connected deep neural network is presented to train and classify the group
actions from the trainable features (Section 3.3).

3.1. 3D Body Mesh Reconstruction: Stage I

Stage I contains a 3D body mesh reconstruction network for body mesh regression
from the multi-person dataset. As illustrated in our framework, a ResNet-50 [38] network
is applied as the default backbone to the input RGB image of size 512× 512 and extracts a
backbone feature vector y f ∈ R34×Hb×Wb where Hb and Wb are the height and width of the
backbone feature, respectively, their values are set to 128. From the backbone feature, three
different head networks are built to find three types of maps, such as body center heatmap
(Cm), camera map (Am), and SMPL map (Sm). These maps comprehensively describe the



Sensors 2022, 22, 1464 6 of 19

estimated 3D body mesh information. The body center heatmap predicts the probability of
all positions being people body centers. Using these position parameters, the camera map
and SMPL maps are applied to get camera parameters and SMPL parameters, respectively,
which are further gathered to define the 3D mesh parameter map (Pm). The size of all maps
is given by n× H ×W, where n represents the total number of channels, and H and W are
the height and width of the maps, respectively. The value of both height and width of all
the maps is set to 64. Each map is further elaborated in the following subsections.

Figure 1. An overview of our 3DMesh-GAR framework for 3D body mesh-based group activity
recognition. Stage I infers 3D body mesh reconstruction for each input RGB frame in a video using
a 3D mesh regression model. Stage II provides the concatenation and features extraction networks
used to concatenate all 3D body meshes of the frame into a single averaged 3D mesh and extract
learnable features from the concatenated 3D body mesh, respectively. Finally, Stage III provides
a fully-connected deep artificial neural network (D-ANN) trained with learnable mesh features to
classify the group activities.

3.1.1. Body Center Heatmap: Cm∈ R1×H×W

The Cm map is the heatmap showing the 2D person body’s central point in the input
RGB image. All body centers are presented as a Gaussian distribution in the (Cm), calcu-
lated by Gaussian kernel size k of all person centers in terms of their 2D bodies. The value
of k is derived by the following equation:

k = kl + (
db−box√

2W
)2kr (1)

where kl , db−box, W, and kr are minimum kernel size, diagonal length of the human
bounding box, the width of the body center heatmap, and variation range of k, respectively.
The values of kl and kr were set to 2 and 5, respectively, by default. The body center
heatmaps of all persons from different actions of the collective active dataset [30] are shown
in Figure 2b.

3.1.2. Camera Map: Am∈ R3×H×W

The camera map consists of three camera parameters, one 2D scale s parameter,
and two translation t = (tx, ty) parameters for each person in the image. The scale s
represents the size and depth of the person’s body. Whereas the translation tx and ty,
whose values range in (−1,1), represent a normalized translation of the person’s body
relative to the center of the image on the x-axis and y-axis, respectively.

3.1.3. SMPL Map: Sm∈ R142×H×W

The Sm map consists of 142-dimensional SMPL parameters, obtained by employing
the SMPL parametric model for person body representation [73]. It allows the use of pose
parameters θ and shape parameters β to describe the full 3D human body mesh. The pose
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parameters are defined as θ ∈ R6×22, containing a 6D representation of 3D rotational
information for 22 human body joints. The shape parameters are defined as β ∈ R10, which
are parameterized by the top-10 principal components of the 3D shape space. An efficient
mapping is established by applying an SMPL differentiable function that takes the θ and β
parameters as input and results in a triangular body mesh M ∈ R6890×3 with 6890 vertices.
The 3D joints are reconstructed by a PM process, where P is defined as P ∈ RK×6890, which
is an infrequent weight matrix that expresses the linear mapping through 6890 vertices of
human body mesh M to the body joint K.

Figure 2. 3D body mesh reconstruction examples: We applied a 3D mesh reconstruction network to
create 3D body meshes for each individual person from the input RGB frames. Each row presents
examples from the Collective Activity Dataset, and each column corresponds to (a) input RGB frames,
(b) body center heatmaps of each person in the frame, (c) 3D body meshes of each person in the
frame, and (d) concatenated 3D body mesh, respectively.

3.1.4. Mesh Parameter Map: Pm∈ R145×H×W

The mesh parameter map is a combination of the SMPL map and camera map. The
3D human body mesh parameters are estimated by considering the positions of SMPL and
camera maps to the centers of the human bodies. A weakly-perspective camera model is
implemented to estimate 3D human body joints J = (xk, yk, zk), where k = 1 . . . K. These
3D body joints are used to get 2D projection joints Ĵ = (x̂k, ŷk), where x̂k and ŷk are derived
by camera parameters as x̂k = sxk + tx, ŷk = syk + ty, respectively. It helps the mesh
reconstruction model to train with 2D pose datasets, which increases the generalization
and strength.
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3.1.5. Collision-Aware Representation (CAR)

Conventionally, human body centers are defined using the center of bounding boxes.
However, this method failed to identify the body centers in highly occluded scenes. Thus,
Sun et al. [21] proposed a novel method called collision-aware representation (CAR) to
define the human body centers in densely overlapping people cases. Using this method,
a repulsion field is created, in which each body center is considered positively charged.
These same charged body centers repel each other, and their radius of repulsion is the
same as the size of the Gaussian kernel defined by Equation (1). So, the CAR plays a vital
role in pushing apart the closer body centers in multi-person occluded cases and using
these differential body centers to create a body center heatmap. The impact of CAR can
be seen in the Tracking and Jogging rows of Figure 2, where heatmaps of occluded persons
are successfully identified. Moreover, by sampling these body center heatmaps with mesh
parameter maps, 3D mesh features are extracted for each individual person, as shown in
Figure 2c.

3.2. Concatenation and Features Extraction: Stage II

After Stage I, we have a per-frame 3D body mesh for each individual. The Stage II of
our framework contains two simple networks such as (1) concatenation network and (2)
feature extraction network. The prior network gets the output of Stage I with multi-person
3D mesh results as its input and implements a concatenation function to find a single 3D
body mesh by averaging all body meshes. The value of concatenated 3D body mesh S3D is
derived as:

S3D = (
S3D

1 + S3D
2 + · · ·+ S3D

n
n

), n = 1 . . . N (2)

where N is the total number of persons in the input frame. As each input frame belongs to
one of the group activities, all persons in that specific frame represent the corresponding
activity. Thus, we concatenated all frames with different numbers of persons into a single
3D body mesh corresponding to a specific group activity class, see Figure 2d. The final
3D body mesh contains three types of parameters, such as 3D coordinates of body mesh,
SMPL pose, and 2D coordinates of 2D keypoints of shapes (6890, 3), (72, 1), and (54, 2),
respectively. So, the total number of raw parameters of a single 3D body mesh is 20, 850.
The second network of Stage II takes the raw mesh parameters from the concatenation
network as the input. It applies a simple non-trainable linear network to convert the input
3D mesh parameters into trainable parameters of size 2048.

3.3. Activity Classification Network: Stage III

After Stage II, we have trainable features for each input RGB image. Stage III contains
a deep artificial neural network (D-ANN) that takes the trainable features as the input
and passes them to the multiple hidden layers for training using activation functions. It
gives the output with one of the group activity classes. A D-ANN is a multi-layer fully-
connected neural network and comprises an input layer, several hidden layers, and an
output layer. All nodes of one layer are connected to all other nodes in the next layer.
Nowadays, D-ANN models are being used in several real-world applications because
of their outstanding performances [102]. The success of deep learning models from the
last decade is due to a combination of both theoretical progression such as improved
learning rate methods, optimization techniques, availability of numerous big datasets,
etc., and easy access to improved and cheap hardware resources such as multi-processor
graphics cards or graphics processing units (GPUs) [103]. The D-ANN methods are now
routinely implemented with impressive results in areas such as pattern recognition, image
analysis, object detection, fault diagnosis, self-driving cars, speech recognition, natural
language processing, and robotics, to name a few areas.

We proposed a deep classification network by introducing a total of three hidden
layers, each with Rectified Linear Units (ReLU) activation function. We preferred the
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ReLU activation function because it performs comparatively better than other sigmoidal
activation functions in deep learning models and helps to get the best results on numerous
benchmark problems in multiple domains [104]. Our fully connected deep neural network
is illustrated in Figure 3, which contains an input layer with 2084 features from 3D human
body mesh, 3 hidden layers with a different number of nodes such as 480, 120, and 84
nodes for the first, second, and third hidden layers, respectively, and an output layer with
various possible activity classes. A simple learning function between nodes of different
layers is calculated by an activation function, which can be defined as:

x = Σn
i wi · xi + b (3)

where xi = (x1, x2 . . . .xn) and wi = (w1, w2 . . . wn) are the values of the previous layer with
a total of n nodes and their corresponding weights, and b is the bias value. The result of
this learning function is passed through the non-linear ReLU activation function, which
converts all negative values to zero while the remaining values are kept unchanged, as given
in the following equation.

f (x) = max(0, x) (4)

Figure 3. The architecture of a fully connected deep artificial neural network that forms Stage III of
our pipeline.

The final action recognition is done at the output layer, whose nodes are equal to the
number of input activity classes. The output layer uses the So f tMax activation function
instead of ReLU, which gives the maximum probability value to the most precise activity
class and vice versa.

4. Experiments and Result Analysis

In this section, we evaluate the effectiveness of the proposed method using a public
benchmark group activity dataset, comparing our approach with current state-of-the-
art methods for the same benchmark. A detailed explanation of the dataset is given
in Section 4.1. The implementation details and hardware environment are explained in
Section 4.2. The comparison of the proposed method with the state-of-the-art is described
in Section 4.3. Result analysis and discussion are provided in Section 4.4. Limitations of
this study and expected future works are given in Section 4.5.

4.1. Dataset

We conducted experiments on a widely-adopted public group activity dataset, namely
the Collective Activity Dataset (CAD) [30]. It contains 44 short video sequences with
5 different group activities such as Crossing, Waiting, Queueing, Walking, and Talking.
The group activity label for a specific frame is determined by an activity in which the
majority of people are participating. Additionally, we used an augmented collective
activity dataset with two additional activity classes such as Dancing and Jogging for
further evaluation of our model. As this dataset is collected from outdoor activities with
consumer hand-held digital cameras, the quality of some frames is not high. Thus, we
pre-processed the dataset by keeping only those frames for which at least two body meshes
are created and removing the other frames. We divide the whole dataset into 80% and 20%
for the model’s training and validation.

To further analyze the performance of the proposed method for single-person as
well as multi-person cases, we used NTU-60 RGB+D Dataset (NTU60) [105]. The original
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NTU60 dataset is very big and contains 56,880 videos samples with 60 different human
action classes. We therefore used a subset of the original dataset with five random classes
such as Back− Pain, Bow, Brush− Teeth, Cheer−Up, and Hands− Shaking. The first four
classes contain single person actions and the last class contain multi-person action. We
divided the dataset into 80% and 20% for the model’s training and validation.

4.2. Implementation Details

We used the ResNet-50 network as the backbone of the 3D mesh reconstruction
network. All input RGB images are resized into 512 × 512 with zero padding and a
similar aspect ratio. The size of backbone feature vectors resulting from ResNet-50 is
34× 128× 128. These feature vectors are used to develop three head networks to find body
center map, camera map, and SMPL map, each with output sizes of 1× 64× 64, 3× 64× 64,
and 142× 64× 64, respectively. The maximum number of persons in one frame whose
3D meshes can be created is manually set to 64. The values of the body center heatmap
threshold and repulsion coefficient of CAR are set to 0.2 for each. Each person’s final 3D
body mesh contains 20, 850 mesh parameters that are converted to 2048 trainable features.

For the training of the D-ANN at Stage III, we use the ADAM optimizer [106] with
fixed hyper-parameters β1 = 0.9, β2 = 0.999, and ε = 10−10. We adopt a mini-batch size
of 1 sample with a learning rate ranging from 0.001 to 0.000001. We train and validate the
network for CAD and NTU60 datasets in 80 and 50 epochs, respectively. Our method is
implemented on PyTorch based deep learning framework. The inference time for a single
frame is approximately 1.6 ms on a single TITAN − RTX2080Ti GPU. The implementation
code of our proposed method will be available online upon publication.

4.3. Comparison with the State-of-the-Art

We evaluate the proposed method on CAD dataset. The results are provided in
Table 1, along with a comparison of different previous methods. Our 3D body mesh-based
action recognition method outperforms all previous methods and shows the state-of-the-art
results with 93.6% group activity recognition accuracy. All provided values have validation
accuracy as pre-determined by the dataset authors. Meanwhile, our method slightly
outperforms the recently published methods by Wu et al. [42] and Gavrilyuk et al. [65]
with the validation accuracy of 90.0% and 92.8%, respectively. These outstanding results
represent the effectiveness of the proposed method for group activity recognition using 3D
body mesh reconstruction of multiple people scenarios.

Table 1. Collective activity dataset comparison with state-of-the-art methods for group activity
recognition. Bold denotes the best results.

Methods Backbone Group Activity

Lan et al. [33] None 79.7%
Choi and Savarese [11] None 80.4%

Deng et al. [12] AlexNet 81.2%
Ibrahim et al. [13] AlexNet 81.5%

Hajimirsadeghi et al. [32] None 83.4%
Azar et al. [41] I3D 85.8%

Li and Chuah [16] Inception-v3 86.1%
Shu et al. [35] VGG16 87.2%
Qi et al. [55] VGG16 89.1%

Ehsanpour et al. [107] I3D 89.4%
Wu et al. [42] Inception-v3 91.0%

Gavrilyuk et al. [65] I3D 92.8%

Ours (3DMesh-GAR) ResNet-50 93.6%

To understand the effectiveness of our method, we compare the accuracy of each
individual class of the CAD dataset with the previous state-of-the-art method [65] in Table 2.
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It can be seen that the proposed method outperformed the previous method to recognize
the Crossing and Waiting classes with the accuracy of 88.8% and 96.8%, respectively. While,
the accuracy of other classes such as Queueing (95.2%), Talking (99.7%), and Walking
(86.7%) are also very high, their differences with [65] are negligible.

Table 2. Comparison of each activity class recognition of the CAD dataset with the previous state-of-
the-art method. Bold denotes the best results (%).

Methods Crossing Queueing Talking Waiting Walking

Gavrilyuk et al. [65] 83.3 100 100 96.1 88.1
Ours 88.8 95.2 99.7 96.8 86.7

To further analyze the efficiency of the proposed method for single-person as well
as multi-person cases, we compare the accuracy of a subset of the NTU60 dataset [105]
with the previous state-of-the-art method proposed by Huang et al. [108] in Table 3. It
is clear that our method outperformed the previous method with an overall validation
accuracy of 92.2%. Our method also achieved higher accuracy for all individual classes
such as Back− Pain (90.2%), Bow (93.7%), Brush− Teeth (88.1%), and Cheer−Up (95.0%),
except one class Shaking − Hands (91.9%). It shows that the proposed 3D body mesh-
based action recognition method is the most suitable approach for general-purpose Guman
Activity Recognition (GAR) in vast physical environments.

Table 3. Comparison of five different activity classes recognition of the NTU60 dataset with the
previous state-of-the-art method. Bold denotes the best results (%).

Methods Back-Pain Bow Brush-Teeth Cheer-Up Shaking-Hands Overall Accuracy

Huang et al. [108] 88.7 90.9 85.9 87.7 93.8 89.4
Ours 90.2 93.7 88.1 95.0 91.9 92.2

4.4. Results Analysis

To analyze the performance of the proposed method, we present confusion matrices on
the Collective Activity Dataset for multi-person activity recognition, see Figure 4. Similar
to [65], our method also struggles to distinguish between the Crossing and Walking classes.
The confusing ratio of the Crossing class with Walking is 9.5%, whereas, the Walking class
with Crossing is 13.2%, as shown in Figure 4a. Therefore, following [15,50], we merged the
Crossing and Walking classes into a single Moving class because there is no clear difference
in physical appearance and pose of all persons of these classes and their 3D body mesh
features are also similar. Figure 4b presents a confusion matrix of our method for group
activity recognition with the merged Moving class. It is clear that our method achieves
accuracy over 93%, with the least accuracy for the Waiting class (93.7%). The accuracy
for the Moving class, which is a combination of the Crossing and Walking classes, is also
improved up to 98.4%. The most confusion occurs for recognizing the Queueuing class
with Moving (3.0%) and the Waiting class with Moving (4.6%).

For further analysis of our method, we used an augmented dataset of the Collective
Activity Dataset with two additional outdoor activity classes such as Dancing and Jogging,
see Figure 5a. It can be seen that the Crossing class achieves the lowest accuracy of 81.3%
and is highly confused with the Jogging and Walking classes with a ratio of 5.2% and 6.3%,
respectively. This is because of the similar physical appearance of human bodies in these
classes. Similarly, the Jogging class is confused with the Crossing and Walking classes with
a ratio of 5.5% and 3.5%, respectively. In addition, the Walking class is confused with the
Crossing and Jogging classes with a ratio of 8.8% and 4.9%, respectively. We again merged
the Crossing and Walking classes into the Moving class and implemented our method on
the merged dataset, see Figure 5b. It is clear that the proposed method attains improved
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accuracies for all classes of the merged dataset, except for Queueing class, which slightly
deteriorated from 92.4% to 91.1%.

Figure 4. Confusion matrix for group activity recognition using Collective Activity Dataset. (a) de-
notes the confusion matrix for the original five classes. Most confusion occurs when distinguishing
between the Crossing and Walking classes. (b) denotes the confusion matrix after merging the
Crossing and Walking classes into a single Moving class. Our method achieves over 93% accuracy
for each group activity class.

Figure 5. Confusion matrix for group activity recognition using augmented Collective Activity
Dataset. (a) denotes the confusion matrix for the original seven classes. Most confusion occurs in
distinguishing between the Crossing and Walking classes. (b) denotes confusion matrix after merging
the Crossing and Walking classes into a single Moving class. Our method achieves over 87% accuracy
for each group activity class.

Figure 6 illustrates the accuracy convergence of our method concerning epochs using
different dataset settings of the Collective Activity Dataset. Figure 6a shows results for five
classes dataset such as Crossing, Queueing, Taking, Waiting, and Walking. It shows the
highest validation accuracy of 93.6% at the 60th epoch. Training accuracy starts at 70.0%
and goes up to 98.0%. Then, training accuracy convergence becomes stable. Validation
accuracy starts at 77.2% and goes up to 93.6%. It slightly went down at various epochs
during the first 40 epochs and then became almost stable. Meanwhile, training loss for this
dataset starts from 0.73 and decreases up to 0.06 with increasing epochs. Figure 6b shows
results for the six classes dataset such as Dancing, Jogging, Moving, Queueing, Taking,
and Waiting. It depicts the highest validation accuracy of 92.5% at the 72nd epoch. Training
accuracy starts at 67.5% and goes up to 96.6%. Validation accuracy starts at 74.6% and goes
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up to 92.4%. It slightly went down at various epochs during the first 50 epochs and then
became nearly stable. The value of training loss for this dataset reduces from 0.85 to 0.10 as
the epochs increase.

Figure 6. Model accuracy curves of group activity recognition using the training and validation
datasets on the Collective Activity Dataset. (a) denotes the learning curves for the original dataset
with the five classes. (b) denotes the learning curves for the augmented dataset with the six merged
classes.

4.5. Limitations and Future Work

The proposed 3DMesh-GAR method is the first to implement real-time multi-person
activity recognition using 3D body mesh. Nonetheless, it has some limitations, which will
be addressed in this subsection.

As our 3D body mesh reconstruction approach can process multi-persons simultane-
ously without relying on bounding boxes for level human detection, it is naturally sensitive
to person scale variations, which limits its applicability on the wild images. Moreover,
our mesh reconstruction is based on 2D human representation, such as 2D Body Center
Heatmap, which makes it difficult to learn the mapping function. Our method successfully
reconstructs the 3D human body meshes even in the presence of person-to-person occlusion.
However, it still shows the limitation of creating meshes in extremely occluded scenarios
and in the presence of long-distance between persons and camera, as shown in Figure 7.
All persons with missing 3D body meshes are highlighted with red circles.

Figure 7. Qualitative analysis of 3D Mesh reconstruction in highly occluded and long distance
scenarios.
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Because our deep network for action recognition in Stage III is trained with mesh
features, our major focus in future studies will be to improve the mesh reconstruction
network in Stage I. To do so, we can replace the 2D body center heatmap with 3D skeletons
for multi-person detection in the frame. Thus, the efficiency of the mesh reconstruction
network can be improved by collaborating the 3D joints and 3D body meshes. In addition,
we will extend our work for short abnormal actions detection in a video sequence of long
normal actions.

5. Conclusions

Autonomous group activity recognition has become a growing research field in the
past few years and has achieved impressive progress. Activity recognition methods based
on deep learning approaches are playing a vital role in GAR. Thus, this paper proposed
3DMesh-GAR, an efficient and flexible 3D human body mesh-based method for group
activity recognition. It takes RGB image frames as input and product 3D body meshes
using their body center heatmaps and mesh parameter maps. The 3D mesh features are
very simple and easy to train with a linear neural network. A deep artificial neural network
architecture has been developed and optimized to learn and recognize group activities
from the proposed description in an end-to-end manner. We evaluate the proposed method
on a benchmark group activity recognition dataset and establish a new state-of-the-art
performance. Various experiments and results analysis show how an intuitive and simple
3D mesh-based method regarding information representation can be successful for high-
level feature extraction from a complex dataset.
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DNNs Deep Neural Networks
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SVMs Support Vectors Machines
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SMPL Skinned Multi-Person Linear model
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LCR-Net++ Localization Classification Regression Network
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