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Abstract: Restricted by the diversity and complexity of human behaviors, simulating a character to
achieve human-level perception and motion control is still an active as well as a challenging area.
We present a style-based teleoperation framework with the help of human perceptions and analyses
to understand the tasks being handled and the unknown environment to control the character. In
this framework, the motion optimization and body controller with center-of-mass and root virtual
control (CR-VC) method are designed to achieve motion synchronization and style mimicking while
maintaining the balance of the character. The motion optimization synthesizes the human high-level
style features with the balance strategy to create a feasible, stylized, and stable pose for the character.
The CR-VC method including the model-based torque compensation synchronizes the motion rhythm
of the human and character. Without any inverse dynamics knowledge or offline preprocessing, our
framework is generalized to various scenarios and robust to human behavior changes in real-time.
We demonstrate the effectiveness of this framework through the teleoperation experiments with
different tasks, motion styles, and operators. This study is a step toward building a human-robot
interaction that uses humans to help characters understand and achieve the tasks.

Keywords: character animation; human-robot interaction; teleoperation control; human-in-the-
loop control

1. Introduction

In character animation and humanoid robotics, analyzing and rebuilding different
interactions between humans and the environment offers the opportunity to create alterna-
tive solutions for humanoid activities. In the last two decades, research on physics-based
humanoid animation and robotics improved rapidly, resulting in highly realistic and adap-
tive control achievements [1]. Despite this promising progress, the diversity and complexity
of human behaviors, which includes a great number of behavior patterns and uncertain
personal style preferences, have restricted the applications of previously proposed active
controllers. The schematic of interaction based on humanoid active intention is shown in
Figure 1. The human body’s central nervous system, sensing system, and musculoskeletal
energy system couple together to determine behavior performance. On the one hand, peo-
ple tend to make a general decision with a typical skeletal composition reacting to a regular
stimulus from the environment, which therefore performs a behavior pattern, that is, for
example, walking slowly after a meal. Rebuilding this pattern requires a comprehensive
analysis of the environment and social habits. On the other hand, human personality styles
generate tiny distinctions of this behavior pattern, such as one would like to walk in a
sneaky manner while another would like to swagger down the street. These distinctions
will cause an unstable disturbance for the pattern-behavior rebuilding. Not only that, but
with different characteristic body parameters between humanity and controlled characters,
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the performance of rebuilding always becomes sensitive to the environment and unpre-
dictable. Although plenty of works have been devoted to solving these problems, such
as the SIMBICON [2] and GENBICON [3] which create simple walking controllers, the
data-driven controllers [4,5] which represent modulation methods for the mocap data, the
solver-based controllers [6,7] which use dynamic solvers to optimize the reference motions,
and the style-based controllers [6,8] which inherit the styles of the considered movements,
they could be better generalized to various scenarios and robust to diverse human be-
havior changes. Therefore, programming a humanoid character to achieve human-level
perception and motion control in environments is still an active while challenging issue for
character animation.
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Figure 1. The schematic of human interaction with the environment to achieve a motion target.

Humanoid characters are complex systems that are hard to match with the sophistica-
tion and adaptability of style motion control intelligence. In addition, characters’ dexterous
behavior requires high-level analysis that combines visual and proprioceptive perceptions
to understand the object’s behaviors being handled. We envision humans can help the
controlled characters react to these perceptions and produce whole-body style trajectories
subject to these behaviors. In this work, we propose a style-based teleoperation frame-
work to dynamically synchronize the style motion of a human operator and that of an
animated character. With the help of the human operator’s perceptions and decisions
to deal with different tasks in unknown environments, this framework can rebuild the
human’s motion on the animated character while keeping this operator’s personal style.
Besides, a human operator generates a motion with the understanding of the required task
and perception of the character simulation scene, and the physics-based character then
simulates a balanced motion that mimics the style of this human and achieves the task.
As can be seen from Figure 2, reference motion data with the center of mass (COM) of the
human body is captured as input for the data processing and motion optimization part,
and an optimized motion that mimics the style of the human body is generated. The body
balance and synchronization controller then computes a set of body joint torques of the
optimized motion to simulate the physics-based character.
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The data processing part proposes a composite scheme to smooth the visual cap-
tured human motion and COM position, and the motion optimization part optimizes
the smoothed motion in consideration of the current character pose with the high-
level style features. High-level features for style mimicking are extracted referring
to the human-style analysis in this paper. With the high-level features, we deliver
a style-expressive performance of the character keeping with the operator’s motion
in real-time. The optimization is able to synthesize the balance and style to create a
feasible pose under different physic scales between the human operator and simulated
character. This algorithm can reduce the unstable pose error owing to the characteristic
differences (such as size, preference, etc.) as well as produce stable and stylized motion
data. The body balance and synchronization controller generates body joint torques,
considering the balance of the character and the optimized style motion. We devise
a COM and root virtual control (CR-VC) strategy, adding on the PID joint controller
and design a model-based torque compensation for the CR-VC. The compensation
torques modulate the joint torques to synchronize the motion, and achieve a balance
and simultaneous motion control for the character.

Our system cooperates the simulated character with the human operator for the
required task and, in the meanwhile, mimics the motion style of the operator. Additionally,
the motion synchronization of teleoperation is achieved in this work. Our framework can be
implemented online in real-time with public physic engines without any inverse dynamics’
knowledge and preprocessing requirement. No offline optimization or learning methods
are needed. To our knowledge, there is currently no synchronized teleoperation system
that has all these features as well as aiming to keep balance and style while achieving the
task motion in real-time.

Generalization is the core advantage of our framework. Specifically, it achieves
generalization across regular patterns, motion styles, and characteristic parameters.
This makes our system suitable for some interactive applications such as gaming and
rehabilitation. For example, a set of virtual exercises on top of this framework can
be designed for the diagnosis and rehabilitation of patients with impairments [9–11],
and this may also help increasingly immersive game variants improve user interest,
enjoyment, and game-playing experience [12]. Users can interactively create desired
behaviors and immediately obtain flexible, stylized, and physically simulated imitation.
In this context, a wide range of results can be achieved using our method. Under the
human-character synchronization, we demonstrate the generalization across different
balance recovery patterns and different walking styles. They are the integration of
standing, balancing, walking, and transitions between them. Additionally, through
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the teleoperation system, our character can navigate towards a target object placed
anywhere and reach to kick it. These adapt to various fundamental motions of gaming
and rehabilitation.

Our paper is organized as follows. Section 2 reviews the relevant works and Section 3
gives a human-style analysis with the system overview. In Section 4, the Kinect motion
capture and data processing method is presented. The motion optimization based on the
reference pose with style extractor is explained in Section 5. The body balance and synchro-
nization controller tracking the desired pose and balancing with rhythm synchronization
is explained in Section 6. In Section 7, experiments and performance details are given by
a demonstration of our system under various tasks. Finally, in Section 8, we discuss this
paper and mention a few ideas for future work.

2. Related Work

For the human-like motion animation, the physics-based controller offers an effective
way to analyze the behavior patterns by visual-captured data and create the corresponding
motions with balance and adaptiveness in the simulation. In recent decades, researchers
worked on imitating the behavior patterns by mainly three modes as follows.

The first mode is to standardize a single regular motion pattern, and propose models
and control strategies for it. Most previous works of this mode focus on walking control
strategies [6,13–18] to achieve a robust, stable, and generalizable walking performance
in physics-based simulation. Models are used to simplify the joint actions from the high-
dimensional humanoid structure, and controllers are provided to compute the dynamics of
these models. The inverted pendulum model (IPM) [13] is mainly designed for a humanoid
walk, on behalf of the knee-unbent and slow speed feature of walking. Work in [14] pro-
vided a strategy to extract the IPM from the whole body to automatically adjust the desired
motion and produce an adaptive walk by the velocity-driven torque method. Although it
achieved effective foot placement planning, the constant length of the IPM makes it hard to
be used in the humanoid multi-motion control. Many works have developed this model
by adding different elements such as the linear inverted pendulum model (LIPM) [15],
momentum-mapped inverted pendulum model (MMIPM) [16], double inverted pendulum
model (DIPM) [17], or inverted-pendulum-based abstract model (IPAM) [18]. Although
these works showed good performances of extending the walking motion to other types
of motion, they are limited to performing standardized motion patterns and were hard to
express the style types of one pattern.

The second mode chooses befitting dynamic solvers to optimize the desired actions.
Since humanoid actions involve high-dimensional joint groups, which will lead to complex
and nonlinear dynamics of the action model, some algorithms are served to solve this
problem. For example, there are the covariance matrix adaption (CMA) [19], sequential
least-squares quadratic programming (SLSQP) [20], or iterative Linear Quadratic Gaussian
(iLQG) [21]). Others seek to solve this problem by simplifying and pre-linearizing the
complex model, such as the quadratic program (QP) in [6,7,22]. However, with a large
number of samples and iterations, these methods remain computationally expensive and
time-consuming for high-dimensional systems, which could cause problems for some
applications that require fast and real-time responses.

The third mode adopts the kinematic balance strategy to correct the reference
motion and show the feasibility by using penalty-based controllers. This mode is not
limited by the characteristic simplified models, and can generate various gaits and
styles of behavior patterns with low computational costs. A famous kinematic penalty-
based controller is SIMBICON [2], which adopts a linear feedback-penalty framework
to adjust hip joint torques directly by the stance foot position error and COM velocity
error. This framework, for its intuition and high efficiency, has been widely used in
researches [8,23–25]. Typically, the GENBICON [3] strategy developed the SIMBICON
by an IPM pose design for foot placement and a transposed Jacobian virtual torque
control (VTC) for COM velocity tuning. However, these works discriminately resolved
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the original data to partial joint trajectories and smoothed them for the pose design so
that they filtered out the connotative style elements in the data. In this case, work in [8]
improved the GENBICON by adding a style extractor with the COM velocity curve and
step width for a walking pattern. This work has proved the effectiveness of a high-level
style feature extractor for the style mimicking issue.

Our work shares some methods of these works. These methods have demonstrated
the ability to perform balanced, robust, and stylized motions, like penalty-based cor-
recting strategies [2] for joint angles and root orientation, IPM and LIPM in humanoid
walking balance strategy [3,16], and some pattern features of human styles [8]. Although
they have provided high anthropomorphic imitation for some motions, these works are
only based on offline mocap preparation with a repeatable control strategy process. Our
system does not require any offline preprocessing, nor does it rely on specific motion
pattern controls. We employ real-time human motion as the mocap input and propose
the teleoperation framework to improve the motion quality, and optimize it in real-time
for better tracking and style expression. Previous researches that address the real-time
motion imitation problem are limited. Many use wearable, similarly, measuring devices
involving force/torque sensors to obtain the human motion data synchronously with
different mapping methods [26–29]. Different from them, we only use the visual camera
to explore a larger motion space and more free movement. Work in [30] employed the
Kinect sensor and proposed a topple-free foot strategy for real-time motion reconstruc-
tion. Our framework adds a style extractor with corresponding pose optimization for a
better style expression. Moreover, due to the different physic scales (size, shape, etc.)
between the human operator and simulated character, we optimize the time synchro-
nization of the system with the torque compensation based on the simplified model IPM
and LIPM of the human body.

3. Style-Based Teleoperation Framework under Human Behavior Analysis
3.1. Human Style Analysis

Personal behaviors express humans’ styles of consciousness for their intentions
and when finishing some tasks. Although previous works [2,3,8,20] have mentioned the
“human preference and human styles” to their control strategy, they lack a complete set
of human-style analyses for human behaviors. Therefore, to systematically summarize
the characteristic of humans’ styles, we propose a human-style analysis in this section.
We divide these styles into two parts: (1) the styles of the task motions and (2) the styles
of balancing when finishing these motions. Table 1 demonstrates humanoid joints and
features that represent balance and style. On the one hand, we determine there is a
relatively strong correlation between the hip and shoulder joints and the active balance
part, because humans tend to use these joints to recover balance when disturbed [31].
For example, when one is leaning back or forward, he prefers to wave his arms forward
or back and adjust his pelvis position by the hip joint and therefore adjust the COM
position [32] for balance recovery. Many hip and shoulder joint controllers [2,20] were
also proposed for humanoid active balance to maintain stability among the target mo-
tion. Besides, the rest joints of the limbs are adjusted to assist the active balance for
a more conformable recovery. On the other hand, expressive high-level style features
are extracted from the behaviors. In this paper, we employ the foot orientation, leg
motion plane, and arm motion plane as key features of expressive style inspired by [8].
This work demonstrates the style-mimicking capability of human walking, considering
the swing leg plane and swing ankle trajectory. Moreover, human behavior is mainly
characterized by the position and orientation of the hands and feet. The hands’ position,
feet position, and COM’s heading and position are denoted as target-based style to
help the human achieve the goals. Based on these analyses, we present a style-based
teleoperation framework in this paper.
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Table 1. Human preference for joint and link usages.

Balance Style

Hip
Active Balance

Feet orientation

Expressive StyleShoulder Leg Motion Plane

Knee

Conformable Balance

Arm Motion Plane

Elbow Hands’ and Feet Position

Target-based StyleAnkle COM Heading
and PositionWrist

3.2. System Overview

Our style-based teleoperation framework seeks to rebuild the human’s motion on
the character while keeping the motion style described above. The style elements are
considered in different modules to achieve a responsive and smooth, stylized and balanced,
interactive and synchronous movement task for the character.

This framework consists of three main components, as shown in Figure 2: Kinect
motion capture and data processing, motion optimization, and body balance and synchro-
nization controller.

Kinect motion capture and data processing component captures the operator’s mo-
cap data in real-time with 3D human body parameters’ measurement from the environ-
ment. This measurement pre-prepares the link lengths and masses of the operator’s body.
The pose angles with its COM of the mocap data are then smoothed by the interpolation
and filter algorithm for a smoother trajectory and transferred to the motion optimization.

Given the smoothed data, the motion optimization component firstly annotates it
with states and extracts its style features. Then the style-based pose optimization module
optimizes the reference data with the constraints of style features and lower-body simple
model map is improved by the famous IPM to a feasible and style pose. This modulation
reduces the unstable visual recognition error and the pose error owing to the characteristic
differences between human and character while maintaining the expressive and target-
based style features in the motion. The balance strategy module modulates the optimized
motion by current pose feedback for the balance of the character. This module mainly
focuses on the hip joint modulation for an active balance style.

The body balance and synchronization controller firstly adopts a PID joint controller
with gravity compensation to produce a set of joint tracking torques. Then a COM and root
virtual controller (CR-VC) with model-based torque compensation is added to optimize the
output torques with the active and conformable balance for the character and the target-
based style synchronization for the teleoperation. The models that the torque compensation
used are improved from the IPM and LIPM. Finally, the virtual physics-based character in
the simulation is torque-controlled by these torques.

In a typical operation, the system works as follows. The operator generates a sequence
of motions with the understanding of the required task and the simulation scene. These
motions are captured by the Kinect motion capture module and transmitted to the character
with joint torques. Then the physics-based character simulates a balanced motion that
mimics the style of this human and successfully achieves the task. In real-time, when the
simulated character is disturbed or falls into an unbalanced state, the operator adjusts his
motion promptly to help the character recover into balance while proceeding with the
required task.

4. Kinect Motion Capture and Data Processing

The sequence of the real-time reference action of the model can be obtained with
a group of joint angles by Azure Kinect Body Tracking SDK [33] and the COM of the
human body by 3D human body parameters’ measurement. Due to the joint difference
between the Kinect model and character model, the joint angles are processed with the
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joint map between these two models. Then the processed joint angles and calculated COM
is smoothed by the data interpolation and filter program.

4.1. Joint Map between Kinect Model and Character Model

The simulated character model is different from the model captured by the Kinect
SDK. We adopt a 3D humanoid model for the character, which has 12 actuated joints with
13 rigid body parts linked to them. The joint angles are formed by a group of quaternion
orientations for ball-and-socket joints and angles for revolute joints relative to their parent-
link coordinate frame, and the position and orientation of the root link relative to the world
coordinate frame. The joint map between the Kinect model and the character model is
shown in Figure 3a. Some invalid joint angles (red-dotted circles) from the Kinect model
are ignored due to its captured limitation [30] and some redundant degree of freedoms
(DOFs) for the simulated character. Thereinto, the ankle joints are calculated by the motion
optimization for their style features detailed in Section 5.3.
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Figure 3. (a) Joint map between the Kinect model and character model; (b) The coronal plane
projected by the point cloud of the human body. In (a), the diagram of Kinect tracking joints with
point cloud body is on the left and that of the 3D character model is on the right. Corresponding
joints with DOF are listed in the blue blocks, and links are listed in the orange boxes. In the Kinect
body diagram, the valid joints for our system are marked by red-yellow circles, and invalid joints are
marked by red-dotted circles. The orientations of these joints are tracked relative to their parent-link
coordinate frame. The root (pelvis) link with the black circle is tracked relative to the human world
coordinate to determine the human position and heading. In (b), the point cloud is divided into
different link parts with the corresponding joints by blue lines.

4.2. 3D Human Body Parameters’ Measurement

Due to the uneven link mass distribution of the human body, we provide the 3D human
body parameters’ measurement, which contains link length and mass estimation, and COM
calculation of the human body, for the Kinect motion capture. The measurement method
firstly employs the joint positions and voxel point cloud of the human body. They are
pre-estimated by the Kinect Body Tracking SDK as shown in Figure 3b. In this module, the
length Li of each link i is denoted as the distance between two neighboring joint positions:

Li =
∣∣∣pJ

i − pJ
i−1

∣∣∣ (1)

where pJ
i is the pre-estimated joint position of the link i.
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Since human mass is approximately linear to the human volume with uniform den-
sity [34], the mass mi of link i of the human body is defined by:

mi = mtotal ∗ vpi (2)

where mtotal is the given total mass of the human body and vpi is the volume proportion of
link i which is the ratio of the link volume to the total volume.

We provide a micro-element method that accumulates abundant micro cuboids to fit
the total volume of the human body. In this point cloud, the thickness of the human body
along the human sagittal axis is used as the height of the cuboid. The distance between
the point at the front side pc f and the corresponding point at the back side pcb is set as the
thickness of the body. We define the front side point pc f which can overlap the back side
point pc f at the coronal plane. The point cloud in Figure 3b is the coronal plane section
projected by the human body. The minimum thickness tpc between pcb and pc f is given by:

tpc =
∣∣∣pc f − pcb

∣∣∣ (3)

On this coronal plane, four neighboring points
[
pcx,y, pcx+1,y, pcx,y+1, pcx+1,y+1

]
are

connected as a cross-section for a micro cuboid. We define the pcx,y as the position of the
point at the xth row and yth column of point cloud. Therefore, the volume of this micro
cuboid vcubx,y is calculated by:

vcubx,y =
(
pcx+1,yx − pcx,yx

)
·
(

pcx,y+1y − pcx,yy

)
·tpc (4)

where pcx,yx , pcx,yy are position on the x and y axis of the point at the xth row and yth
column of point cloud, respectively.

Cuboids are traversed in the point cloud and the volume of these cuboids are summed
up to calculate the whole volume of the human body vtotal :

vtotal =
n

∑
x,y=1

vcubx,y (5)

Similarly, the volume vi of each link i is calculated with the corresponding part of the
point cloud of the human body. The point cloud can be divided into different link parts
by the corresponding joint positions. Additionally, the volume proportion vpi of link i is
therefore determined.

Finally, the COM position pCOM of the human body can be calculated:

pCOM =
n

∑
i=1

vpi·pL
i (6)

where pL
i is the COM position of link i recognized by Kinect SDK.

Table 2 enumerates the parameters of the links of the character model and human
model and their relationships. The parameters of human model are obtained by this mea-
surement method, and the parameters of character model are measured in the simulation.
Obviously, the mass proportions of these links of the character model are different from
that of the actual human model. For example, the torso mass proportion of the character
model is 31.11% while that of the human model is 13.6%. Furthermore, this difference may
lead the teleoperation experiment to an unpredictable motion failure. The style-based pose
optimization and COM and root virtual controller in this paper can help avoid this failure,
and ensure a balanced and stable movement.
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Table 2. Link parameters of the character and human model.

Link Name
Character Link Attributes Human Link Attributes

Mass (kg) Size (m) Mass (kg) Size (m)

Pelvis 6.0 Sphere Radius 0.09 19.8 Radius 0.17

Torso 14.0 Sphere Radius 0.11 10.3 Radius 0.15

Head 2.0 Sphere Radius 0.10 5.7 Radius 0.09

Upper Arm 1.5
Radius 0.05

2.0
Radius 0.08

Length 0.18 Length 0.20

Lower Arm 1.0
Radius 0.1

1.2
Radius 0.1

Length 0.14 Length 0.20

Upper Leg 4.5
Radius 0.06

11.5
Radius 0.09

Length 0.30 Length 0.40

Lower Leg 3.0
Radius 0.06

3.3
Radius 0.40

Length 0.31 Length 0.40

Foot 1.0

Length 0.18

2.0

Length 0.30

Width 0.08 Width 0.10

Height 0.05 Height 0.06

4.3. Data Interpolation and Filter

The data interpolation and filter module can smooth the obtained joint angles and
COM. Figure 4 shows the details of this module strategy. Joint angles are filtered by the 1€
filter (“one Euro filter” [35]) (in this paper, named as the joint filter). The COM is filtered
by the floor filter. Considering the update frequency difference between the Kinect mocap
SDK and the following control loop, we use a time-varying interpolation method to avoid
stepped discrete data.
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The interpolation interpolates each joint angle to reach the next mocap data from
the past. For example, at each step i of control loop under step n of mocap module, the
interpolated angle qitp

n,i+1 for next step {n, i + 1} is given by:

qitp
n,i+1 =

(
qre f

n+1 − qitp
n,i

)
ki + qitp

n,i , k =
fmcp

fitp
(7)

where qre f
n+1 is the reference angle for step n + 1, qitp

n,i is the interpolated angle for step {n, i},
and k is the number of interpolations, which equals the update frequency of the mocap
module fre f over that of the control loop fitp.

Figure 5a shows the interpolation performance (green line) of the elbow angle. It
yields a smooth trajectory connecting all the reference points (blue line), which ensures a
smooth transition at all point corners.
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The joint filter is a first-order low-pass filter with an adaptive cutoff frequency. It is
suitable for the real-time Kinect joint sensor smooth because it can let the desired low-
frequency human motion pass through [35] while cutting off the high-frequency signal
noises with only two tuning parameters (β and fcmin in Equation (8)). The angle for an
elbow joint of Kinect-captured data, the interpolated data, and the joint-filtered data are
represented with {β = 1, fcmin = 1} in Figure 5a. With high computational efficiency and
few tuning-process requirements, this joint filter strategy shows the responsiveness and
smooth transition as the red line.

q f lt
i+1 =

(
qitp

i+1 +
t

Te
q f lt

i

)(
1

1+ t
Te

)
t = 1

2π fC

fC = fcmin + β

∣∣∣∣ q f lt
i+1−q f lt

i
Te

∣∣∣∣
(8)

where q f lt
i+1 and q f lt

i are respectively the filtered reference angle for step i + 1 and i, qitp
i+1 is

the interpolated angle from Equation (7), Te is the sampling period of the control loop, t is
the time constant with the cutoff frequency fC, and the intercept minimum frequency fcmin
and the slope β are two tuning parameters detailed in [35].

Contrary to the high precision requirement of joint angle capture, the COM data
capture is used for humanoid balance and thus requires relatively low precision but high
stability. Therefore, we provide a floor filter for the computed COM trajectory. A threshold
value is set for the floor range of the filter. Figure 5b shows the example of the COM
smooth process using the floor filter with interpolation. The floor threshold is set as 0.01 m.
The stable trajectory is conducive to the following adjustment for the humanoid balance in
the following sections.

5. Motion Optimization

Although the above module has offered smoothed motion data, these data have yet
to be improved to fit the character. Due to the limited accuracy of Kinect motion capture,
operator behavior’s unpredictability and the characteristic differences between human
and character, some motion data produced by the operator may not be suitable or even
feasible for the controlled character. This section provides a motion optimization to not
only make the data suitable for the current character but also inherit the style features from
the operator. This optimization can be described in terms of four parts: motion states and
state transitions, style feature extractor, style-based pose optimization, and balance strategy.
Each of them is described in further detail.
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5.1. Motion States and State Transitions

Humans always behave when standing with single leg or double legs. We adopt the
finite state machine (FSM) [2] to annotate the reference action with three states: left stance
(LS), right stance (RS), and double stance (DS). These states are defined by the desired
foot-ground contact of the human operator. If the vertical height difference between the
left and right foot is within a threshold error, this pose is annotated as two foot-ground
contacts with the DS state. If the vertical height of the left foot is higher than the right
and the difference is larger than the threshold, the pose is annotated as right foot-ground
contact with the RS state. Otherwise, it is the LS state.

The transition between these states in Figure 6 is similar to the previous papers [2–4].
As in the LS or RS state of human motion rhythm, the swing foot of the character may
contact the ground earlier or later than the action changes the state. If the actual contact is
earlier, the transition from LS or RS state to DS state is immediately triggered. If the actual
contact is later, the current reference pose is kept until the character achieves the contact
and changes the state.
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5.2. Style Feature Extractor

Based on the human style analysis in Section 3.1, high-level style features are extracted
from the smoothed reference pose. The style feature extractor describes the human char-
acteristic that constitutes the majority of both expressive and target-based style features.
These features are the twist of ankles that determine the foot orientations, the leg motion
plane normal curves, the relative position between the feet and COM and the heading of
COM. Therefore, the style feature extractor set is denoted as F = {Tl , Tr, Nl , Nr, Pcl , Pcr, H},
which contains the twist angle of the left ankle Tl and right ankle Tr along the axis of the
lower leg, the motion plane normal curves of the left leg Nl and right leg Nr, the vector
from the COM to the left ankle Pcl and right ankle Pcr, and the heading of COM H. In
this set, the ankle twist angle is extracted from the vertical axis of the ankle quaternion of
the given pose. The motion plane of the leg is formed by the human upper leg and lower
leg, so the normal curve of this plane should be perpendicular to the vector of both the
upper leg and lower leg. The heading of COM is obtained by the vertical axis angle of the
orientation of the root link.

These extracted features are delivered into the relevant modules with the following
sections. Since they are extracted in the online experiment, the style feature set F is time-
varying according to the real-time movement of the human body.

5.3. Style-Based Pose Optimization

As mentioned above, the real-time reference data may not be easy to follow by the
character at the current pose. Directly transmitting this data to the torque controller may
cause an unpredictable disturbance that leads to a stable failure for the character. It often
happens when a character stands on the ground with DS state. Figure 7a indicates that the
character at the current pose cannot reach the reference pose without slipping or changing
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its stance state. In this case, we propose the style-based pose optimization to make it
feasible while maintaining the style features of this reference pose at the same time.
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Figure 7. Representation of style-based pose optimization: (a) The generation of the optimized leg
pose; (b) Lower body retargeting law with simplified models. In (a), the color model represents
the current pose, the blue shadow model represents the reference pose and the red shadow model
represents the optimized pose. Nlc represents the motion plane normal curve of the left leg of the
current pose and Nl represents the motion plane normal curves of the left leg of the reference pose.
The optimized pose model lands on the foot positions of the current pose with stability and inherits
the leg style features from the reference pose.

Firstly, the relative positions between the human ankle and pelvis links are calculated
to simplify the human lower body as two connected IPM models, and the pelvis position
relative to the character feet for the character’s lower-body simple model is then linearly
retargeted with the human’s model. Figure 7b represents the retargeting law. The positions
of the character’s left and right ankles are fixed by the current pose, and the position of
the character’s pelvis is calculated accordingly. The vertical height (the z position) of a
character’s pelvis ppC_z is scaled by the difference between the size of human and character:

ppC_z = hC =
HC
HH
·hH (9)

where hC and hH are the height of character’s and human’s lower-body, and the HC and
HH are the given height of character and human model, respectively.

The horizontal position (the x and y position) of the pelvis ppC relative to the left ankle
palC and right ankle parC is defined by the relationship between dlH and drH : ppC_x = palC_x + (parC_x − palC_x)·

dlH_x
drH_x

ppC_y = palC_y +
(

parC_y − palC_y

)
· dlH_y

drH_y

(10)

Once the character’s simple model is determined, it becomes a three-dimensional
inverse kinematics (IK) problem to calculate the optimized hip and knee orientation, which
has an infinite number of solutions. As mentioned by study [8], this problem can be
constrained to a unique solution by specifying the signed inverse kinematics plane. We
employ the plane normal curves by the leg motion plane normal curves N ∈ {Nl , Nr} of
features set to determine the inverse kinematics plane. It converges the three-dimensional
IK problem to a two-dimensional IK problem with one unique solution. Figure 7a displays
the optimization process of the hip and knee orientation of the character. The reference
pose in blue shadow is optimized to the red shadow pose, which shows the operability and
style inheritance.
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Lastly, we calculate the target foot heading with the foot style feature T ∈ {Tl , Tr}.
Generally, the contact foot should be smoothly parallel to the ground for the full foot
landing requirement. After the foot orientation is decided, the ankle orientation is accord-
ingly computed by the quaternion difference between the lower body orientation and
foot orientation.

5.4. Balance Strategy

Human balance behavior heavily relies on the root orientation and hip joints. We
adopt the SIMBICON [2,4] modulation law to the root and hip joints.

In our system, for the balance of character motion, it is better to keep the transverse
plane of the character body parallel to the ground. Therefore, the root link orientation in
the X and Y axis is defined parallel to the X-Y plane of the world coordinate, and the root
link orientation in the Z-axis equals the heading of COM {H}.

The hip joints are also modulated according to the character motion. In the LS and
RS state, for 3 DOF stance hip joints, the desired angle qd_sth is modulated by the reference
stance hip joint qr_sth, and the current stance hip joint qc_sth with the weight w0:

qd_sth = qw0
r_sth·q

1−w0
c_sth (11)

For each DOF swing hip joint, the balance modulation is applied to desired swing hip
joint angle qd_sw as:

θd_sw = θr_sw + cd

(
dd − d f

)
+ cv

(
vd − v f

)
(12)

where θr_sw is the reference swing hip joint angle, dd is the desired horizontal movement
distance, d f is the horizontal feedback movement distance from simulation, vd and v f are
the desired and feedback horizontal velocity of COM, and cd and cv are the gain parameters
referring to [2], respectively.

6. Body Balance and Synchronization Controller

The physics-based character in the simulation is controlled by the joint torques. This
component computes the desired joint torques to keep the motion balance and synchro-
nization for the character. The control scheme is detailed in Figure 8. A PID joint controller
with gravity compensation is adopted for the desired joint tracking performance. And a
COM and root virtual control (CR-VC) strategy with model-based torque compensation is
proposed for torque optimization. This strategy maintains the active and conformable bal-
ance by adjusting the corresponding joint torques. The model-based torque compensation
employs the target-based style features of building models and compensates the torques,
keeping the time synchronization of the system.
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6.1. PID Joint Controller with Gravity Compensation

A close-loop discrete PID joint tracking controller is implemented with gravity com-
pensation. For each joint DOF at each timestep of simulation, the desired joint torque is
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tuned with angle position feedback to enable accurate tracking performance. A discrete
controller is implemented with a PID algorithm by:

τPID(t + 1) = Kp [qd (t + 1 )− q f (t ) ] + Ki
t

∑
1
[qd (t + 1 )− q f (t ) ]

+Kd { [qd (t + 1 )− q f (t ) ]− [qd (t )− q f (t− 1 ) ]}
(13)

where τPID is the generated desired joint torque, qd is the desired joint angle from
Section 5, q f is the actual joint angle feedback in the simulation, and Kp, Ki, Kd are the
PID gains, respectively.

Since the tracking performance of the controller will be influenced by the humanoid’s
gravity, a gravity compensation module is added to pre-compute the compensation torque
to the motion tracking controller. We adopt a transposed Jacobian method [3], which
employs the virtual inverse gravity force as compensation. For each link i, the virtual force
fi = −mig is applied to the COM of the link. Then the fi is transposed to the torques τgi by:

τgi = JT
i fi (14)

where JT
i is the Jacobian of the COM for a chain of links from the root link to the link i with

respect to joint angle qd, thus τgi is computed as a group of torques applied to the joints
between the root link and the link i.

To sum up the virtual force of all links, the total compensation force is:

τg =
n

∑
i=1

JT
i fi (15)

6.2. COM and Root Virtual Controller (CR-VC)

Generally, researchers [2–5] control the root position and orientation to ensure the
robustness and balance of the high-dimensional character that has a “floating base” [36].
In this paper, the character base is defined as the pelvis link. We propose a COM and root
virtual control (CR-VC) strategy for the balance of the character. Thereinto, the COM virtual
force controls the position of the pelvis and the root virtual torque controls the orientation
of the pelvis. Both virtual force fr and torque τr are computed by the PD control strategy as
Equation (16). Since the root of the character is a floating base, the virtual torque can only
be realized using internal torques [2] and distributed to the stance hips of the character:{

fr = Kpv f ·epr
+ Kdv f ·e .

pr
τr = Kpvt·eqr

+ Kdvt·e .
qr

(16)

where epr
and e .

pr
are the position and position velocity error represented in the following

section, eqr
and e .

qr
are the orientation and orientation velocity error of the pelvis, and Kpv f ,

Kdv f , Kpvt, and Kdvt are the PD gains for the virtual force and virtual torque, respectively.
The virtual force fr is transposed into the corresponding joint torques, similar to

Equation (14):
τfr = JT

r fr (17)

where JT
r is the Jacobian of the COM for a chain of links from the pelvis to the stance foot,

thus τfr is computed as a group of torques applied to the joints between the root link and
the stance foot.

In conclusion, the set of the body balance and synchronization control torques for the
character is:

τd = τPID + τg + τr + τfr (18)
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6.3. Model-Based Torque Compensation for the CR-VC

Due to the high-dimensional humanoid structure, the computation of the character
model is needed to be simplified for the CR-VC method. Since humans often double-stand
under a quasi-static state and walk parallel to the ground, we adopt the famous IPM to
simplify the human DS motions and LIPM for human RS and LS motions. Figure 9a,b
shows the maps of the IPM and LIPM model between the human operator and character.
Both IPM and LIPM are composed of a point mass and a massless segment connecting this
point mass to a ground contact point. The massless segment is generated by the target-
based style vector Pc ∈ {Pcl , Pcr} from the style feature extractor set. The virtual force of
the CR-VC method with the position error epr

and velocity error e .
pr

of the character’s COM
is calculated with these models: {

epr
= pCC − p′CC

e .
pr

=
.
pCC −

.
p′CC

(19)

where pCC is the desired and measured COM position of the character model scaled by
human’s COM position, p′CC is the measured COM position of the character model,

.
pCC

and
.
p′CC are the corresponding velocities, respectively.
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The mathematical details of the IPM and LIPM have been provided by many previous
works [13,15]. Different from them, we added an ankle link at the bottom of each model,
because sometimes it is necessary to consider the ankle torque for maintaining the balance
of humans. The IPM in Figure 9a indicates the necessity. When the operator stands, he or
she may not be exactly vertical to the ground. Therefore, the reference standing angle θ
may not be 90◦ and a rotation component force produced by gravity occurs. To compensate
for this force, an ankle torque τam is added to the controller:

τam = mCg cos θLC = mCgdC (20)

where mC is the total mass of the character and dC is the horizontal distance of the natural
length LC of the IPM.

Besides, compensation for the virtual force of the CR-VC method is also needed on
account of the unstable nature of the LIPM. As mentioned above, the physical scales of
character and human operator are always different from each other. The linear natural
frequencies of the LIPM of them are also different. This will cause different motion rhythms
when the operator controls the character and disturbs the teleoperation [15]. To unify
the rhythms of different models with different physical scales, the time synchronizing
compensation for LIPM mapping is proposed.
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In Figure 9b, the equation of motion for the LIPM is given by:

pai = pCi −
..
pCi
w2

i
, i = C, H (21)

where pCi is the horizontal position of COM, pai is the horizontal position of the center of
pressure (CoP), wi =

√
g/hi is the linear natural frequency of the LIPM, and i indicates the

character or the human model. In the LS and RS state, the CoP is defined as the horizontal
position of the ankle joint, and wi governs the characteristic time response of this model.

Previous works have studied that if two motions can be made identical by multi-
plying all lengths by a ratio and all forces by the same ratio [37], they are defined as
dynamically similar. It requires both the operator and character to match their COM po-
sitions as well as their first- and second-order derivative simultaneously [15]. Due to the
unactuated characteristic of LIPM, matching these may generate infeasible trajectories
with different natural frequencies. For example, when pCH

hH
=

pCC
hC

, LIPM mapping law

produces
..
pCH =

..
pCC by Equation (21). However, it should be

.
pCH
hH

=
.
pCC
hC

and
..
pCH
hH

=
..
pCC
hC

to
achieve the synchronization of the mapping motion.

To achieve the match, we add a root virtual force fcrv for the CR-VC to minimize

the difference between the desired acceleration
..
pCC =

..
pCH
hH
·hC and the actual acceleration

..
pCC =

..
pCH.

fcrv = mC

( ..
pCH
hH
·hC −

..
pCC

)
(22)

Substituting Equation (21) into (22):

fcrv = mCg
(

pCH − paH
hH

· hC
hH
− pCC − paC

hC

)
= mCg

(
ddH
hH
· hC
hH
− ddC

hC

)
(23)

6.4. Movement Boundedness of the CR-VC

Due to the limited length and width of the footplate, there exists movement bounded-
ness for the CR-VC method in our system.

It is intuitive that for the DS state, the projection of pCC on the ground should be
located in the standing area. Therefore, the tilting horizontal distance dC of IPM should be
less than the minimum of the length and width of the footplate:

dC < min (L f , W f ) (24)

Besides, in LIPM, the rotation component force fτca
crv = fcrv sin θ is produced from the

virtual compensation force fcrv. This component force is perpendicular to the link LC, and
is actually applied to the ankle joint according to Figure 9c. The corresponding ankle torque
τca is generated by Equation (25):

τca = fτca
crvLC = fcrvhC (25)

However, to avoid foot flipping, the ankle compensation torque should be less than
the footplate flip force τflip:

τca < τflip (26)

τflip = mcgd f , d f = min (L f , W f ). (27)

Substituting Equations (23) and (27) into (26), the walking distance ddC of the character
is calculated as bounded with respect to the human-character size scale:

ddC <
d f

hC
hH
− 1

(28)
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7. Experimental Results
7.1. Experimental Platform

The effectiveness of our teleoperation framework is demonstrated with the experi-
mental platform in Figure 10. The operator in the platform generates the motions with the
understanding of the required task and the reaction to the simulation environment on the
screen. The computer captures the human motion data from the Azure Kinect camera and
produces the joint actuating torques for the character by this data. Then the performance of
the controlled character is displayed on the screen and as visual feedback for the operator.
This platform validates the human-character motion teleoperation performance via visual
feedback and the framework controller.
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Figure 10. The teleoperation experimental platform.

All simulations were run on a computer with an Intel Core i5-8600K CPU, 16G memory.
The PyBullet physics engine [38] is used for the forward simulation and supplied as visual
feedback with the gravity constant G = 9.8 m/s2 and integration time step 1/600 s.
The ground reaction is modeled as a damped spring with spring coefficient 30, 000 N/m
and damping coefficient 10, 000 Ns/m and friction coefficient 0.9. The update frequency
of the Kinect motion capture is 16 Hz, and the update frequency of the following control
loop is 133 Hz. The mass of the character model is 45 kg, and the height is 1.62 m. The link
attributes of the operator and character are listed in Table 2.

7.2. Parameter Settings

In this paper, the PID feedback gains are manually tuned with the fixed root link. We
repeat this tuning procedure for all DOFs of the joints. (1) Ramp responses are considered
to test PID gains in the range of the operating angles. The slope of the ramp function
for each joint is set as the maximum slope value of the reference trajectory of this joint.
(2) Samples of PID are tested and the total position error of the tracking performance is
summed. The corresponding PIDs with the minimum error are selected as the suitable
value. The parameter results are displayed in Table 3. The PID gains of the upper body
joints are approximately related to the mass of the corresponding links while the gains of
lower body joints achieve stable tracking performance. The cd and cv are relatively small in
our system. To better demonstrate the applicability of our teleoperation system, we set cd
and cv equals to zero in the following experiments.

Another gain parameter set is for the CR-VC method. The CR-VC parameters are
tuned to minimize the COM difference between the operator and the character when
they double-stand on the ground. Since the stability of root orientation is much more
important than others, the gains for the virtual torque are set higher to reach a stronger
control. These parameters are only tuned once at the beginning. Under a feasible range
of motion behaviors, our framework is not particularly sensitive to these values. With
different motion behaviors and different human operators, the following experiments all
adopt this set of parameters and successfully finish the tasks.



Sensors 2022, 22, 1457 18 of 25

Table 3. Gain parameters of our system.

Joint Name
Gain Parameters of PID Controller

Kp Ki Kd

Chest 2500 40 36

Neck 30 5 3

Hip 500 100 20

Knee 360 72 20

Ankle 60 15 2

Shoulder 60 15 7

Elbow 60 15 1

Virtual Compensation
Gain Parameters of CR-VC

Kp Kp

Virtual Force 50 30

Virtual Torque 5000 1000

7.3. Remarks for Teleoperators

Before the experiment, there are a few remarks that should be kept in mind for the
operator when applying the teleoperation. These are as follows.

1. The motion data captured by the Kinect camera should be unabridged, so the op-
erator should act more than two meters away from the camera for the whole-body
motion capture.

2. While walking, the operator’s lower body needs to be kept bent to satisfy the LIPM
simplification of the pose optimization and the feasibility of its IK solution.

3. When the operator double-stands on the ground, the COM should be landed in the
standing area to avoid foot flipping.

4. The stepping length of the operator is bounded by Equation (28).
5. High dynamic motions, of which models conflict with IPM or LIPM, should be avoided.

7.4. Experiments

To validate the proposed framework, we analyze the system performance when the
human operator interacts with the simulated character. First, we evaluate the human-
character synchronization performance with the CR-VC torque compensation. Next, we
show how the operator manipulates the character, and the character follows to achieve
different tasks with patterns and styles. Finally, we display the generalization of our system
with different operators and some model-unsuitable motions.

7.4.1. Teleoperating under Human-Character Synchronization

We evaluate the synchronization performance of our system in this section. Due to the
size, shape, and link attribute differences between the operator and character, the problem
in Section 6.3 may occur without the CR-VC torque compensation in the teleoperation.
Figure 11a represents the uncompensated situation. When the operator treads down his
left foot (blue line) and the human state transits from the RS state to the DS state (green
line), the character’s COM and the state transition (yellow line) could not catch up with
the human’s in time due to the physical difference. This delays up to 0.798 s and causes
a huge disturbance for the following control. Through the experiment, the character
falls within 3 steps. Whereas, in Figure 11b, the compensation torques adjust the CR-VC
torques calculated in real-time, the character’s COM can follow the human’s COM and
the maximum delay of the state transition is lower than 0.172 s. Since the human visual
processing response time is approximately 200~250 ms [39], the system with this delay can
achieve the task teleoperation.
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sation and (b) within torque compensation.

7.4.2. Teleoperating with Different Patterns

A distinct advantage of our system is that it allows free motions reacting to the task and
environment, which are dependent on the operator’s personal wills. The comprehensive
analysis is generated by the operator and the simulated character only needs to follow
the operator’s motion to achieve his will. We demonstrate this advantage with a balance
recovery experiment in comparison with previous works. Although the robustness of the
simple balance strategy has been proved in [1–3,8], their balance recovery performance
heavily relies on the current state of character motion. Most of them require the character
to be at the continuously stepping state when being pushed. However, our character can
bear the interrupt push at any time state, including the standing state. Moreover, it can act
with different patterns to recover the balance according to the current disturbing situation.

Figure 12 shows two recovery patterns responding to the current disturbance. When
the character stands on the ground with double legs, it gets hit by a football and tends to
fall. The operator in real-time moves himself to manipulate the character return to balance.
The operator in Figure 12a,b controls the character returning to the normal stand by lifting
its leg to adjust its COM. In detail, when the operator sees the ball coming and hitting
the character, he initiatively lifts his left leg and adjusts the leg landing position with the
observation of the character’s pose. The system in real-time changes the stance state of
the character and actuates it to follow the motion of the operator. When the character
successfully steps his left foot, the operator then lifts his right leg to achieve a more stable
standing pose for the character. The COM adjusting trajectory of this recovery experiment
is drawn in Figure 12a, and the state transitions and the sequential shots of the system
operation are given in Figure 12b. Figure 12c,d displays another recovery strategy pattern,
that is, waving its hands for the character to recover balance. When the ball hits the
character in the front direction, the character tends to fall back. At this time, the operator
waves his hands. The character is actuated following the operator’s pose and successfully
holds its body as a result. Figure 12c draws the COM of the character adjusted back to
the feet-supporting plane with stability. Results of these tasks show the robustness of our
teleoperation system and it can adapt to different scenarios by different recovery motion
patterns. Moreover, the state transition can be controlled by the operator to achieve the
stepping recovery strategy without transition preprocessing, which is another advantage
of our system.
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Figure 12. Recovery experiments with two patterns responding to the ball push: (a) The COM
adjusting trajectory (blue line) within 4 steps. Four steps are the light blue trapezoids at the first
double stance state DS1, the deep blue trapezoid at the right stance state RS, the light red trapezoid at
the left stance state LS, and the orange trapezoids at the second double stance state DS2; (b) Snapshots
of the balance recovery process by initiatively stepping; (c) The COM adjusting trajectory (blue line)
with the trajectories of the left hand (purple line) and right hand (green line); (d) Snapshots of the
balance recovery process by waving the hands.

7.4.3. Teleoperating with Different Styles

To demonstrate the style mimicking capability of our teleoperation system, we design
the walking experiments with different walking styles by the operator. They are normal
walk, sneaky walk, and swagger walk. The results of these experiments reveal that our
system is capable of mimicking different styles of the operator’s motions in real-time. In the
experiments, the operator moves with the understanding of the required walking motion
and the simulation scene, and the character follows the motions captured by the operator.
The sequential shots of the teleoperation in Figure 13a,c,e show the teleoperating processes
and the COM trajectories are drawn in Figure 13b,d,f, respectively. These results indicate
that our system satisfies a compromise between keeping balance and mimicking different
walking styles in real-time. Figure 14a draws the horizontal component of motion plane
normal curves of the right leg Nr in the character’s walking motion with different styles.
The swagger motion displays larger horizontal change and the sneaky motion displays
lower. The corresponding ankle heights in Figure 14b represent larger stepping impact



Sensors 2022, 22, 1457 21 of 25

with larger stepping velocity vibration in swagger walk (green line), and lower stepping
impact with lower stepping velocity vibration in sneaky walk (black line).

Sensors 2022, 22, x FOR PEER REVIEW 21 of 25 
 

 

our system is capable of mimicking different styles of the operator’s motions in real-time. 
In the experiments, the operator moves with the understanding of the required walking 
motion and the simulation scene, and the character follows the motions captured by the 
operator. The sequential shots of the teleoperation in Figure 13a,c,e show the teleoperating 
processes and the COM trajectories are drawn in Figure 13b,d,f, respectively. These results 
indicate that our system satisfies a compromise between keeping balance and mimicking 
different walking styles in real-time. Figure 14a draws the horizontal component of mo-
tion plane normal curves of the right leg 𝑁  in the character’s walking motion with dif-
ferent styles. The swagger motion displays larger horizontal change and the sneaky mo-
tion displays lower. The corresponding ankle heights in Figure 14b represent larger step-
ping impact with larger stepping velocity vibration in swagger walk (green line), and 
lower stepping impact with lower stepping velocity vibration in sneaky walk (black line). 

 
Figure 13. Walking experiments with different styles: normal, sneaky, and swagger. (a,c,e) the snap-
shots of the normal walk, sneaky walk, and swagger walk teleoperation process with the operator 
and the character, respectively. (b,d,f) the COM trajectory of the character with footsteps. 

Figure 13. Walking experiments with different styles: normal, sneaky, and swagger. (a,c,e) the
snapshots of the normal walk, sneaky walk, and swagger walk teleoperation process with the
operator and the character, respectively. (b,d,f) the COM trajectory of the character with footsteps.

The COM trajectory is very important in analyzing the walking motions. Figures show
that before the walk, the COM tends to move horizontally away from the swing side as
preparation so that the swing leg can leave the ground. Furthermore, through the walking
process, the COM moves between the legs. Interestingly, the swagger motion produces a
larger facing wagging but less COM side-to-side moving distance, while the normal motion
produces a larger movement. We infer that, in a comfortable normal walk, humans tend to
walk with fewer energy costs. They may walk more like an IPM’s switching process when
alternating their standing legs rather than the LIPM’s switching process, which may cause
a larger side-to-side movement distance.
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7.4.4. Teleoperating for a Target

We also design a target-based teleoperation task to demonstrate the usage of the
target-based style features in our system. In this experiment, the operator is required to
walk forward to the front of a football and kick it with the above three walking styles.
Figure 15b shows the ability of the character to kick the ball in these walks. Through the
teleoperation, the character successfully reaches the feasible kicking area (red shadow) and,
after adjusting its COM for a while to keep the balance, kicks the football.
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Figure 15. (a) Snapshots of the football kicking process with the sneaky walk; (b) The COM trajectories
of the character with three walking styles to kick the football.

7.4.5. Generalization of the Teleoperation

Our teleoperation system can generalize across different tasks and different operators
and are able to interact with them. To demonstrate the generalization, in addition to the
walking and ball kicking motions mentioned above, we also test some tasks of which
the motion cannot be simplified by the corresponding model in this paper with different
human operators. The character controlled by our system can follow different operators
with different sizes and shapes to achieve the squat motion and jump motion, as shown in
Figure 16. After the squat and jump position, it can stand firmly back to the DS state.
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8. Discussion

We have presented a style-based teleoperation framework for motion synchronization
and style mimicking to achieve the tasks within the human-character interactions in real-
time. In this work, the human operator can help the character understand the required
tasks and percept the environment, and the character can achieve the tasks by following
the human motion while maintaining the human style and keeping adaptable balance.
The resulting motions are robust under external disturbances by different balance recovery
patterns, like changing the stance states or waving the hands, decided by the human opera-
tor. Additionally, it can mimic styles under distinct style differences with task achievement
and avoid the balance failure caused by the characteristic difference between the operator
and character. Our framework does not rely on inverse dynamics or dynamic solvers for
computation and can run in the publicly available forward simulation engines without
any preprocessing of offline optimization or learning methods. These features make our
method useful for many interactive applications such as games and rehabilitations. We
expect this system to amplify a user’s authoring effort in creating more comprehensive
behaviors based on the environment and social habits. It can be a circular chain formed by
the human secular cognition and the physics-based character animation alternatively, and
can promote the interaction and integration between them for a more anthropomorphic
virtual world.

Certain limitations still exist. There are some limitations of the operator motions in our
system. Due to the model-based torque compensation in Section 6.3, the operator motions
should fit the simplified model like the IPM in the DS state and LIPM in the LS and RS state.
This restricts the motions from high dynamic or abnormal movements. Another drawback
of our method is that it does not guarantee the motion feasibility of the character. Our
system partially relies on human perception and understanding of the current tasks and
situations. If the human is unresponsive or unskilled in operating the character, the control
performance may not be as good as it should be. Future work may involve employing a
pattern and style database to predict the next pose with respect to the required tasks and
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human pose. This can help humans control the character easier. The integration of some
strategies for solving high-dynamic motions with high computational efficiency should
be another interesting future direction. This would provide the users to create rich styles
and patterns of motion in the teleoperation. Moreover, with rich styles and patterns, multi-
person situations can be considered to create a more socialized and comprehensive strategy.
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