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Abstract: Limited-view Computed Tomography (CT) can be used to efficaciously reduce radiation
dose in clinical diagnosis, it is also adopted when encountering inevitable mechanical and physical
limitation in industrial inspection. Nevertheless, limited-view CT leads to severe artifacts in its
imaging, which turns out to be a major issue in the low dose protocol. Thus, how to exploit the
limited prior information to obtain high-quality CT images becomes a crucial issue. We notice that
almost all existing methods solely focus on a single CT image while neglecting the solid fact that,
the scanned objects are always highly spatially correlated. Consequently, there lies bountiful spatial
information between these acquired consecutive CT images, which is still largely left to be exploited.
In this paper, we propose a novel hybrid-domain structure composed of fully convolutional networks
that groundbreakingly explores the three-dimensional neighborhood and works in a “coarse-to-fine”
manner. We first conduct data completion in the Radon domain, and transform the obtained full-
view Radon data into images through FBP. Subsequently, we employ the spatial correlation between
continuous CT images to productively restore them and then refine the image texture to finally receive
the ideal high-quality CT images, achieving PSNR of 40.209 and SSIM of 0.943. Besides, unlike other
current limited-view CT reconstruction methods, we adopt FBP (and implement it on GPUs) instead
of SART-TV to significantly accelerate the overall procedure and realize it in an end-to-end manner.

Keywords: CT image reconstruction; low dose protocol; adversarial autoencoder; deep learning;
hybrid domain; spatial correlation; inverse problems

1. Introduction

Computed Tomography (CT) [1] is diffusely known as an approach to exhibit precise
details inside the scanned object [2], thus is applied to a wide range of applications including
clinical diagnosis, industrial inspection, material science and biomedicine [3,4]. In addition,
the raging epidemic caused by the Corona Virus Disease 2019 (COVID-19) has made CT
known to the public as an efficacious auxiliary technology. Nevertheless, the associated
x-ray radiation dose brings potential risk of cancers [5], which has drawn wide attention.
Consequently, the demand of radiation dose reduction is becoming more and more acute
under the principle of ALARA (as low as reasonably achievable) [6–10].

Generally, Low-dose Computed Tomography (LDCT) can be realized through two
strategies including current (or voltage) reduction [11,12] and projection reduction [13–15].
The first strategy aims to lower the x-ray exposure in each view, while it greatly suffers
from the increased noise in projections. Although the second strategy can avoid the above
problem and realize the additional benefit of accelerated scanning and calculation, it gives
rise to severe image quality deterioration of increased artifacts due to its lack of projections.
In this paper, we will focus on obtaining high-quality CT images from limited-view CT
with inadequate scanning angle.

Researchers have proposed various CT image reconstruction algorithms in the past
few decades, but when it comes to LDCT reconstruction, the problem becomes challenging.
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Traditional analytical reconstruction algorithms, such as FBP [16], have high requirements
for data integrity. When the radiation dose is reduced, artifacts in reconstructed images
will increase rapidly [17]. Compared with analytical reconstruction algorithms, iterative
reconstruction algorithms can obtain better performance, while suffering from higher
complexity. Model-based iterative reconstruction (MBIR) algorithm [18], combines the
modeling of some key parameters to perform high-quality reconstruction of LDCT. Using
image priors in MBIR can effectively improve the image reconstruction quality of LDCT
scans [14,19], while still have the high computational complexity.

In addition, diverse regularization methods have played a crucial role in CT recon-
struction, which is a typical inverse problem. The most prevailing regularization method
is the total variation (TV) method [20]. In the light of TV, researchers came up with more
reconstruction methods, such as TV-POCS [21], TGV [22] and SART-TV [13] which was
proposed on the basis of SART [23]. Those algorithms can suppress image artifacts to a
certain extent so as to improve imaging quality. In addition, dictionary learning is often
used as a regularizer in MBIR algorithms [24–27], and multiple dictionaries are beneficial
to reducing artifacts caused by limited-view CT reconstruction.

With the development of computing power, deep learning-based methods [28–34]
have been applied to the restoration of LDCT reconstructed images in recent years. The
methods can be roughly divided into the below three categories.

Image inpainting algorithms usually reconstruct the damaged Radon data into the
damaged image with artifacts through regular methods, such as FBP, then reduce the arti-
facts and noises in the image domain. Lots of researchers are currently using convolutional
neural network (CNN) and deep learning architecture to perform this procedure [4,35–44].
Zhang et al. [35] proposed a data-driven learning method based on deep CNN. RED-
CNN [4] combines the autoencoder, deconvolutional network and shortcut connections
into the residual encoder-decoder CNN for LDCT imaging. Kang et al. [36] applied deep
CNN to the wavelet transform coefficients of LDCT images, used directional wavelet
transform to extract the directional component of artifacts. Wang et al. [39] developed a
limited-angle translational CT (TCT) image reconstruction algorithm based on U-Net [40].
Since Goodfellow et al. proposed Generative Adversarial Nets (GAN) [42] in 2014, GAN
has been widely used in various image processing tasks, including the post-processing of
CT images. Xie et al. [43] proposed an end-to-end conditional GAN with joint loss function,
which can effectively remove artifacts.

Sinogram inpainting algorithms firstly restore the missing part in the Radon domain,
then reconstruct it into the image domain to get the final result [45–49]. Li et al. [45]
proposed an effective GAN-based repairing method named patch-GAN, which trains the
network to learn the data distribution of the sinogram to restore the missing sinogram
data. In another paper [46], Li et al. proposed SI-GAN on the basis of [37], using a
joint loss function combining the Radon domain and the image domain to repair “ultra-
limited-angle” sinogram. In 2019, Dai et al. [47] proposed a limited-view cone-beam
CT reconstruction algorithm. It slices the cone-beam projection data into the sequence
of two-dimensional images, uses an autoencoder network to estimate the missing part,
then stack them in order and finally use FDK [50] for three-dimensional reconstruction.
Anirudh et al. [48] transformed the missing sinogram into a latent space through a fully
convolutional one-dimensional CNN, then used GAN to complement the missing part.
Dai et al. [49] calculated the geometric image moment based on the projection-geometric
moment transformation of the known Radon data, then estimated the projection-geometric
moment transformation of the unknown Radon data based on the geometric image moment.

Sinogram inpainting and image refining algorithms firstly restore the missing part in
the Radon domain, then reconstruct the full-view Radon data into the image domain so as
to finely repair the image to obtain higher quality [51–55]. In 2017, Hammernik et al. [51]
proposed a two-stage deep learning architecture, they first learn the compensation weights
that account for the missing data in the projection domain, then they formulate the image
restoration problem as a variational network to eliminate coherent streaking artifacts.
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Zhao et al. [52] proposed a GAN-based sinogram inpainting network, which achieved
unsupervised training in a sinogram-image-sinogram closed loop. Zhao et al. [53] also
proposed a two-stage method, firstly they use an interpolating convolutional network to
obtain the full-view projection data, then use GAN to output high-quality CT images. In
2019, Lee et al. [54] proposed a deep learning model based on fully convolutional network
and wavelet transform. In the latest research, Zhang et al. [55] proposed an end-to-end
hybrid domain CNN (hdNet), which consists of a CNN operating in the sinogram domain,
a domain transformation operation, and a CNN operating in the image domain.

However, we cannot help but notice that, when it comes to image restoration, all the
methods above merely focus on a single CT image while neglecting the solid fact that the
scanned object are often spatially continuous. On account of that, these obtained consecu-
tive CT images are always highly correlative, which leads to copious spatial information
hidden between them that is still largely left to be explored. Consequently, we propose a
novel two-step cascaded model in the second stage which concentrates on groundbreak-
ingly utilizing the strong spatial correlation between consecutive CT images. So as to
break the limit of feature extraction in the two-dimensional space and dig deep into the
three-dimensional spatial neighborhood.

These two domains are also combined in our method to amalgamate their respective
strengths for high-quality CT reconstruction results, which leads to our proposed three-
stage structure. Specifically, we firstly conduct data completion in the Radon domain to
acquire the full-view CT data, and then reconstruct it into images through FBP. Subse-
quently, image restoration and artifacts removal are accomplished in a “coarse-to-fine” [56]
manner with the combination of stage two and stage three.

It is also worth mentioning that, unlike other current prevailing limited-view CT
reconstruction methods [39], we adopt FBP [16] (and implement it on GPUs) instead of
SART-TV [13] to speed up the overall procedure. Besides, since our method actually consists
of fully convolutional networks, it does not limit the resolution of input images, thus can
be well generalized to various datasets. In our experiments, we compare our algorithm
with other methods under four sorts of limited-view CT data, exhibiting its prominent
performance and robustness.

The organization of this paper is as follows, Section 2 presents our proposed method
in detail, Section 3 exhibits the experimental results and corresponding discussion, and
conclusion is stated in Section 4.

2. Methods

In this work, we propose a hybrid-domain limited-view CT reconstruction method,
and its overall three-stage structure is shown in Figure 1. In the first stage, after the
limited-view Radon data is preprocessed, we fed it into the Adversarial Autoencoder
(AAE) established for data restoration, so as to acquire high-quality full-view Radon data,
which is then transformed into images through FBP. In stage two, these CT images are
concatenated into groups and then sent into our proposed Spatial Adversarial Autoencoder
(Spatial-AAE) to perform image inpainting based on strong spatial correlation between
consecutive CT images, which can manage to eliminate almost all the artifacts from the
original limited-view CT images. However, we notice that the image texture of these
restored CT images is still not precise enough compared to the ground truth CT images.
Therefore, utilizing the idea of “coarse-to-fine” [56–59] in deep learning, we establish the
Refine Adversarial Autoencoder (Refine-AAE) in the third stage to refine the image texture
in patches, and eventually obtain the ideal high-quality CT images which are not only
artifact-free, but also have fine image texture.
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Stage 1

AAE

Stage 2

Spatial-AAE

Stage 3

Refine-AAE

The Radon Domain

Data 

Preprocessing

ConcatThe Image Domain

Coarse to fine

Figure 1. The overall architecture of our proposed method.

2.1. Preliminaries and Discussion
2.1.1. How to Maximize the Limited Prior Information through Data Preprocessing

In order to obtain more valuable data from the limited prior information, we refer
to [38] and adopt the data preprocessing method shown in Figure 2. For the limited-view
Radon data Rlv, we first convert it into the image Irecon through inverse radon transforma-
tion, and then adopt Radon transformation to transform Irecon into the full-view Radon
data R f v. Subsequently, R f v is cropped for preliminary completion of the missing part in
Rlv, so as to obtain the merged full-view Radon data Rmerge. In this way, we manage to
efficaciously utilize the existing data for better restoration results, which is proved in our
experimental results from Section 3.

RadonIRadon

Figure 2. Workflow of data preprocessing.

2.1.2. How Does Spatial Correlation Help Remove Artifacts

As we mentioned above, since the scanned objects are always spatially continuous,
the consecutive CT images obtained from them also have strong spatial coherence. Conse-
quently, these continuous CT images can be regarded as successive frames from a video clip
which have been proved to contain much more information than a single still image [60–69].
Specifically, the high correlation within the sequence of images helps remove artifacts from
two perspectives. In the first place, it expands the search regions from the two-dimensional
image neighborhoods to the three-dimensional spatial neighborhoods, thereby providing
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additional information which can be used to restore the reference image. Secondly, utilizing
the consecutive CT images can be beneficial to remove artifacts as the residual error in each
adjacent image is correlated.

Based on the analysis above, we notice the similarity between the task of artifact
removal between successive images and the task of video denoising. Due to this similarity
and the lack of relevant deep learning-based 3D CT reconstruction algorithms, we inves-
tigate lots of current prevailing research works in video denoising [60–69], and find out
that these state-of-the-art methods give great prominence to motion estimation due to the
strong redundancy along the motion trajectories. Therefore, we need a structure that can
not only look into the three-dimensional spatial neighborhood, but can also conduct motion
estimation between these consecutive images, so as to productively remove artifacts from
limited-view CT images.

2.2. Overall Structure
2.2.1. Stage One: Data Restoration in the Radon Domain

In this stage, we propose an AAE as shown in Figure 3, which is composed of an
autoencoder and a discriminator. The parametric architecture of the autoencoder can be
seen from Table 1, it incorporates an encoder and a decoder that are highly symmetrical.
In the encoder, each building block (refers to Figure 4) extracts representative features
and is followed a Maxpool Layer that conducts downsampling. Each downsampling here
will halve the height and width of the activation map and double the number of channels,
and the IC and OC stand for the number of input channels and output channels of these
building blocks and layers. After obtaining the high-level semantic features from this
encoder, we establish a decoder for image texture restoration. Transposed convolution is
adopted here for feature upsampling with its stride and kernel size both equal to 2, each
upsampling here will double the height and width of the activation map and halve the
number of channels.

Figure 3. The overall architecture of our proposed AAE in stage one.

Conv 3*3

(IC,OC)

Conv 3*3

(OC,OC)
BN

Leaky

ReLU
BN

Leaky

ReLU
Input Output

Figure 4. The diagram of the building block in AAE.

Besides, skip connections [40] are added between feature maps with the same resolu-
tion in the encoder and decoder. In the encoder, in order to acquire high-level semantic
features, we conduct multiple downsampling which leads to the final feature map with
a relatively low resolution, and makes it difficult for the decoder to restore the image
texture. Thus, we need to utilize skip connections that can incorporate low-level fea-
tures from the encoder which can help accurately precise image inpainting. It has been
proved that, this sort of multi-scale, U-Net-like architectures can be well applied to medical
image processing.
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Table 1. Parametric Structure of the AAE.

Layer IC OC Stride Input
Size

Output
Size

Block1 1 32 1 192× 512 192× 512

Pool1 32 32 2 192× 512 96 × 256

Block2 32 64 1 96 × 256 96 × 256

Pool2 64 64 2 96 × 256 48 × 128

Block3 64 128 1 48 × 128 48 × 128

Pool3 128 128 2 48 × 128 24 × 64

Block4 128 256 1 24 × 64 24 × 64

Pool4 256 256 2 24 × 64 12 × 32

Block5 256 512 1 12 × 32 12 × 32

Up_Conv6 512 256 2 12 × 32 24 × 64

Block6 256 + 256
(Concat) 256 1 24 × 64 24 × 64

Up_Conv7 256 128 2 24 × 64 48 × 128

Block7 128 + 128
(Concat) 128 1 48 × 128 48 × 128

Up_Conv8 128 64 2 48 × 128 96 × 256

Block8 64 + 64
(Concat) 64 1 96 × 256 96 × 256

Up_Conv9 64 32 2 96 × 256 192× 512

Conv9_1 32 + 32
(Concat) 32 1 192× 512 192× 512

Conv9_2 32 12 1 192× 512 192× 512

Conv9_3 12 1 1 192× 512 192× 512

As for the discriminator, its structure is almost the same as the encoder above, except
that its Block5 has three layers whose OCs are 512, 64 and 1 respectively. The output of
Block5 is then flattened and fed into sigmoid function for probability prediction, which we
average to get the final output that represents the input image’s probability to be a real
image. This discriminator is added to strengthen the model’s ability to restore the detailed
texture of images.

2.2.2. Stage Two: Image Restoration Based on Spatial Correlation

After data completion in the Radon domain, we manage to mitigate the severe image
artifacts to a certain extent (the specific visualized result can be seen from Figure 10 in
Section 3). Nevertheless, the reconstruction result still needs to be further restored to
thoroughly eliminate the artifacts and present the image texture. Therefore, we need an
architecture that can effectively utilize the existing information to restore these CT images.
As we mentioned above, almost all the current prevailing methods merely concentrate
on a single CT images while ignoring the abundant spatial information between these
consecutive CT images. Therefore, in this stage, we need to establish a model that can make
full use of the spatial correlation. Recalling the discussion in II.A, we learn that this model
should be capable digging into the three-dimensional spatial neighborhood and capturing
motion between the continuous CT images.

Generally, an explicit motion estimation stage would have a relatively large memory
cost, which may cause certain obstacles to its application. However, the two-step cascaded
architecture in [70] appears to inherently embed the motion of objects with high efficiency.
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Enlightened by this, we establish the Spatial Adversarial Autoencoder that consists of the
Spatial Autoencoder and the discriminator (its structure is the same as it is in stage one),
the overall structure of the Spatial-AAE can be seen from Figure 5.

AE

AE

AE

AE

Spatial AutoEncoder

Real/FakeDiscriminatorS S 

1S

2S

3S

'

is

GTs

''

is

1i



s

1i



s

Figure 5. The overall architecture of our proposed Spatial-AAE in stage two.

The input of the Spatial Autoencoder is five consecutive CT images S = {si−2, si−1, si,
si+1, si+2}, S is divided into three sets of image sequences S1 = {si−2, si−1, si},
S2 = {si−1, si, si+1} and S3 = {si, si+1, si+2}. Then, they are fed into the AE block re-
spectively, and their output is concatenated as S′, which is sent into the AE block (trained
separately from the AE block in the first step) to obtain the final restoration result. This
whole structure can be expressed as Equation (1), where F represents the Spatial Autoen-
coder and G stands for the AE block. The specific details of the AE block can be seen from
Table 1.

s′′i = F(S) = G(G(S1), G(S2), G(S3)) (1)

2.2.3. Stage 3: Image Refining on Patches

After the above two stages of hybrid-domain restoration, the limited-view CT recon-
struction result can reach a relatively satisfying degree (the specific visualized result can
be seen from Figure 10 in Section 3). Nevertheless, the image texture is still not precise
enough compared to the ground truth CT images, thereby need to be further refined. In
this stage, we utilize the idea of “coarse to fine” in deep learning, and propose the Refine
Adversarial Autoencoder to refine the coarse results obtained from the second stage. The
overall structure of the Refine-AAE is shown in Figure 6, which is composed of the Refine
Autoencoder and the discriminator (its structure is the same as it is in stage one). More
importantly, we crop the input image into four patches of the same size and adjust them to
the same pattern, so that it would be easier for the model to learn this mapping from this
fixed pattern.

Specifically, given the input image Iinput, the Refine Autoencoder firstly divides it into
four patches, then use horizontal and vertical flip to convert them into the same pattern.
After this, the patches are concatenated into sequence {Ip1, Ip2, Ip3, Ip4, } and fed into our
AE block for texture refinement. we obtain the prediction result {I′p1, I

′
p2, I

′
p3, I

′
p4, } and

integrate it into Ipred, then it is combined with the ground truth CT image IGT into pair for
discriminator’s judgment.

D
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AutoEncoder

Refine AutoEncoder

Discriminator

Real/Fake

Concat
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1 2 3 4
{ , , , }p p p pI I I I 1 2 3 4

' ' ' '{ , , , }p p p pI I I IinputI

Figure 6. The overall architecture of our proposed Refine-AAE model in stage three.
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2.3. Network Training

All these stages are optimized separately with Adam [71] (set the learning rate to
1× 10−4 at the beginning), and we adopt the multi-loss function for all the autoencoders
in these neural networks, the loss function is composed of lMSE, lAdv and lReg with their
respective hyperparameters α1, α2 and α3 set to 1, 1× 10−3, and 2× 10−8 respectively
during training.

lAE = α1lMSE + α2lAdv + α3lReg (2)

In Equation (2), lMSE calculates the mean square error between the prediction result
and its corresponding ground truth, this loss function is widely used in image inpainting
because it can provide an intuitive evaluation for prediction results. The expression of lMSE
is shown in Equation (3).

lMSE =
1

W × H

W

∑
x=1

H

∑
y=1

(
IGT

x,y − GAE(IInput)x,y

)2
(3)

In Equation (3), W and H are the width and height of the input image respectively,
IInput and IGT stand for the input image and its corresponding ground truth, function GAE
represents the autoencoder.

In Equation (2), lAdv calculates the adversarial loss, which can be minimized to make
the prediction result as close to the real data distribution as possible. Its expression is
shown in Equation (4).

lAdv = 1− D
(

GAE(IInput)
)

(4)

where IInput stands for the input image, function D and GAE represent the discriminator
and the autoencoder respectively.

In Equation (2), lReg plays the role of a regularizer in our multi-loss function. As we
know, noises are harmful to image inpainting, thereby we need a regularizer to smooth the
image while preventing overfitting. Since TV Loss is widely used in image analysis, which
can effectively reduce the variation between adjacent pixels, and the expression is shown
in Equation (5).

lReg =
1

W × H

W

∑
x=1

H

∑
y=1

∥∥∥∇GAE(I
Input
x,y )

∥∥∥ (5)

where W and H stand for the width and height of the input image, ‖·‖ acquires the norm,
∇ calculates the gradient, function GAE stands for the autoencoder, IInput represents the
input image.

As for the optimization of the discriminators in these stages, we minimize the loss
function below to make the discriminators better distinguish between real and fake input
images. The loss function lDis can be seen from Equation (6).

lDis = 1− D(IGT) + D
(

GAE(IInput)
)

(6)

where function D and GAE represent the discriminator and the autoencoder, IInput and IGT

are the input image and its corresponding ground truth. The discriminator outputs a scalar
between 0 to 1 that stands for the probability of the input image being real. Therefore,
minimizing 1− D(IGT) and D

(
GAE(IInput)

)
enables the discriminator to distinguish fake

images (prediction results of the autoencoders) from all input images.

3. Experiment

We adopt the LIDC-IDRI [72] dataset and divide its 1018 cases (approximately 240,000 DCM
files) into train set, validation set and test set according to the ratio of 1:1:3, and the amount
of data is relatively large enough for us to train our models from scratch. We process
these DCM files, read them into NumPy arrays , adopt normalization to ensure all data are
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scaled to the same range and create four sorts of limited-view CT data with varying degree
of artifacts (the corresponding full-view CT data has 180 projection views). A geometry
representative of a 2D parallel-beam CT scanner setup was used, and the sinogram was
simulated by forward projecting the clinical images. The resolution of the CT image was
512 × 512 pixels, and each view of simulated sinogram was modeled with 512 bins on a
1D detector. In this section, we first conduct ablation studies to prove the rationality of
our structural design, and then compare our method with other current methods under
various limited-view CT data, exhibiting its remarkable performance and robustness. In
addition, if not specifically mentioned, all the experiments in III.A are conducted with the
limited-view CT data which lacks the post 60 projection views.

3.1. Ablation Study
3.1.1. Data Preprocessing

In our data preprocessing, to make full use of the finite prior information, we pre-
liminarily complement the missing projection views of the original limited-view CT data
(refers to Figure 2). Therefore, we conduct an experiment to see how much the additional
information can help improve restoration results in the first stage. In this experiment, we
feed the limited-view Radon data and the merged full-view Radon data into the AAE in
stage one respectively, and then compare their restoration results with the corresponding
ground truth, which can be seen in Table 2 and Figure 7. OR and MR stands for the
original limited-view Radon data and the merged Radon data, ROR and RMR represents
the restored OR and the restored MR from stage one.

(d)(a) (b) (e)(c)

Figure 7. Visualized results obtained from different data preprocessing methods, (a) is the directly
cut Radon data; (b) is the restored result of (a); (c) is the fused Radon data; (d) is the restored result of
(c); (e) is the Radon ground truth.

Table 2. Restoration results of OR and MR.

OR MR ROR RMR

PSNR 8.714 18.196 38.549 48.181
SSIM 0.656 0.936 0.987 0.995

We can see from the quantitative and visualized experimental results that, MR can
obtain significantly better restoration outcome, and its image texture is obviously closer to
the ground truth, proving the effectiveness of our data preprocessing method.

3.1.2. The Role of Our Discriminator

We employ our proposed discriminators in all three stages, aiming to obtain finer
restoration results. Thus, we feed the merged Radon data into these two models respec-
tively: (1) Merely the autoencoder (refers to Table 1); (2) Combination of the autoencoder
and the discriminator, its quantitative and visualized experimental results can be seen from
Table 3 and Figure 8.
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Table 3. Restoration results of different structures.

AE AE + D

PSNR 40.129 48.181
SSIM 0.983 0.995

We notice that the image texture of the rear 60 projection views in Figure 8c is obviously
finer than Figure 8b. Also, the restoration result of structure (2) is pretty close to the ground
truth as it is shown in Figure 8. Thereby, we can safely arrive at the conclusion that, the
discriminator plays an important role in improving the restoration results.

(c) (d)(a) (b)

Figure 8. Visualized restoration results obtained from different data preprocessing methods, (a) is the
input; (b) is the restoration result of structure (1); (c) is the restoration result of structure (2); (d) is the
ground truth.

3.1.3. The Two-Step Cascaded Architecture: Spatial-AAE

Since the Spatial-AAE is proposed to efficaciously utilize the spatial correlation be-
tween consecutive CT images through the cascaded two-step architecture, which can
manage to dig into the three-dimensional neighborhood and inherently embeds the motion
of objects. To verify the effectiveness of this structural design, we carry out an experiment
with reference to [70] to prove this view. In stage two, instead of feeding five successive
images into Spatial-AAE, we send them directly into a single AE block (SAE) that is not
capable of conduct implicit motion estimation. The experimental results can be seen from
Table 4, the discriminator is also added to the SAE to ensure fairness.

Table 4. SAE vs. Spatial-AAE.

AAE Spatial-AAE

PSNR 37.384 39.646
SSIM 0.929 0.940

As we know, the AAE does not own this built-in cascade structure like Spatial-AAE
to implicitly exploit the spatial correlation, it suffers from a great drop in PSNR and
SSIM. This also allows us to further think about the characteristics and advantages of the
Spatial-AAE architecture. Compared with AAE, Spatial-AAE adopts a two-step cascade
model to implicitly perform motion estimation, and we also learned that such a process can
effectively learn from residual information in consecutive images to provide additional extra
prior information for restoration, thus improving the overall restoration performance to a
certain extent. Besides, motion estimation needs to consume a large amount of additional
computing resources in general, while such a two-step implicit motion estimation structure
can manage to effectively avoids this, also create a deeper neural network to enhance the
overall repair ability of the model.
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On account of these, we can safely arrive at the conclusion that, this sort of architecture
can help effectively improve the restoration results.

3.1.4. Refine the Image Texture in Patches

In the third stage, the input image is divided and concatenated, then sent to the
Refine-AAE for finer restoration. We believe that refining the image texture in patches
makes it easier for the model to learn the mapping and obtain better restoration results. In
addition, we want to verify the effect of different patch interception methods on the final
restoration results.

To prove the above points, we design an experiment that feeds these four types of
data into the model in stage three: Method 1, randomly crop four patches (size 256 × 256)
from the input image (size 512 × 512); Method 2, crop the four corners out of the input
image; Method 3, crop the four corners out of the input image, and then adjust them into
the same pattern through different flipping method; Method 4, no cropping. Diagrams of
the first three patch interception methods are shown in Figure 9, and the corresponding
quantitative restoration results can be seen from Table 5.

Table 5. Restoration results of different patch interception methods.

Random Crop Corner Crop Corner Crop + Flip No Cropping

PSNR 39.863 40.209 40.06 39.948

SSIM 0.941 0.943 0.942 0.941

Method 1 Method 2 Method 3

Figure 9. Methods of cropping patches in stage three.

We can see that, if the patches are randomly cropped, it would to lead to a relatively
poor restoration result since the pattern of input patches are complicated. However, when
we adopt corner crop (with or w/o flip), its outcome exceeds method 4 due to its fixed
pattern which may be easier for neural networks to learn. In addition, it is worth mentioning
that method 2 has the best performance, even surpassing method 3, which particularly
employs flips to adjust patches to the same pattern. It seems that the non-flip in method
2 works in the form of data augmentation, thereby improving the restoration results.

3.1.5. Refine the Image Texture in Patches

We previously delved into the precise design of the overall architecture, which is
divided into three successive stages. Here, to demonstrate their effectiveness, quantitative
and intuitive experimental results are shown in Table 6 and Figure 10.

Table 6. Restoration results of different patch interception methods.

Original
Input

Stage One’s
Output

Stage Two’s
Output

Final
Output

PSNR 22.417 28.960 39.646 40.209

SSIM 0.812 0.859 0.940 0.943
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(a) (b) (c) (d)
Figure 10. (a) is the original limited-view CT image, which lack the post 60 projection views (the
corresponding full-view CT has 180 projection views); (b) is the CT reconstruction result of the first
stage; (c) is the CT reconstruction result of the second stage; (d) is the ground truth CT image.

As can be seen from Figure 10b, the first stage manages to alleviate the severe image
artifacts, while there still remains some minor image impairments that require further
improvement. Fortunately, after two stages of hybrid-domain restoration, the limited-view
CT reconstruction result (refers to Figure 10c) can reach a relatively satisfying degree with
no apparent artifacts. In addition, we adopt stage three to further improve the experimental
results by a relatively small margin, which can also be verified by Table 6.

3.2. Methods Comparison

After verifying the rationality of our structural design, and then compare our method
with other current methods under various limited-view CT data. The methods include:
(1) Analytical reconstruction algorithm FBP; (2) Iterative reconstruction algorithm SART
combined with TV regularization; (3) Image inpainting with U-Net, after reconstructing
the limited-view Radon data into images through FBP, adopt U-Net for image restoration;
(4) Sinogram inpainting with U-Net, first adopt U-Net to complement the limited-view
Radon data, then reconstruct it to images through FBP. In addition, in order to testify the
effect of merging Radon data (MR), we implement these methods on the two sorts of input
data: (1) the original limited-view Radon data; (2) the merged full-view Radon data (data
preprocessing). For limited-view CT data which lack the post 60 projection views, the
quantitative and intuitive restoration results of the above methods are shown in Table 7
and Figure 11. In Table 7, we evaluate all these methods’ performance on the test set with
their mean and standard deviation (std) to provide additional measurement for stability.

From the quantitative results above, we can see that MR manages to bring additional
information for every method, thereby improving their performance by different mar-
gin. Besides, restoration using U-Net, which is known to be very effective in processing
biomedical images, appears to be less useful in the Radon domain. In this case, our method
combines these two domains to take advantage of their respective strengths, and finally
obtain a extraordinary outcome that achieves the PSNR of 40.209 and the SSIM of 0.943 ,
while exhibiting its stability on various limited-view data. More importantly, it not only
improves the image quality by a large margin, but also realizes the precise restoration of
image texture that few methods can achieve. To further demonstrate this, we calculate the
corresponding error maps (refers to Figure 12), which exhibits the difference between the
restoration results and the ground truth CT images.
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(1) FBP (5) II(2) FBP + MR (3) SART-TV (4) SART-TV + MR

(8) SI + MR(6) II + MR (7) SI Ground Truth(9) Our Method

Figure 11. Visualized restoration results of various methods.

Table 7. Methods Comparison.

Algorithms PSNR (Mean ± Std) SSIM (Mean ± Std)

(1) FBP 11.272 ± 0.917 0.364 ± 0.017
(2) FBP+MR 12.354 ± 0.811 0.452 ± 0.015
(3) SART-TV 14.727 ± 0.824 0.635 ± 0.021
(4) SART-TV+MR 21.518 ± 0.729 0.807 ± 0.019
(5) Image Inpainting (II) 35.566 ± 2.283 0.916 ± 0.047
(6) Image Inpainting + MR 36.388 ± 2.106 0.927 ± 0.047
(7) Sinogram Inpainting (SI) 27.345 ± 2.476 0.800 ± 0.014
(8) Sinogram Inpainting + MR 28.960 ± 2.461 0.859 ± 0.013
(9) Ours 40.209 ± 1.325 0.943 ± 0.015

Moreover, to testify the robustness of these methods, we implement them on three
sorts of limited-view data that have more serious artifacts in their imaging. Including
(1) limited-view CT data that lacks the middle 60 projection views; (2) limited-view CT
data that lacks the middle 90 projection views; (3) limited-view CT data that lacks the
middle 120 projection views, and their corresponding full-view data has 180 projection
views. The experimental results can be seen from Figure 13 and Table 8.

(8) SI + MR

(1) FBP (2) FBP + MR (3) SART-TV (4) SART-TV + MR (5) II

(6) II + MR (7) SI (9) Our Method Ground Truth

Figure 12. Error maps of the restoration results obtained by various methods.

The performance of these methods has been greatly affected by the increasing informa-
tion loss. Our method, however, demonstrates its outstanding robustness and still exceeds
other methods by a large margin under varying degrees of damaged data.
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Figure 13. Histograms of different algorithms applied to different data preprocessing methods on
different input data.

Table 8. Restoration results of various algorithms for limited-view data with varying degrees
of artifacts.

CUT-MID-60 CUT-MID-90 CUT-MID-120

Algorithms PSNR SSIM PSNR SSIM PSNR SSIM

(1) FBP 11.131 0.362 10.350 0.289 9.636 0.217
(2) FBP + MR 12.182 0.446 11.432 0.391 10.525 0.309
(3) SART-TV 14.758 0.610 12.945 0.515 10.492 0.372
(4) SART-TV + MR 21.036 0.784 17.523 0.722 13.166 0.592
(5) Image Inpainting (II) 31.717 0.895 30.157 0.873 28.507 0.846
(6) Image Inpainting + MR 32.031 0.895 30.422 0.876 28.999 0.849
(7) Sinogram Inpainting (SI) 26.834 0.793 25.673 0.763 24.606 0.705
(8) Sinogram Inpainting + MR 27.789 0.828 26.582 0.795 25.210 0.755
(9) Ours 34.248 0.919 32.624 0.900 30.975 0.876

4. Conclusions

In order to obtain the ideal high-quality restoration results from the limited-view CT
images that contains severe artifacts, we propose a hybrid-domain structure that effica-
ciously utilizes the spatial information between consecutive CT images, and utilizes the
idea of “coarse to fine” to refine the image texture.

In the first stage, we establish an adversarial autoencoder to preliminarily complement
the original limited-view Radon data. After converting the obtained full-view Radon data
into images through FBP, and feed them into our proposed Spatial-AAE in stage two for
artifacts removal based on spatial information. By now, we have managed to thoroughly
eliminate the severe artifacts from the original limited-view CT images, while the image
texture still needs to be further refined. Therefore, in the third stage, we propose the Refine-
AAE to refine the image in the form of patches, so as to achieve the accurate restoration of
the image texture.

For limited-view Radon data that lacks the rear 60 projection views, our method can
increase its PSNR to 40.209, and SSIM to 0.943, not only largely improve the image quality
compared to other current methods, but also precisely present the image texture. At the
same time, our method can be well applied to other sorts of limited-view CT data with
more serious artifacts in their imaging, demonstrating its remarkable robustness.
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