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Abstract: The generative adversarial network (GAN) has demonstrated superb performance in
generating synthetic images in recent studies. However, in the conventional framework of GAN, the
maximum resolution of generated images is limited to the resolution of real images that are used as
the training set. In this paper, in order to address this limitation, we propose a novel GAN framework
using a pre-trained network called evaluator. The proposed model, higher resolution GAN (HRGAN),
employs additional up-sampling convolutional layers to generate higher resolution. Then, using the
evaluator, an additional target for the training of the generator is introduced to calibrate the generated
images to have realistic features. In experiments with the CIFAR-10 and CIFAR-100 datasets, HRGAN
successfully generates images of 64 × 64 and 128 × 128 resolutions, while the training sets consist of
images of 32 × 32 resolution. In addition, HRGAN outperforms other existing models in terms of the
Inception score, one of the conventional methods to evaluate GANs. For instance, in the experiment
with CIFAR-10, a HRGAN generating 128 × 128 resolution demonstrates an Inception score of 12.32,
outperforming an existing model by 28.6%. Thus, the proposed HRGAN demonstrates the possibility
of generating higher resolution than training images.

Keywords: generative adversarial network; image generation; Inception score; image resolution

1. Introduction

While various deep learning algorithms have been extensively studied in recent years,
the generative adversarial network (GAN) [1] is one of the most rapidly improved models
among many deep learning algorithms. By using an innovative learning process motivated
by game theory, GAN can learn a given sample space and generate synthetic samples that
mimic features in the trained sample space. Such success of the novel training process of
GAN enables us to introduce deep learning algorithms for a new artificial-intelligence task,
i.e., realistic sample generation.

The architecture of the original GAN is composed of two deep learning modules, called
generator and discriminator. The generator uses lower-dimensional inputs indicating the
feature distribution of a dataset, which is generally represented with Gaussian distributions
and produces higher-dimensional outputs that correspond to synthetic samples. The
discriminator learns features of a real dataset by attempting classification between the
synthetic samples and real samples. Meanwhile, the generator also learns the features by
deceiving the discriminator. The parameter weights of the generator are optimized with an
inverse target to the discriminator. Thus, it can be interpreted that these two modules play
a game to detect and deceive each other. The adversarial and competitive training process
between the two modules is one of the main characteristics of GAN.

After the training, the generator can produce as many realistic but synthetic samples
as desired since such a training process induces the features to be mapped onto the noise
variables, which are the inputs of the generator. Therefore, using the Monte Carlo sampling
method on the noise variables, a set of synthetic samples can be made, which eventually
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corresponds to a deep-learning-based sample generation. Such a new sample generation
framework has been studied extensively, and conventionally, has been applied to image
datasets to make realistic images.

However, there is a critical limitation in the original GAN framework in that the gener-
ator can produce the same resolution samples as the original samples. For example, if a gen-
erator and a discriminator are trained with the CIFAR-10 image dataset, which consists of
32 × 32 resolution images, the trained generator can produce only 32 × 32 resolution images
as well. Hence, since it has been found that the quality and degree of recognition of gen-
erated image samples are related to a higher resolution of the images, such a limitation
significantly reduces the quality of the generated images.

In order to synthesize high-resolution images by GAN, a modified GAN model called
super resolution GAN (SRGAN) [2] has been studied. However, SRGAN also has two
limitations: First, SRGAN cannot be used for the sample generation task since the model
takes a lower resolution image as an input. Therefore, distinct from the original GAN
that takes noise variables as its inputs, SRGAN is not a generative model. Second, for
the training process of SRGAN, higher resolution samples are still required. For instance,
when SRGAN aims to synthesize 128 × 128 resolution images from 64×64 resolution input
images, a training set of 128 × 128 resolution images is required for its training process.
Hence, SRGAN cannot synthesize 128× 128 resolution images if a lower resolution ground-
truth training set is given, such as 32 × 32 resolution images in the CIFAR-10 dataset.
Moreover, other models for image super resolution [3] take low-resolution images as inputs,
which does not correspond to image generation and requires high-resolution images for
the training.

In this paper, we introduce a GAN model for the higher resolution sample generation
without using higher resolution training samples. By using the proposed model, higher
resolution image samples can be generated even though the same resolution real samples
do not exist. For example, while the CIFAR-10 dataset consists of only 32 × 32 resolution
images, higher resolution images, such as 64 × 64 and 128 × 128 resolution images of
the CIFAR-10, can be produced by the proposed model, where the real images of those
resolutions do not exist.

Compared to the original GAN, the proposed model employs an additional deep
learning classifier, which is pre-trained and conventionally used. By the modification, the
proposed model aims at learning conventional and general features in various objects in
the real world. Therefore, the generated higher resolution images become more realistic
from the learning with the pre-trained classifier. Such a modification is motivated by
score-guided GAN (ScoreGAN) [4], in which it has been verified that the metric to evaluate
GAN can also be used for the training of the generator. We leverage the advantage of
using a pre-trained classifier and introduce it for the higher resolution sample generation
with GAN.

2. Methods
2.1. Generative Adversarial Networks

A GAN model consists of two neural network structures, a generator and a discrimi-
nator. Since features of a dataset can be represented as a lower-dimensional distribution
than the sample distribution, the generator aims at representing the data samples to be
feature distributions by mapping them onto inputs of the generator. Therefore, the genera-
tor becomes possible after the GAN training process, with a noise vector that indicates a
feature vector.

In order to make the generator learn the sample distribution, the discriminator is
employed in the training process. In the training, the discriminator takes produced samples
by the generator and real samples in the dataset. Then, the discriminator is trained to be a
classifier that differentiates between the produced samples and real samples. During the
training of the discriminator, the generator is also trained by deceiving the discriminator,
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resulting in learning the features of the dataset. Hence, the GAN training can be likened to
a game between the generator and the discriminator.

Such a training process can be represented as target functions as follows:

max
D

min
G

V(G, D) = E
x∼qdata(x)

[L(D(x); θ)] + E
z∼p(z)

[L(D(G(z)); θ)], (1)

where G and D represent the generator and the discriminator, respectively, x is a set of real
samples, z is a set of noise vectors, L is a specific loss function, and θ indicates a set of
parameters of the loss function.

After the training, synthetic samples can be generated by G(z) where z ∼ p(z), i.e., using
random feature vectors as the inputs of the generator. Due to the outstanding performance
to learn sample spaces and produce synthetic samples, these GAN models have been
commonly used for image datasets to generate synthetic images, which had been regarded
as a complex problem.

2.2. Generation of Higher Resolution Images

In general, resolution is one of the most important factors in image quality because
high-resolution images have more details than low-resolution ones. Such a factor as image
data has been addressed in [5]. Therefore, compared to low-resolution images, it has been
verified that high-resolution images have a better probability that they are classified as
correct labels of the corresponding images, which demonstrates superb recognizability of
high-resolution. Hence, it is important to be able to generate high-resolution images to
obtain a better quality of the images.

However, the produced images of the most generative models have the same resolution
as the real images that are employed for the training. In Equation (1), such a factor can
be interpreted that the dimension of x and G(z) should be the same. Since the input
dimension of the discriminator must be the same for real images and produced images, it
is natural that the produced images have a limitation in that their resolution cannot exceed
the resolution of real images. Such a limitation becomes critical when high-resolution
images cannot be obtained. For example, the CIFAR-10 dataset is one of the conventional
datasets to evaluate deep learning models, including GAN models [1,6,7]. However, the
resolution of the CIFAR-10 is 32 × 32, which means that the ordinary GAN cannot produce
high-resolution images due to the limitation in the dataset.

To handle this limitation, this paper aims to propose a GAN model, called higher
resolution GAN (HRGAN), that produces higher resolution images that exceed the reso-
lution of original images. In HRGAN, a pre-trained classifier with a score is introduced
to evaluate the produced higher resolution images while they are still evaluated by the
discriminator. However, since the resolution of the produced images and original images
are different, a down-sampling process is employed for the produced images. This training
process of HRGAN can be interpreted as follows: the main features in a dataset are learned
by the discriminator, whereas fine-grained features in the higher resolution, such as edges
of objects, are trained by the pre-trained classifier.

Figure 1 shows the architecture of HRGAN, where G, D, and E represent the generator,
discriminator, and evaluator, respectively. The synthetic images, i.e., G(z, Label) in the
figure, have a higher resolution than the real ones, by the up-sampling layers in the
generator. For example, when the CIFAR10 (or CIFAR100) dataset is used, the size of the
real images is 32× 32, whereas the size of the fake images can be 64× 64, 128× 128, or even
larger, according to the number of up-sampling layers in the generator. The discriminator
in HRGAN is the same as the ordinary GAN [1,7], so it expects an image that has the same
resolution as the real training images. Thus, a down-sampling process is adopted between
the generator and the discriminator.
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Figure 1. The proposed HRGAN model. The z is a random latent vector sampled from a normal
distribution, Label is a class vector expressed by an one-hot vector, X indicates training images, and
therefore, G(z, Label) becomes synthetic images.

One of the main ideas of HRGAN is the use of the evaluator, which is represented as E
in Figure 1. The evaluator computes an evaluation score of generated images. Then, the
score is backpropagated to the generator to maximize the score. This training process with
the evaluator will be explained further in Section 2.4. There are several metrics that can
be used for the score of the evaluator to assess generated images, but it should be noted
that it is not straightforward since generative models synthesize the images without any
ground truth images. Thus, the most popular metrics to access the image quality, such
as peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) [8],
cannot be used in the evaluator because they require the ground truth images. Therefore,
the evaluator uses a metric to access GAN models. Currently, the most popular way to
evaluate a GAN model is to use the Inception score (IS) [9] or Fréchet Inception distance
(FID). Among the two metrics, the evaluator employs the Inception score since FID requires
a very high computational cost, especially in the matrix square root computation. Since
HRGAN utilizes the score during the training, such a high computational cost of FID is
critical to be used in the evaluator.

The general concept of the Inception score is utilized for training HRGAN, but a
modified score, called MobileNet [10] score, is used instead of the Inception score. The
Inception score is originally obtained by a pre-trained InceptionV3 [11] network. However,
since the evaluator is used both in the forward and the backward computation paths during
the training process of HRGAN, a heavy model significantly increases the computational
complexity, resulting in infeasible computational time. Thus, HRGAN uses a small version
of a pre-trained network, called MobileNetV3-small [12], which demonstrates a good
tradeoff between the complexity and the performance.

Although it is expected that the Inception network shows better performance as the
evaluator of HRGAN, note that the proposed HRGAN is an integrated model consisting of
a high-resolution GAN and a classifier, both of which have high complexity. For instance,
when HRGAN employs the Inception network instead of the MobileNet, it failed in training
due to a memory issue with the GPU, while an NVIDIA RTX A6000 with 48 GB GPU
memory was used, which has the most extensive GPU memory among the NVIDIA RTX
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GPU series. Thus, for a feasible computation in conventional systems, including sensor
systems, it is crucial to minimize the complexity of the evaluator.

In addition, note that the InceptionV3 consists of about 23 M parameters whereas
MobileNetV2 is composed of about 3 M parameters, while the difference in the top-5
accuracy of the ImageNet dataset is within 5%p [10]. Hence, owing to such complexity and
performance, it is more appropriate to use the MobileNet for HRGAN.

While HRGAN and the existing SRGAN [2] seem that they have a similar concept in
producing higher resolution images, they are completely different from each other in terms
of the objective, architecture, and operation process of the models. Figure 2 compares the
proposed HRGAN with the SRGAN. More precisely, Figure 2a illustrates the case where
32 × 32 real training images are used to generate 128 × 128 fake images in the proposed
HRGAN, whereas Figure 2b illustrates the case where 128 × 128 real images are used to
train the generator that converts a 32 × 32 image into a 128 × 128 image in the SRGAN.
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Figure 2. The comparison of the architectures of (a) HRGAN and (b) SRGAN. When the models are
trained with the CIFAR-10 dataset, H and W become 32, signifying that the maximum resolution of
generated images in SRGAN is 32× 32 while HRGAN can produce 64× 64 and 128× 128 resolutions
of images.

Here, one of the main differences is the existence of high-resolution images in the
training process. In the proposed HRGAN, low-resolution (e.g., 32 × 32) training images
are used to generate high-resolution (e.g., 128 × 128) images, whereas high-resolution (e.g.,
128 × 128) images are required in the SRGAN to train the generator. Another important
difference is that the input to the HRGAN generator is a latent random vector similar to
early GANs [1,6,7], while the input to the SRGAN generator is a down-sampled image
and not a random vector. Thus, the objective of HRGAN is generating images by using
feature vectors, while the objective of SRGAN is to enhance the resolution of low-resolution
images, which can hardly be interpreted as sample generation. In other words, the role
of the SRGAN generator is to convert (i.e., up-scale) a low-resolution image to produce a
high-resolution (i.e., super resolution) version, whereas the role of the HRGAN generator
is to generate a high-resolution image out of a random vector. In addition, the SRGAN
cannot be applied when the dataset only contains low-resolution images, e.g., CIFAR-10,
since the model requires high-resolution images during its training.
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2.3. Architecture
2.3.1. Generator

Figure 3a shows the overall block diagram of the HRGAN-128 generator and Figure 3b
shows a more detailed structure of the up-sampling residual block (ResBlockUp) [13–15],
which is the basic building block in the generator. In Figure 3a, the HRGAN-128 generator
contains several up-sampling residual blocks that are used to increase the size of the input
images or input feature maps. The number shown at the end of each up-sampling residual
block represents the channel size. Note that the HRGAN-128 generator contains five up-
sampling residual blocks, whereas the HRGAN-64 generator contains four up-sampling
residual blocks. In this manner, the resolution of generated images can be determined by
the number of up-sampling residual blocks of the generator of HRGAN.
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Each up-sampling residual block contains the main path and a shortcut path, as
shown in Figure 3b. Among the two paths, the main path consists of conditional batch
normalization (CBN) [14–18], ReLU activation, up-sampling, and vanilla convolution layers.
As mentioned in Section 2, the proposed method uses the CBN to feed the label information
to the generator. The up-sampling layer uses the nearest neighbor method, and it doubles
the resolution of the input features. The 3 × 3 convolution layers perform a convolution
with a unit stride so that the feature map size does not change after the operation. The
shortcut path also contains an up-sampling layer to make the size of the output the same
as that of the main path output. It also contains a 1 × 1 convolution layer to change the
channel size in a flexible way.

2.3.2. Discriminator

The architecture of the discriminator is basically the same as the ordinary conditional
GAN (cGAN) [6,14,15]. Figure 4a shows the block diagram of the HRGAN discriminator,
and Figure 4b,c show the two main components, which are the down-sampling residual
block (ResBlockDown) [13–15] and the residual block (ResBlock) [13–15]. Note that the
HRGAN discriminator expects a 32 × 32 size input image, regardless of the size of the
generated fake image, and thus, the same structure of discriminator in Figure 4a can be used
for both HRGAN-64 and HRGAN-128. Two down-sampling residual blocks are used in the
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discriminator to make the feature map size to be 8 × 8. The inner product block is required
to feed the label information to the discriminator by using the projection method in [15] .
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Both the down-sampling residual block and the residual block contain the main path
and a skipped path [14,15]. The only difference is that the down-sampling residual block
includes average pooling layers to reduce the feature map size in half. The skip paths of
both blocks include 1 × 1 convolution layers for adjusting channel size. Notice that the
first down-sampling residual block in Figure 4a does not contain the first ReLU layer in
Figure 4c because the input to this block is not a feature map but an input image.

2.4. Objective Functions

The following equation shows the discriminator loss function of the proposed method:

maxVD(G, D) = E
x∼qdata(x)

[min(0,−K + D(x, y))] + E
z∼p(z)

[min(0,−K−D(G(z, y), y))], (2)

where D and G refer to the discriminator and the generator, and the data x, y, and z refer
to a real input image, one-hot label vector, and a random latent vector that is randomly
sampled from a normal distribution, respectively. The Lipschitz constant K is set to 1.0 for
training, following WGAN [19] where the concept of Lipschitz continuous in GAN was
proposed, but any other positive real numbers can be used. To effectively train the model,
the proposed method adopts the hinge loss [20], which updates weights only when the
outputs of the discriminator are informative. Although the Lipschitz constant of one has
been employed in the original hinge loss, it is generalized in this study with Equation (2).
While the regularization methods for GANs commonly aim at maintaining the Lipschitz
continuity in GAN with the Lipschitz constant of one, the relationships between the value
of Lipschitz constant and performance should be further investigated. Therefore, in this
study, Equation (2) with a generalized hinge loss for the GAN training is proposed for such
possibilities of further research.

While the discriminator loss function contains only the adversarial loss term, the
generator loss function of the proposed method contains two terms (i.e., the adversarial
loss component and the MobileNet score loss component) as follows:

minVG(G, D, E) = − E
z∼p(z)

[D(G(z, y))] + λMSLMS(G, E). (3)
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In Equation (3), the network E refers to the evaluator, and the coefficient λMS is a
controllable parameter that is used to decide the relative weights of the adversarial loss
term and the MobileNet score loss term. The adversarial loss term, i.e., the first term in
Equation (3), is the same as the loss function used in the WGAN [19]. On the other hand,
the MobileNet score loss, i.e., the second term in Equation (3), is defined as follows:

LMS = max

(
0, log

(
MSreal ·

√
HR

MS f ake

))
. (4)

Here, the coefficient HR indicates the ratio of the size of the generated images to that
of the real images. For example, if the resolution of the generated images is 64 × 64 or
128 × 128 when the resolution of the training images is 32 × 32, then the coefficient HR is
set to 2 and 4, respectively. Such a term allows the model not to overfit the evaluator by
adopting a maximum score that the model can achieve. In Equation (4), MS refers to the
MobileNet score, which is defined as follows:

MS = exp(DKL(p(y|x )||p(y))) = exp

(
1
|x| ∑

x∈x
∑
y∈Y

p(y|x ) log
p(y|x )
p(y)

)
. (5)

where DKL represents the KL divergence, X refers to the set of all generated images, and Y
refers to the set of all classes. As mentioned in Section 2.2, the MobileNet score uses the
MobileNetV3 [12] network, whereas the original Inception score uses the Inception V3 [11]
network. In Equation (4), MSreal is MobileNet score from the real dataset, while MS f ake is
the one from the generated images.

It should be noted that MSreal is computed (i.e., pre-computed) before the HRGAN
training process. That is, before we train the proposed HRGAN, we apply the real dataset
to the evaluator, and compute MSreal by using Equation (5). Then, when we train the
HRGAN, we apply the fake dataset (as shown in Figure 1) and compute MS f ake by using
Equation (5) once again. Thus, MSreal in Equation (4) is essentially a constant when we
train the HRGAN. It should also be noted that the sample space for MSreal is the whole real
dataset, whereas the sample space for MS f ake is one mini batch of the generated samples.

It is important to note that the MobileNet score of the real dataset is necessary for the
proposed method. However, according to the paper [21] addressing the Inception score, an
image with a high score does not always guarantee a better quality of images. Therefore, it
is critical to maintain a balance between the two objectives of the generator in order not to
overfit the evaluator.

Thus, a maximum is used for LMS in the proposed method to avoid that the MobileNet
score of generated images exceeds those for the real ones, and MSreal serves as the maxi-
mum value. In other words, the proposed method aims to maintain the MobileNet score of
generated images as similar as possible to that of real images.

2.5. Training

For both the generator and the discriminator, the Adam optimizer [22] is used. The
proposed HRGAN also adopts the spectral normalization method [23] for stable training.
The learning rates for the generator optimizer and the discriminator optimizer are set
to 1.0 × 10−4 and 2.0 × 10−4 [10], respectively. The hyperparameters (β1, β2) that we
used for Adam optimizers are (0.0, 0.99). While both the real and generated images are
required in training the discriminator, only the generated images are required in training
the generator. As a result, the batch size for the generator is set to 128, while the batch size
for the discriminator is set to 64. The total number of iterations for the parameter updates
in both networks is set to 105. For every single iteration during training, the generator
updates parameters to minimize the objective function consisting of the adversarial loss
and the MobileNet score loss. More detailed training algorithms are shown in Algorithm 1.
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Algorithm 1 HRGAN training algorithm.

Model: D: discriminator. G: generator. Gd: generator down-sampling. E: pre-trained
MobileNetV3-small.
Parameter: θdisc: discriminator parameters. θgen: generator parameters.
Input: x: data set. y: one-hot encoded label vector. z: random noises sampled from a normal
distribution. w: one-hot encoded label vector converted from random integer sampled from a
normal distribution.
Require: α: the learning rate of the generator. m: discriminator batch size. n: the ratio of
discriminator and generator backpropagation. cls: the number of classes. MSreal: the
pre-calculated MobileNet score of real data set. HR: the ratio of high-resolution output images
and real images.

1 : Initialization θdisc, θgen ← Xavier uniform
2 : while θgen has not converged do
3 : for i = 0, · · · , n do
4 : Sample

{
x(i)
}m

i=1
∼ Pr a batch of images from the real data set.

5 : Sample
{

y(i)
}m

i=1
∼ Pr a batch of one-hot label vectors from the real data set.

6 : Sample
{

z(i)
}m

i=1
∼ p(z) a batch from a normal distribution.

7 : gradθdisc
← ∇θdisc


1
m

m
∑

i=1
min

(
0,−k + D

(
x(i), y(i)

))
+ 1

m

m
∑

i=1
min

(
0,−k− D

(
Gd

(
z(i), y(i)

)
, y(i)

))


8 : θdisc ← θdisc + 2α·Adam
(
θdisc, gradθdisc

)
9 : end for
10 : Sample

{
z(i)
}2m

i=1
∼ p(z) a batch from a normal distribution.

11 : Sample
{

w(i)
}2m

i=1
∼ U(0, cls− 1) ∈

z a batch of one-hot label vectors from a uniform distribution.
12 : P

(
c
∣∣∣z(i), w(i)

)
← softmax

(
E
(

G
(

z(i), w(i)
)))

13 : P(c) ← 1
2m

2m
∑

i=1
P
(

c
∣∣∣z(i), w(i)

)
14 : MS f ake ← exp

(
1

2m

2m
∑

i=1

cls
∑

c=1
P
(

c
∣∣∣z(i), w(i)

)
log

P(c|z(i) ,w(i))
P(c)

)

15 : gradθgen ← ∇θgen

 − 1
2m

2m
∑

i=1
D
(

Gd

(
z(i), y(i)

)
, y(i)

)
+max

(
0, log

(
MSreal ·

√
HR
)
− log MS f ake

)


16 : θgen ← θgen − α·Adam
(

θgen, gradθgen

)
17 : end while

3. Results

We conducted several experiments to evaluate the efficiency of the proposed HRGAN.
In the experiments, we used not only the HRGAN-64 and HRGAN-128 networks explained
in Section 2.3, but also used the HRGAN-32 network that is designed to synthesize images
of the same size as the real images. The HRGAN-32 generator has the same structure
as the HRGAN-128 generator in Figure 3a, except that it lacks the last two up-sampling
residual blocks.

We trained the HRGAN-32 network in two ways in order to validate the effectiveness
of targeting the MobileNet score. Specifically, we compared the HRGAN-32 models with
and without the MobileNet score term. The CIFAR10 and CIFAR100 datasets are used in
this evaluation. Table 1 shows the Inception scores of the HRGAN-32 models. As shown in
the results, targeting the MobileNet score demonstrates performance gains of 0.33 and 0.78
in CIFAR10 and CIFAR100 datasets. Therefore, the effectiveness of the proposed target can
be verified since the Inception score is improved. Such an improvement can be achieved by
enforcing the generated data and the real data to have similar output features obtained by
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the evaluator. Since the evaluator was trained with a different large-scale dataset, i.e., the
ImageNet dataset, it can also be interpreted that the generated images and the real images
have common features in terms of generalized shapes of objects.

Table 1. The Inception scores for HRGAN-32 with and without the backpropagation of the proposed
score.

Dataset Model Inception Score Improvement

CIFAR10
w/o LMS 8.44 ± 0.08

0.33with LMS 8.77 ± 0.09

CIFAR100
w/o LMS 8.81 ± 0.12

0.78with LMS 9.59 ± 0.16

In addition, to evaluate higher resolution images produced by HRGANs, we per-
formed experiments with HRGAN-32, HRGAN-64, and HRGAN-128 in terms of the
Inception score. As in the previous experiment, we obtained the Inception scores during
the training, both with and without the MobileNet score in Equation (5). We also em-
ployed the same condition for the experiment since such a comparison can directly provide
quantitative performance improvement by the proposed method.

Table 2 shows the Inceptions scores for the HRGANs evaluated with the CIFAR10.
As a result, the Inception score increased as higher resolution images were produced. For
instance, with the proposed evaluator, HRGAN-64 achieved an Inception score of 10.62,
which outperforms HRGAN-32 by 1.85. Such a result demonstrates that the proposed
scheme of generating higher resolution images is valid and can produce more recognizable
images. In addition, the improvement of the Inception score is more significant when
the MobileNet score is used for the training of the generator. This result validates the
effectiveness of the proposed method using the evaluator and score in HRGAN.

Table 2. The Inception scores with and without the Inception score loss.

Model Inception Score without LMS Inception Score with LMS Improvement

HRGAN-32 8.44 ± 0.08 8.77 ± 0.09 0.33
HRGAN-64 8.69 ± 0.11 10.62 ± 0.12 1.93

HRGAN-
128 - 12.32 ± 0.11 -

Although it is possible to use additional up-sampling layers to increase the resolution
of generated images, the improvements of the Inception score tend to saturate as up-
sampling layers are added. For example, HRGAN-64 outperforms HRGAN-32 by 1.85, but
the improvement of HRGAN-128 compared to HRGAN-64 was 1.70. Such a result signifies
that there is a form of limitation to generate higher resolution images than a certain critical
point while the model successfully produces ×2 and ×4-scaled synthetic images.

Similarly, it is expected that the other parameters in HRGAN can affect the Inception
performance. For example, as mentioned in the previous sections, since a better evaluator
can enhance the performance of HRGAN, the performance can further increase when
superb evaluators are employed while the MobileNet is used in this study owing to a
hardware capacity issue. Therefore, it is anticipated that an improved Inception score can
be obtained by HRGANs with superb evaluators if conventional and better hardware can
be obtained in future research.

In addition, because the Inception score is computed as Equation (5) with the Inception
network instead of MobileNet, the saturation of the Inception score concerning the resolu-
tion of generated images is natural. The input size of the Inception network is 299 × 299.
Therefore, the nearest up-sampling method is commonly used to compute the Inception
score and employ generated images as the inputs of the Inception network. In this process,



Sensors 2022, 22, 1435 11 of 14

generated images with higher resolution are noticeable because they have more features
that can be recognized by the Inception network. However, the Inception score is saturated
as the resolution of generated images approaches 299 × 299. Thus, it can be interpreted
that this saturation is caused by the limitation of the Inception score.

Tables 3 and 4 compare HRGANs with existing models in terms of Inception score.
The Inception scores with the CIFAR10 and CIFAR100 are compared in Tables 3 and 4,
respectively. As shown in the comparisons, the Inception score of the proposed HRGAN-
128 outperformed the other existing models. For example, HRGAN-128 with the CIFAR100
dataset demonstrated an Inception score of 10.90, which outperforms SNGAN [23] by
17.2%. Interestingly, HRGAN-128 with the CIFAR10 produced images having a higher
Inception score compared to real images. Such a result also indicates that the proposed
method has the potential to obtain superb quality synthetic images by enhancing the
resolution of images.

Table 3. The Inception scores of CIFAR10 dataset. The bold indicates the proposed HRGANs.

Model Inception Score

Real Images 11.26 ± 0.13

Conditional DCGAN [6] 6.58
AC-WGAN-GP [5] 8.42 ± 0.10

CAGAN [24] 8.61 ± 0.12
Splitting GAN [25] 8.87 ± 0.09

BigGAN [14] 9.22
MHingeGAN [26] 9.58 ± 0.09

HRGAN-64 10.62 ± 0.12
HRGAN-128 12.32 ± 0.11

Table 4. The Inception scores of CIFAR100 dataset. The bold indicates the proposed HRGANs.

Model Inception Score

Real Images 14.91 ± 0.20

ControlGAN [27] 9.32 ± 0.11
SNGAN [23] 9.30 ± 0.08
HRGAN-64 10.34 ± 0.11

HRGAN-128 10.90 ± 0.22

To compare generated image samples with different resolutions in the view of image
quality, randomly generated CIFAR10 images by HRGAN-32, HRGAN-64, and HRGAN-128
are shown in Figure 5. As mentioned in the previous section, the proposed evaluator adjusts
fine-grained features of images. As shown in the images, it is obvious that the edges of the
objects in HRGAN-64 and HRGAN-128 were sharpened so that the images became more
natural, even if the resolutions are higher than the original images. Consequently, it can be
interpreted that such a fine-tuning process for generated images by the evaluator enhances
the recognizability of the generated higher resolution images. Additionally, to demonstrate
the continuity of generated images with respect to the latent space, generated images for
interpolated latent vectors are shown in Appendix A (Figure A1).
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4. Conclusions

While recently introduced GAN models successfully generate synthetic images that
have similar features to real images, there has been a constraint in that the maximum
resolution of generated images is limited to the same resolution of real images. The
proposed HRGAN handles this limitation using a pre-trained network called evaluator
and a score for the training of the generator. In the experiments, HRGAN demonstrated
the possibility of generating higher resolution images than the original images. In addition,
the HRGANs outperformed existing models in terms of the Inception score, resulting in
the generation of more recognizable images by increasing the resolution.

Although HRGAN showed a promising result to generate higher resolution images,
there are several limitations in the model. First, the performance of the model can be
changed and determined by the pre-trained evaluator. We used the MobileNet due to
the time complexity of the GAN training, but a better evaluator presents the possibility
to further enhance the performance of HRGAN. Second, while the model successfully
generates synthetic images that have four times higher resolution than real images, a
more enhanced resolution of images can hardly be obtained. These limitations should be
investigated further in future work.
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