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Abstract: Radio localization and radio positioning are relevant research fields for many telecommuni
cations technologies. Usually, the solutions proposed by the literature rely on adaptive techniques
related to some parameters that can be extracted from the received signal in cooperative device
tracking. In this paper, we explore the artifacts that may be introduced into Angle-of-Arrival
estimation based on phase interferometry, and we introduce a simple technique to mitigate their
impact. Details of the mathematical discussion are presented and the approach is experimentally
validated. The experimental results are compared with raw data to demonstrate the effectiveness of
the proposed technique.
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1. Introduction

Localization and positioning systems are very popular topics in the scientific community,
given their relevance to many telecommunication applications. Positioning is an enabling
factor for many activities, such as supporting users’ everyday life through navigation
assistance systems [1], emergency response facilitation, collision avoidance in autonomous
driving, defense purposes, and multirobot coordination tasks [2]. An alternative field
of application for localization systems is telecommunications [3]. An example of this
application is represented by the Massive MIMO systems (mMIMO) [4]. In fact, thanks
to localization, it is possible to implement flexible communication pairs able to optimize
channel capacity and the overall user experience by focusing the antenna system radiation
pattern on a given direction or having multiple simultaneous, adaptively generated, very
narrow beams pointing in different directions [5]. Other examples of applications are asset
tracking, or in general, target tracking, and navigation assistance [3].

Adaptive algorithms require a variable to which relate the process. In particular, if it
is necessary to focus the antenna beam towards a given direction, the variable is usually
this direction. Over the decades, scientists have developed many techniques to extract the
location of a given device from the physical properties of the electromagnetic (e.m.) signal
it sends. One possible solution is represented by the Time of Arrival (ToA) or on the Time
Difference of Arrival (TDoA) estimation of the signal at the receiver side [6]. Thanks to
this timing information, it is possible to localize a device in 2D or 3D (depending on the
number of receivers) by triangulation procedures. The choice among these two mentioned
techniques depends on the achievable level of synchronization between transmitter and
receiver(s). In fact, ToA requires knowledge of the e.m. signal’s Time of Departure (ToD)
from the transmitter, or in general, its Time of Flight (ToF), and this is not always possible
to measure. On the other hand, TDoA asks for multiple synchronized receivers, but
no synchronization is required with the transmitter. Phase of Arrival (PoA) position
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estimation relies on the phase estimation, with which a given signal is received (or the
phase difference between multiple receivers) [7]. They are mainly employed in the RFID
positioning [8,9]. However, it is necessary to know the phase of the transmitted signal.
Furthermore, particular attention must be put on the spatial/angular periodicity of the
phase, that is 2π-periodic with distances that are multiples of the signal wavelength λ.

In this paper, we focus on the Angle of Arrival (AoA) estimation-based positioning.
We define the AoA as the angle subtended by the broadside direction of a receiving array
of antennas and the direction from which the received signal comes. Like in the TDoA
case, multiple receivers are necessary for the estimation of the AoA. In particular, for the
majority part of the implementations, the AoA information is extracted through an array of
antennas. In fact, it is possible to link the AoA information to the phase difference between
the signals arriving at the elements of the antenna array. Let us consider the simplest case of
a Uniform Linear Array (ULA) of antennas with a spacing d and designed to operate at the
central frequency f , whose associated wavelength in air is λ. Then, under the assumption
of being in the far-field region, the phase difference between two array elements {ij} ∆ϕij
due to the AoA ϑ is

∆ϕij(ϑ) =
2π

λ
(i− j) d sin ϑ (1)

In order to estimate the AoA, one of the simplest techniques is the phase interferometric
approach [10], which is particularly interesting for full-hardware AoA estimation systems
such as the one proposed in [11]. The technique consists of simply reducing the AoA
estimation to the cascade of a phase difference estimation, followed by the inversion of the
phase–AoA relationship. Hence, in the ULA case, starting from (1), the estimated AoA due
to the measured phase shift between antennas couple {ij} ϑ̃ij is:

ϑ̃ij = arcsin
(

λ ∆ϕij(ϑ)

2π d (i− j)

)
(2)

When dealing with this inversion, even small errors in the phase estimation step can
corrupt the precision of the AoA value. In fact, let us suppose that a small phase estimation
error δ is added to the real value (2). The AoA ϑ estimation ϑ̂ij becomes

ϑ̂ij = arcsin
(

λ (∆ϕij(ϑ) + δij)

2π d (i− j)

)
(3)

Since d = ψ λ, ψ < 1 for minimizing side-lobe effects [12], and δ � 2π, given that the
expected phase errors are relatively small, we can rewrite (3) as

ϑ̂ij = arcsin
( ∆ϕij(ϑ)

2π ψ (i− j)

)
+ arcsin

(
δij

2π ψ (i− j)

)
= ϑ̃ij + errij(ϑ) (4)

The aim of this paper is to propose a linear technique to minimize the term errij(ϑ)
in order to correct the estimation to be as close as possible to the optimal value, which is
represented by the theoretical AoA values. As will be explained in Section 2, there are
many contributions to the phase error generation. The technique embeds in one single
complex-valued matrix, the α-matrix, the amplitude, and the phase of the isofrequencial
signals to be employed for the compensation of those effects.

Contributions and Paper Organization

The main contributions offered by this study are here summarized:

• We mathematically introduce and experimentally prove, with a measurement campaign,
the effectiveness of an artifacts linear compensation technique that can be employed
when adopting the phase interferometric approach to AoA estimation.
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• The technique embeds in one single computation all the possible mismatches due to
systematic errors and a first-order (linear) approximation of the mutual coupling effects
acting on the antenna array that can damage the integrity of the phase information.

• The matrix can be computed once and its values remain valid for the employed
hardware and setup. Moreover, given the linearity of the approach, this is simple and
fast to be implemented.

• Given the generality of the assumptions and the description, the technique can be
implemented either in digital form by complex-number signal processing, or in
the analog domain by means of Variable Gain Amplifiers (VGA) and networks of
phase shifters.

The rest of the paper is organized as follows. In Section 2 we present in detail the
analysis of the possible sources of error in an AoA estimation system based on phase
interferometric approach. Later on, in Section 3, we present the theory behind the proposed
error compensation technique. In Section 4, we present the experimental results of two
AoA measurement campaigns conducted in an indoor environment. In particular, we first
present the AoA estimation results in absence of the compensation technique, and then
what we obtained by applying the technique. Furthermore, an experimental evaluation of
the coherence time of the computed coefficients and on the compensation repeatability is
furnished. Hence, conclusions close this work.

2. Problem Description

In this section, we discuss the possible sources of error when considering an AoA
estimation system based on a phase interferometric approach. We aim to keep our
discussion as general as possible, so we only assume that a separate RF front end is
connected to any of the antennas composing the array used for the AoA estimation.

The RF front end is in charge of amplifying, down-converting, and filtering the
received signal. A block diagram is proposed in Figure 1. We suppose every discrete
component of the RF front ends (i.e., amplifiers, mixers, filters) to be nominally identical
to the others. This choice is made because depending on the component quality and
technology, the experimental results, and thus the sources and entity of artifacts, can be
very different from the others. However, we focus our attention on two inevitable issues:
the interconnection of those discrete elements and the mutual coupling of antenna elements
in the array. For the first problem, we will consider the systematic error generated by signal
paths’ length mismatches, and for the second issue, we will analyze the source of error
coming from the mutual coupling of array elements. Strictly speaking, the latter is not
a systematic error by its very definition, but we will approximate it as a systematic one,
capturing what happens in a given position and trying to extend it to the others.

BPF BPF

BPF BPF

L.O.

BPF BPF

BPF BPF

Antenna 0 Antenna 2Antenna 1 Antenna 3

s (t)0 s (t)2
s (t)1 s (t)3

Figure 1. Block diagram depicting a 4-element ULA connected to a 4-channel RF front end with
its basic sub-blocks for the amplification, down-conversion and band-pass filtering of the received
signal, prior to the AoA estimation.
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2.1. Phase Errors Due to Different Length of Signal Paths

As mentioned before, the different cable lengths and/or signal paths on the PCB
interconnections introduce an error. In fact, it is important to remark that at higher
frequencies, even small length mismatches impact on the phase of the traveling signals.
Those length mismatches can occur for design errors, realization process tolerances, or in
the case of cabling, by simply not choosing cables of the same length. Let us imagine two
identical lines of length l, in which a signal of frequency f travels. By considering the two
realizations of the lines l1 and l2 we see how l2 = l1 + ∆l, hence, the line l2 introduces a
delay in the propagation of the signal. The introduced time delay is

τ ≈ ∆l
c
√

ε (5)

with ε the effective dielectric constant of the propagating medium. Remembering that a
time delay τ corresponds to a phase shift of 2π f τ, we obtain that the phase error introduced
by the lengths mismatch err∆l is

err∆l ≈ 2π f
∆l
c
√

ε (6)

Therefore, a length mismatch introduces a systematic error on the phase estimation that is
linearly increasing with the difference in length of the paths.

2.2. Phase Artifacts Due to the Mutual Coupling of the Antenna Array Elements

As already mentioned in the introduction, the setup of an AoA estimation system
usually is based on an array of antennas. Microstrip patch antenna arrays are very popular
in telecommunication systems, offering a good trade-off between fabrication costs and
radiation efficiency. However, this implementation also brings some contributions to the
estimation errors due to the mutual coupling between the array elements.

Let us consider an array of microstrip patch antennas with spacing d. For sake of
simplicity, we can consider the case of an ULA. According to what is described in [12], even
choosing different alignments for the array elements leads to different mutual coupling
decay speeds. In fact, a horizontal arrangement leads to higher decays than the vertical one.

It is well-known in the literature that mutual coupling is due to the near fields that
exist along the air–dielectric interface [13]. If we call ρ the radial coordinate of the radiated
field from the equivalent current element J, there are four possible field contributions [12]:

• Space waves, with ρ−1 asymptotic radial decay;
• High-order waves, with ρ−2 decay;
• Surface waves, with ρ−0.5 decay;
• Leaky waves, with e−λρ · ρ−0.5 decay;

From the infinite and infinitesimals analysis, on small distances (ρ→ 0, i.e., ρ� λ),
the surface and leaky waves are dominated by space and higher-order waves. Hence, the
two former dominate on larger spacing, i.e., on large-size arrays their contribution cannot
be supposed to be negligible.

Surface waves always exist and have 0 cut-off frequency [14]. However, their strength
depends on the substrate thickness [13]. The surface wave couples with the feeding TEM
mode as soon as the frequency increases. The lowest mode that can be coupled is the TM0,
then the TE1, TM2, ... surface modes [13]. The cut-off frequencies are [13]:

fc(n) =
nc

4H
√

εr − 1
, n = 0, 1, 2, · · · (7)

for a substrate with thickness H and relative dielectric constant εr. For thin substrate, the
contribution is negligible. However, since thicker and low-density substrates are usually
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chosen to increase the bandwidth and the gain of a microstrip antenna [12], the surface
wave contribution may be significant.

3. Theory of the α-Matrix

In order to simplify our model, let us consider a cluster of three antennas for the
compensation procedure. The hypothesis does not impact the compensation effects on
systematic errors, such as the path length mismatches. For what concerns antenna mutual
coupling, we saw in the previous section that all the antenna elements in the array mutually
interact. However, this interaction has a rapid decay. That given, our hypothesis for
simplification is well-posed.

From a general point of view, two types of ports are present, the electrical and the
radiative ones. The electrical ports are the physically accessible ports of the system (i.e.,
the ones from which the signal can be connected to a signal processor or a measurement
unit). For what concerns the radiative ports, we can define them as the equivalent ports
in the radiative plane, i.e., the ports on which the incident waves arrive when the ULA
is in receiving mode. For an N-elements ULA, we can identify N radiative ports and N
electrical ports.

For sake of simplicity, let us suppose a CW signal impinging on the array as a plane
wave of frequency f . The equivalent voltage signal we measure at each electrical port of
impedance Z0 is represented by the phasor Ṽi, i = 1, 2, 3. In particular,

Ṽi = |Ṽi| ej2π f t ej∠Ṽi ∈ C (8)

Analogously, the incident power wave to the radiative port i has an equivalent voltage
represented by the phasor Vi.

We describe the mutual coupling phenomena by means of a function cij(·) ∈ C that
represents the coupling function associating the coupling source j and the coupled element
i, modeling the coupling between radiative and electrical ports. In particular, it is simple to
understand how the voltage signal at the i-th electrical port can be approximated as the
composition of the contributions coming from the i-th antenna element and all the other
contributions due to the coupling with the other two antennas, so that:

Ṽi =
3

∑
j=1

cij(Vj), j = 1, 2, 3 (9)

Let us define the coupling function to be a linear complex-valued map cij : C → C
such that

cij : x 7→ αijx, αij ∈ C (10)

Hence, we can rewrite (9) as

Ṽi =
3

∑
j=1

αijVj, j = 1, 2, 3 (11)

or in matrix form, Ṽ1
Ṽ2
Ṽ3

 =

α11 α12 α13
α21 α22 α23
α31 α32 α33

V1
V2
V3

 (12)

The interaction between the array elements by means of the α−values is shown in Figure 2.
The directions of the arrows evidence the role of the antennas in the coupling, that is, the
pointer is the source of the coupling (j) and the pointee is the subject of the coupling (i).
Ideally, in absence of coupling

(αij = 1 ⇐⇒ i = j) ∧ (αij = 0 elsewhere) (13)
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so we can fix in our model αii = 1. Note that this is also true when amplifiers or attenuations
are present in the chain, since we are supposing those to be equal for each channel.

For symmetry reasons which are evident in Figure 2, we can further simplify the
model. In particular, if we hypothesize a symmetry with respect to the broadside axis, we
can state that

α12 = α32 (14)

Figure 2. The 3-element subarray under test (a) and the interaction between the antenna array
elements considered in the model (b).

Therefore, by writing the relationships in matrix form, it is possible to obtain:Ṽ1
Ṽ2
Ṽ3

 =

 1 α23 α13
α23 1 α23
−α13 −α23 1

V1
V2
V3

 (15)

which is equivalent to writing it in a more compact form

Ṽ = αV (16)

Note that with this formulation we also included all the possible systematic errors that are
present and embedded in the Ṽi.

We aim to find the matrix α in order to recover the uncoupled voltages on the radiative
ports V. However, we now have three equations and four unknowns, thus leading to
∞1 possible solutions. In order to find a new constraint, we remember that an incoming
signal from the broadside direction ϑ makes the receiving elements on the array experience
different phase shifts according to their position. Let us take the central antenna i = 2 as
the reference. Hence, recalling (1),

Vi = V2 exp {j∆ϕi2(ϑ)} i = 1, 2, 3 (17)

the system (16) now becomes
Ṽ = V2 α Φ(ϑ) (18)

being
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Φ(ϑ) =

exp {j∆ϕ12(ϑ)}
1

exp {j∆ϕ32(ϑ)}

 (19)

By performing a calibration phase, it is possible to determine the α-matrix. In fact, if
for example, we consider the broadside direction ϑ = 0,

ϑ = 0 =⇒ ∆ϕi2(ϑ) = 0, i = 1, 2, 3 (20)

As a consequence, we evaluate the αij values by the ratio between the Ṽi.
Once the α-matrix has been computed, for each broadside position ϑ, the compensation

is obtained by:
V = α−1Ṽ (21)

By its definition, the α-matrix is valid around a small enough interval of frequency,
thus being valid for narrow-band signals. Moreover, it is possible to prove that, supposing
an ideal downconversion stage, the α-matrix computed at the Intermediate Frequency
(IF) is equal to the one that could have been computed at RF, with the great advantage of
relaxing the complexity of the measurement hardware (the proof is in the Appendix A).

Note that along with the mutual coupling compensation, we are also unbiasing the
measurement from the systematic errors by imposing the relationship (20).

4. Experimental Results

In this section, we prove the effectiveness of the proposed approach with an experimental
measurement campaign, by analyzing the results and applying the proposed technique to
the output data. The section organization is as follows. First, we describe the experiment
setup, which will be the same for all the successive discussions. Then, we analyze the
estimated AoAs without applying any compensation. After that, we calculate the α-matrix
and analyze the time consistency of the computed values. Then, we will consider the
effective compensation introduced by the α-matrix and compare it to the pure estimated
AoA values in terms of absolute error with respect to the Ground Truth (GT) AoA values.

4.1. Experiment Setup

The experiment was set up in an indoor environment assuming a free Line-of-Sight
(LOS) connection. The operating frequency was chosen to be fRF = 3.30 GHz to prevent
interferences from other telecommunications systems as Wi-Fi, Bluetooth, and so on. The
transmitter was operated with a fRF single-tone frequency and a −3 dBm power, using
a microstrip antenna. On the receiving side, we set a four-element ULA of microstrip
antennas with spacing d = λ/2, where λ is the open-air wavelength associated with
fRF. Each element was connected to four nominally identical RF front-ends to amplify,
down-convert and filter out the received signal to fIF = 210 MHz. We employed an
ADL5611 for the amplification stage and a custom-designed 5th order Chebyshev band-pass
filter with center frequency 150 MHz and 80 MHz bandwidth. The output signals were then
sampled with a 12-bit digital oscilloscope with 1 GHz bandwidth and 5 GS/s sample rate.
The samples were then acquired on a 0.5 µs time window and processed with a custom
MATLAB script.

The transmitter was placed at broadside distances lk = {2.10, 3} m, both of them
greater than the Fraunhofer distance, allowing the wave to be considered plane. Then,
each measurement was taken by translating in the direction parallel to the array, starting
from the array center position, taken as reference. The relative position for the distance
l with respect to the array center position for experiment j is xj. For each xj we acquired
50 snapshots (one every 2 s). The GT angles were computed as

GT(xk) = arctan
(

xk
lk

)
180
π

(22)
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In Table 1, we summarized the mean value of the signal-to-noise ratio (SNR) of all the
positions for each experiment.

Table 1. Average SNR values for channels and experiments.

Exp# Average SNR [dB]

CH1 CH2 CH3 CH4 AVG

1 29.55 30.61 28.56 29.54 29.56

2 28.87 31.20 27.26 28.17 28.88

4.2. AoA Estimation without Compensation

The AoA estimation was conducted by employing the already-introduced phase
interferometric approach. The phase difference values were extracted through the algorithm
described in [15]. For an N-element array, we achieved, in far-field, up to Q AoA estimations
for the same GT angle, by taking the distinct Q couples of antennas and properly computing
the phase difference, with Q

Q =
N

∑
j=1

(N − j) (23)

Accordingly, we obtained the following AoA values by averaging on a couple-by-couple
basis the estimated AoAs, to improve the precision. The results are summarized in
Figures 3 and 4 for the experiments 1 and 2, respectively.
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Figure 3. AoA data concerning Exp.#1. In detail, the AoA were computed thanks to the couples
{21},{32},{43} and their average.
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Figure 4. AoA data concerning Exp.#2. In detail, the AoA were computed thanks to the couples
{21},{32},{43} and their average.

The obtained values were compared to the theoretical ones (the Ground Truth angles, GT).
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In Table 2, we summarized the statistics regarding the computed absolute errors.
In particular, the absolute error on the AoA estimated with the antenna array couple {ij}
during the experiment k for the broadside position xk is computed as

errk
{ij} = |GT(xk)−AoA{ij}(xk)| (24)

As expected, we obtained better results by averaging the values, in terms of both
average and error dispersion. However, the results are still biased by the presence of
non-negligible error components.

Table 2. Statistic indexes on the AoA estimation made without calibration.

errk
21 [deg] errk

32 [deg] errk
43 [deg] errk

avg [deg]

avg std avg std avg std avg std

Exp#1 2.06 1.67 3.68 1.76 3.64 1.75 1.81 0.72

Exp#2 2.25 1.69 3.32 1.74 4.36 3.07 1.93 0.89

4.3. Computation and Analysis of the α-Matrix

As described in Section 3, the α-matrix was computed starting from the measured
values when the transmitter is in the array broadside center position. Since the method is
defined for three contiguous antennas, we chose to apply it to the subarray {2, 3, 4}. The
α-matrix computation is demanded to a MATLAB script.

We assumed the α-matrix to be computed once for all the successive measurements,
with a unique value. We want to prove here this assumption. To do that, first, we studied
the behavior of its coefficients in the time domain, during the acquisition time of one
experimental sample. We took the first acquisition of Exp#1 as the reference. Concerning
the amplitude, it is normally distributed around the mean value, as shown in Figure 5.

In particular, as described in Table 3, the standard deviation value being an order
of magnitude lower than that of the mean value, we can assume the mean value to be a
good approximation of the dynamic behavior. Furthermore, in terms of phase values, as
seen in Figure 6 they expose the same statistical properties. We can then conclude that the
computed mean values for the α-matrix amplitude and phases are a good approximation
of the overall dynamic behavior during the acquisition time window.

Table 3. Statistical indexes of the amplitude and phase of the α-matrix coefficients on the 50 snapshots
of the single experimental calibration point.

avg(| · |) [dB] std(| · |) [dB] avg(∠·) [rad] std(∠·) [rad]

α23 1.17 0.06 −3.13 0.007

α13 2.13 0.07 −0.13 0.008

We now prove that the α-matrix computation is valid for the successive measurements.
In other words, we show how the compensation introduced by the matrix is usable for
the successive samples after the calibration phase. To do that, we took the compensation
errors for the center position for each sample and for each antenna couple {23}, {43}.
The results are shown in Figure 7, where it is possible to see how the phase errors for
the uncompensated values are not stable, while the compensated values are stable for the
entire duration of the experiment, except for a few outliers.
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Figure 5. Amplitude values for the α-matrix coefficient during an experimental snapshot.
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Figure 6. Phase values for the α-matrix coefficient during an experimental snapshot. In particular, in
(a) phase values for the α23 coefficient and in (b) phase values for the α13 coefficient.
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Figure 7. Analysis of the repeatability of the phase adjustment for the center position
on 50 experimental samples, with errij representing the absolute error committed for the
antenna elements {ij} without compensation and errij-C the absolute error committed with the
compensation procedure.

4.4. AoA Estimation with Compensation

In this section, we analyze what we obtained using the α-matrix compensation on
the experimental samples. In particular, once the matrix was computed for the center
position, it was stored and recalled for the computation of the compensated waveforms for
each position. The compensated waveforms were then employed for the AoA estimation,
as previously described. The validation of this approach was performed with a custom
MATLAB script.

For both experimental trials Exp#1 and Exp#2, it is possible to see (in Figures 8 and 9)
how the compensation method allowed the estimation points to be near the expected ones.
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In particular, for Exp#2, the impact of the multipath phenomenon on the estimation is clear,
since greater distances between the transmitter and receiver allow for both decreasing the
power associated with the LoS component and relatively increasing the impact of the other
paths on the estimation value [16]. However, even in this case, the estimation quality is
improved by the adoption of the proposed technique.
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Figure 8. AoA estimation values for Exp#1 before and after compensation obtained for (a) the antenna
couple {23} and (b) the antenna couple {43}.

-0
.3

56

-0
.2

534

-0
.1

508

-0
.0

482

0.0
544

0.1
57

0.2
596

0.3
622

0.4
648

0.5
674

0.6
7

-20

-15

-10

-5

0

5

10

(a)

-0
.3

56

-0
.2

534

-0
.1

508

-0
.0

482

0.0
544

0.1
57

0.2
596

0.3
622

0.4
648

0.5
674

0.6
7

-15

-10

-5

0

5

10

(b)

Figure 9. AoA estimation values for Exp#2 before and after compensation obtained for (a) the antenna
couple {23} and (b) the antenna couple {43}.

As it was conducted in the uncompensated case, we studied the impact of an averaging
operation between the estimated AoA values. The results are shown in Figure 10 for Exp#1
and in Figure 11 for Exp#2. As expected, the estimation quality improves even more: in
Exp#1, the estimated values are very close to the GT ones, while for Exp#2, the introduction
of the averaging better mitigates the estimation artifacts.
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Figure 10. Average AoA estimation values for Exp#1 before and after the compensation.
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Figure 11. Average AoA estimation values for Exp#2 before and after the compensation.

4.5. Comparison

We now compare the uncompensated and compensated AoA estimations. In order to
properly compare them, we employ the absolute error metric (24) introduced in Section 4.2.
We start by comparing the estimations made by antenna couples {23} and {43}. The results
and the percentage comparison with respect to the absolute errors committed without
the compensation procedure (see Table 2) are shown in Table 4. Table 5 shows the AoA
estimation errors obtained after averaging the estimated AoAs after the compensation for
the same antenna couples as before.

Table 4. Statistical indexes of the absolute AoA estimation errors after compensation for antenna
couples {23} and {43}.

errk
23 [deg] errk

43 [deg]

avg std avg std

Exp#1 1.78 −51.6% 1.47 −16.4% 1.66 −54.4% 1.49 −14.9%

Exp#2 2.51 −24.4% 2.25 −22.7% 2.57 −41.0% 2.16 −29.6%

Table 5. Statistical indexes of the absolute AoA estimation errors after averaging the estimated AoAs
after compensation for antenna couples {23} and {43}.

errk
avg [deg]

avg std

Exp#1 1.11 −38.7% 0.88 +18.1%

Exp#2 1.54 −54.0% 1.47 +39.4%

It is simple to see how the average absolute errors decrease by more than one half in the
Exp#1 case and more than one-fourth in the Exp#2 case. Additionally, standard deviations
experience a reduction in their value. For better understanding the compensation action, in
Figure 12 it is evident how the initial artifacts in the calibration points are almost canceled
by the compensation procedure.

If we consider the estimation made by averaging the AoA values after having been
compensated, we see how, even in this case, a good reduction in the average absolute
error is obtained. However, in this case, the compensation introduces a distortion of the
distribution of the errors around the mean value, even if it is not so strong in absolute terms.
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Figure 12. Time- domain comparison of the (a) acquired waveforms versus the (b) compensated
waveforms in the Exp #2 calibration point. The initial waveforms were preprocessed through a digital
FIR filtering and downconversion stage to the IF of 40 MHz for better view the results.

5. Conclusions and Future Work

We introduced the α-matrix, a linear technique for artifact correction and compensation
in phase-interferometric AoA estimation for radio localization. A mathematical discussion
was conducted in detail. This technique embeds in one single computation all the possible
mismatches due to systematic errors and first-order (linear) approximation of the mutual
coupling effects acting on the antenna array. There is great advantage in the α-matrix
being computed once forever in the calibration phase. Additionally, given the generality
of the description, the technique is suitable for being implemented either in the digital or
analog domain.

The experimental campaign validated the quality of the compensation introduced
by halving the error trend even in the indoor environment, where multipath has a strong
influence on the AoA estimation error.

We remark that by its definition, the α-matrix is valid around a small enough interval
of frequencies around the central one.

Future work can be conducted on extending the proposed approach to N-array
elements with different arrangements for the subarray employed in the compensation
and on cascading established, and efficient real-time AoA estimation algorithms to this
approach in order to validate the minimal timing impact introduced by the technique.
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Appendix A. RF/IF α-Matrix Equivalence

Theorem A1. Let α( fRF) the α-matrix computed at frequency fRF. Supposing an ideal downconversion
stage, its values are proportional to the ones computed at IF fIF, that is

α( fIF) = K̇ α( fRF), K̇ ∈ C (A1)

Proof. Starting from (16) we can write

α( fRF) = ṼRFV−1
RF (A2)
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with ṼRF, VRF being the same matrices as before, with the subscript denoting their relationship
with RF frequency, so prior to the downconversion. Moreover, we can also write

α( fIF) = ṼIFV−1
RF (A3)

since the downconversion stage is operated only on the signals coming from the electrical ports.
In order to prove the statement, we should find the phasor K̇ ∈ C such that

ṼRF = K̇ ṼIF (A4)

However, denoting the downconversion to frequency fIF as the linear operator ⊗ such
that

⊗ (s(t), fIF) = LPF{s(t) · exp [j2π ( fRF − fIF)t]} (A5)

with LPF{·} being a low-pass filtering operation performed by a Linear Time Invariant
(LTI) filter, we can see that

ṼIF = ⊗(ṼRF, fIF) (A6)

hence,
α( fIF) = ⊗(ṼRF, fIF)V−1

RF (A7)

and since ⊗(·) was defined as a linear operator over complex values, we can write

α( fIF) = K̇ ṼRFV−1
RF = K̇α( fRF) (A8)
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