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Abstract: The detection and defense of malicious attacks are critical to the proper functioning of
network security. Due to the diversity and rapid updates of the attack methods used by attackers,
traditional defense mechanisms have been challenged. In this context, a more effective method to
predict vulnerabilities in network systems is considered an urgent need to protect network security.
In this paper, we propose a formal modeling and analysis approach based on Petri net vulnerability
exploitation. We used the Common Vulnerabilities and Exposures (CVE)-2021-3711 vulnerability
source code to build a model. A patch model was built to address the problems of this model. Finally,
the time injected by the actual attacker and the time simulated by the software were calculated
separately. The results showed that the simulation time was shorter than the actual attack time, and
ultra-real-time simulation could be achieved. By modeling the network system with this method, the
model can be found to arrive at an illegitimate state according to the structure of Petri nets themselves
and thus discover unknown vulnerabilities. This method provides a reference method for exploring
unknown vulnerabilities.

Keywords: Petri net; Petri net model; CVE-2021-3711 vulnerability; cybersecurity

1. Introduction

With the development of society, the Internet plays an increasingly significant role in
our daily lives. However, there are numerous attackers on the network who try to use it to
perform illegal operations, such as illegal access, data leakage, data overwriting, etc. [1].
These actions can generate chaos in society and cause economic damage or even the loss of
life. Therefore, protecting network security has become a very vital issue.

In recent years, a number of solutions have been proposed around network secu-
rity. Protecting network security can focus on the following aspects: physical measures:
safeguarding essential network equipment (such as switches, large computers, etc.), devel-
oping rigorous rules and regulations for network security, and taking measures such as
radiation protection, fire prevention, and installation of uninterruptible power supplies;
access control: strict authentication and control of user access to network resources; data
encryption: this method keeps data secure and provides guaranteed secure deletion by
data encryption, which uses the identical key to encrypt all plain text and stores this key in
a separate block. It is also possible to combine machine learning algorithms with security to
protect information security [2]. The article takes a look at the vulnerabilities of the system
to find the location of the problem and repair it.

A vulnerability flaw in hardware, software, protocol implementation, or system se-
curity policy allows an attacker to gain unauthorized access and compromise the system.
Buffer overflow injection is one of the common and dangerous vulnerabilities among a
number of security bugs. A buffer overflow vulnerability was recently disclosed in the
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National Vulnerability Database called CVE-2021-3711. When a computer pads a buffer
with more bits than it can hold, this overwrites legitimate data. Ideally, the system would
check the data size and not allow characters that exceed the length of the buffer to appear.
However, most systems assume that the data width always matches the allocated storage
space, which creates the conditions for implementing the buffer overflow.

Common Vulnerabilities and Exposures (CVE) is a publicly available list of computer
security vulnerabilities. The CVE program is administered by MITRE Corporation and
funded by the Department of Homeland Security’s Cybersecurity and Infrastructure Secu-
rity Agency. The CVE content is brief and does not contain technical data or information
about risks, impacts, and remediation. These details appear in other databases, includ-
ing the U.S. National Vulnerability Database (NVD), the Computer Emergency Response
Team/Coordination Center Vulnerability Description Database, and various lists main-
tained by vendors and other organizations. A vulnerability is assigned a CVE ID when it
meets three specific criteria: it can be independently remediated; it is identified or docu-
mented by the affected vendor; it affects a codebase. In addition, CVE vulnerabilities have
scoring systems to assess the severity of the vulnerability. One is the Common Vulnera-
bility Scoring System (CVSS), a set of publicly available criteria for assigning numbers to
vulnerabilities to assess their severity. CVSS scores are used by the NVD, CERT, and other
agencies to assess the impact of vulnerabilities. Scores range from 0.0 to 10.0, with higher
numbers indicating a higher severity of the vulnerability. Vulnerabilities scoring 7.0 to 10.0
are typically considered high risk, those scoring 4.0 to 6.9 medium risk, and those scoring
0.0 to 3.9 low risk.

In August 2021, the NVD released the details of a vulnerability called CVE-2021-3711.
The flaw had a CVSS 3.1 score of 8.1, which is a critical vulnerability. A malicious attacker
provides the SM2 content for decryption to the application causing the attacked data to
overflow the buffer, thereby changing the contents of other data stored behind the buffer.
The vulnerability affects all versions of the Open Secure Sockets Layer (OpenSSL) prior to
1.1.1l, which contain the SM2 quotient algorithm.

In the case of vulnerabilities that have already appeared, the attack process can be
reproduced. Consider the details of the attack from the viewpoint of the attacker, and
find the vulnerability points of the system to be patched. However, predicting unknown
vulnerabilities and minimizing attackers’ attackable points is a direction in the field of cyber
security. In the paper, we take the modeling from the CVE-2021-3711 vulnerability and find
the problems. This modeling approach applied to systems or data streams provides the
possibility of predicting unknown vulnerabilities.

The Petri net modeling approach was chosen because of its inherent advantages
to abstract the vulnerability exploitation process. Intuitive modeling: Petri nets have
the ability to describe asynchronous concurrency with its graphical representation. the
structure of the Petri net mesh produces a partial order that makes describing asynchronous
concurrency possible, and the graphical representation is more consistent with the reality
of asynchronous concurrency. In addition, the token representing the Petri net token
configures the distributed state of the system, which informs the current dynamics of the
whole system. Theoretical support: The Petri net modeling approach is simulated according
to the vulnerability exploitation process. Because it does not involve the processing of
actual data, the model processing speed may be faster in most cases, thus providing
theoretical decision support for system vulnerability detection and effectively improving
network security.

In this study, we aimed to analyze network vulnerabilities through Petri nets with the
following contributions:

(1) Modeling the vulnerability exploitation process using Petri nets: In contrast to other
research works, such as the SQL injection attack analysis method proposed in the
study [3], depicting the attack process does not involve the underlying principles.
Therefore, in this paper, Petri nets were used to model the attack process from the
source code, and the model depicts the attack process in more detail;
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(2) System vulnerability detection: The accessibility of nodes in the Petri net model
was used to provide theoretical support for detecting unknown vulnerabilities and
generating vulnerability code;

(3) Experimental evaluation: In this paper, the time of the actual attack and the time when
the model first reaches the insecure state were counted in 10 groups, respectively. We
calculated their average time. The experimental results showed that the time of the
model simulating the attack was shorter than that of the actual attack and can achieve
ultra-real-time simulation.

This paper is organized as follows. Section 2 introduces work related to this paper. A
Petri net model of a vulnerability with CVE-2021-3711 is proposed in Section 3. Section 4
presents the model analysis, including SM2 ciphertext and ASN.1 encoding, the Petri net
model analysis of CVE-2021-3711, and the Petri net model with patch analysis of CVE-2021-
3711. Section 5 provides the experiment analysis, including the model analysis and an
example study. Conclusions and future work are proposed in Section 6.

2. Related Work

With the rapid development of computer network technology, people are increasingly
aware of the importance of network security. In this context, the research community
has proposed the analysis of network security from different perspectives. For instance,
the work in [4] proposed a new method to represent computer networks and intrusion
detection systems. Such an approach can effectively simulate network attack scenarios to
test and evaluate network security systems. The work in [5] presented an attack-trees-based
approach to information system security analysis. The attack trees contain social engineer-
ing attacks and attacks that require physical access control areas. The network security
analysis method based on software technology attacks was extended. The researchers in [6]
proposed a security situational awareness system with high real-time capacity and accuracy
in security trend prediction. The system satisfies the requirements for the analysis and
prediction of large-scale network security conditions. The study in [7] proposed a traffic
analysis tool. The tool was designed to provide scalable analysis and services for network
traffic data, allowing attackers to explicitly engineer their actions or hide attacks within
the broader normal activity, thereby improving network visibility and security. The work
in [8] developed a model to predict the timing of potential attacks. Such a model predicts
future malicious attacks with an average accuracy of 94.9% within a week by analyzing the
structural risk level of the malware distribution network, the connectivity of the malware
in question, and the timing of the malware.

However, vulnerabilities are discovered on computers so frequently that system ad-
ministrators are not immediately capable of patching all these flaws on hosts within the
network. Vulnerability analysis and detection are an effective way to counteract malicious
attacks and prevent them from committing harmful behaviors. In this context, researchers
have proposed detection techniques and analysis methods for different vulnerabilities.
The researchers in [9] proposed a machine learning approach taxonomy to detect software
vulnerabilities. Machine learning includes supervised learning, semi-supervised learning,
and deep learning. The work in [10] proposed a slice-based intelligent detection system for
binary code vulnerabilities. It can effectively improve the accuracy of binary vulnerability
detection. In the study of [11], a framework was extracted to detect and prioritize attacks
without patches. This framework uses probabilities to identify attack paths and classify
vulnerabilities. In [12], a neural-network-based approach was proposed to distinguish
vulnerabilities. Due to the inconsistency of information between attackers and targets,
vulnerabilities can be classified into known and unknown vulnerabilities. Existing re-
search has focused on the risk assessment of known vulnerabilities. However, unknown
vulnerabilities are more threatening and harder to detect.

To overcome the limitations of known vulnerability analysis, many analysis tech-
niques for unknown vulnerabilities have been developed. The study in [13] showed a
solution for unknown vulnerability risk assessment based on directed graphs, which fills
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the current gap in this research direction of investigation. In [14], the authors presented a
network hardening approach that gives a maximized security solution for unknown and
unfixable vulnerabilities by unifying the hardening options under the same model. The
researchers in [15] extracted a vulnerability syntax tree to predict unknown vulnerabilities
in software applications. The experimental results showed that the prediction rate, recall
rate, and accuracy rate were significantly improved.

We recall the basics of Petri net. The concept of Petri nets was first proposed by Carl
Adam Petri in his doctoral thesis in 1962. Since the first international seminar on Petri
net theory and application was held, the theory and application of Petri nets have been
continuously enriched and improved. The main analysis methods of the Petri net model
depend on: reachable tree, correlation matrix and equation of state, invariants, and analysis
simplification rules. Its vertical development is shown as follows: from the basic event
network, through the location change network, to the advanced network. Its horizontal
development is as follows: from the net without parameters to the time Petri net and
stochastic Petri net; from a general directed arc to a forbidden arc and a variable arc; from
the number of natural number markers to the number of probability markers; from atomic
transition to predicate transition and subnet transition.

Triple N = (S, T; F) presents a network structure. S is a finite set of places. T is a finite
set of transitions. F is a set of arcs, which are from the places to the transitions and from the
transitions to the places. The union of S and T is not empty, and the intersection of S and
T is not empty. Σ = (S, T : F, K, W, M0) is a Petri net system. S, T, and F have the same
meaning as above. K is the capacity function on the directed network. W is the weight
function on the directed network N. M0 is the initial recognition [16].

Many research methods have been based on Petri nets. For instance, the study in [17]
proposed a reward and penalty trust model for performance evaluation. The models
explain situations better than the classical models that are commonly used. The researchers
in [18] presented a framework based on Petri nets to analyze structural security in e-
business processes. This framework helps professionals study whether the structure of
e-business processes is secure. In [19], the author extracted a timed colored Petri net
to simulate security failure probability analysis. In view of the influence of different
numbers of attackers on the attack time, the corresponding modeling method based on
time color Petri net was presented in this paper. The security failure probability can
be obtained by comparing the duration of the attack process with the assumed security
check interval. The work in [20] proposed an integrated Bayesian-Petri net method to
quantify individual influence in domino effect scenarios. Research can protect resources
and minimize individual lives at oil and gas facilities.

Meanwhile, the modeling approach of Petri nets can be applied to network security
vulnerabilities. Wu R et al. [21] proposed a modeling approach based on hierarchical colored
Petri nets to simulate multi-stage attacks, which helps to understand the specific attack
process and take effective protection measures. Wang L et al. [22] proposed an approach
based on colored Petri nets, which investigates cache attacks and security mechanisms.
The results showed that this modeling approach can evaluate and compare the threat level
of cache attacks in computer environments with different security mechanisms. In this
study, the attack procedure of buffer overflow vulnerability CVE-2021-3711 was analyzed
by Petri nets for the purpose of maintaining network security.

In order to build a more detailed model, each major step in the source code of CVE-
2021-3711 corresponds to a place or a transition of the Petri net model. The model sets the
initial token value and the maximum capacity of each place. The attack procedure can be
simulated by the Tina software. The time of the actual attack is calculated and compared
with the time of the actual attack.

3. Petri Net Model of a Vulnerability with CVE-2021-3711

In this section, the article describes a model based on CVE-2021-3711. The vulnerability
affects all versions of OpenSSL before 1.1.1l that contain the SM2 algorithm. The reason for
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the existence of the flaw is that a chunk of memory is allocated when SM2 is decrypted,
and the result of the decryption may be larger than the capacity of that allocated memory,
resulting in an out-of-bounds memory write.

The model is based on the important steps of the CVE-2021-3711 attack process in
Figure 1. Fourteen places in the figure are described as shown in Table 1 and eleven
transitions as shown in Table 2. P1–P3 give the process of packet construction. P4 and P5
are the process of packet sending and receiving. P6–P9 are the process of packet decoding.
The initial token value is set at P0. The token will go through T0 to P1, P2, and P3,
respectively. The token of P2 can only go to one of T1 or T2. P1 and P3 contend for the
token of P2, and only one occurs under the same time point of P1 and P3. The token arrives
at T5 after P4 occurs in the sequence. P7 and P9 contend for the token of P8,one of which
occurs at T6 or T7. The token can be recycled after reaching P12 and returned to P0; the
token stops flowing after reaching P13. The flow of the token matches the attack process
of CVE-2021-3711. In order to provide the readers with the possibility to reproduce the
experiments of this paper, the download link is: https://github.com/funssie/ (accessed
on 19 December 2021). This project contains the main Petri net model txt documents that
appear in the article.

P0

P1

P2

P3

P4 P5 P6

P7

P8

P9

P10

P11

P12

P13

T0

T1

T2

T3 T4 T5

T6

T7

T8

T9

T10

Figure 1. Petri net model of a vulnerability with CVE-2021-3711.

Table 1. The meaning of places.

Places Description

P0 OpenSSL is a normal state
P1 Construct the SM2 packet legally
P2 Construct the SM2 packet state
P3 Construct the SM2 packet illegally
P4 Packets sent by the client state
P5 packets received by the receiver state
P6 The ready state
P7 Consistent state
P8 Get buffer state
P9 Inconsistent state
P10 Buffer security state
P11 Buffer overflow state
P12 System security state
P13 System insecurity state

https://github.com/funssie/
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Table 2. The meaning of places.

Transitions Description

T0 Attempted to inject
T1 Legal structure
T2 Illegal structure
T3 Check whether SM2 packets are sent
T4 Set X, Y = = 32 bytes
T5 Allocate memory
T6 Legal allocation
T7 Illegal allocation
T8 Injection of failure
T9 Injection of success

T10 Recycling token

4. Models Analysis
4.1. SM2 Ciphertext and ASN.1 Encoding

CVE-2021-3711 decryption involves SM2 ciphertext and ASN.1 encoding. To better
describe the relationship between the code and the model, this section describes the SM2
algorithm and the SM2 cipher text encoding of ASN.1.

SM2 is an elliptic curve public key cryptography asymmetric algorithm [23]. The al-
gorithm can be divided into a public key and a private key. If the public key is given to
others, it can be disclosed to a certain extent. If the private key is kept for yourself, it
must be kept secret. The public key can be calculated from the private key; computing
the private key from the public key is quite difficult, and at this stage, it is impossible
to achieve confidentiality.

Suppose the message to be sent is a bit string M, and “klen” is the bit length of M. In or-
der to encrypt plaintext M, User A, as the encryptor, should perform the following operations:

- A1: Use a random number generator to generate random number k ∈ [1, n− 1];
- A2: Calculate the elliptic curve point C1 = [k]G = (x1, y1) ([k]G stands for k ∗ G), and

convert the data type of C1 to a bit string;
- A3: Calculate the elliptic curve point S = [h]PB; if S is an infinite point (h is a cofactor

of n), then output error and exit;
- A4: Calculate the elliptic curve point [k]PB = (x2, y2), and convert the data type of

coordinates x2 and y2 to a bit string;
- A5: Calculate t = KDF(x2 ‖ y2, klen); if t is an all 0 bit string, return A1 (KDF is the

key derived function);
- A6: Calculate C2 = M⊕ t;
- A7: Compute C3 = Hash(x2 ‖ M ‖ y2);
- A8: Output ciphertext C = C1 ‖ C2 ‖ C3.

Then, we suppose klen is the bit length of C2 in the ciphertext. To decrypt the ciphertext
C = C1 ‖ C2 ‖ C3, User B as the decryptor should perform the following operations:

- B1: Take out the bit string C1 from C, and convert the data type of C1 to the point
on the elliptic curve, then verify whether C1 meets the elliptic curve equation; if not,
an error will be reported and exit;

- B2: Calculate the elliptic curve point S = [h]C1; if S is an infinite point, then error
and exit;

- B3: Calculate [DB]C1 = (x2, y2), and convert the data type of coordinates x2 and y2
to a bit string;

- B4: Calculate t = KDF(x2 ‖ y2, klen); if t is an all 0 bit string, then error and exit;
- B5: Take the bit string C2 from C, and calculate M′ = C2⊕ t;
- B6: Compute u = Hash(x2 ‖ M′ ‖ y2), and extract bit string C3 from C; if u/C3,

an error is reported and exit.
- B7: Output plaintext M′.
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The general form of ASN.1 encoding is reported in Table 3. The type flag bit occupies
one byte, and the load length can be short code or long code. Therefore, the load length
should be at least one byte and may be longer. The payload may be the same length as the
data to be encoded, or it may include padding bytes.

Table 3. General form of ASN.1.

Type Flag Bit The Length of the Load Load

1 byte Variable length Variable length

Therefore, according to GB/T 35276-2017, the SM2 ciphertext needs to be ASN.1
encoded as follows:
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4.2. Petri Net Model Analysis of CVE-2021-3711

In this subsection, we analyze the Petri net model of CVE-2021-3711 shown in Figure 1.
Fourteen places, eleven transitions, and the connection between places and transitions
are called to the Petri net structure. The reason for the vulnerability in CVE-2021-3711 is
that when decrypting SM2-encrypted data, the memory allocated is less than the memory
needed for the actual decryption of the plaintext, resulting in buffer overflow. Therefore,
the model in this article focuses on the state of the system, the construction of SM2 packets,
and buffer allocation.

First, the normal state of OpenSSL is represented by P0, and if an attacker attempts to
inject, it is represented by T0. Then, the attacker needs to carefully construct SM2 packets to
achieve buffer overflow. The process of packet construction is represented by P1, P2, and P3.
Illegal and legal completed construction packets are represented by T1 and T2, respectively.

Next, the attacker will send the constructed packet, and the status of the packet is
represented by P4. The receiver determines whether the SM2 packet is represented by T3.
Then, the state of receiving packet is represented by P5.

Now, decrypt the SM2-encrypted data, and the system needs to call the API func-
tion EVP_PKEY_decrypt(). Typically, an application will call the function twice during
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4.2. Petri Net Model Analysis of CVE-2021-3711

In this subsection, we analyze the Petri net model of CVE-2021-3711 shown in Figure 1.
Fourteen places, eleven transitions, and the connection between places and transitions
are called to the Petri net structure. The reason for the vulnerability in CVE-2021-3711 is
that when decrypting SM2-encrypted data, the memory allocated is less than the memory
needed for the actual decryption of the plaintext, resulting in buffer overflow. Therefore,
the model in this article focuses on the state of the system, the construction of SM2 packets,
and buffer allocation.

First, the normal state of OpenSSL is represented by P0, and if an attacker attempts to
inject, it is represented by T0. Then, the attacker needs to carefully construct SM2 packets to
achieve buffer overflow. The process of packet construction is represented by P1, P2, and P3.
Illegal and legal completed construction packets are represented by T1 and T2, respectively.

Next, the attacker will send the constructed packet, and the status of the packet is
represented by P4. The receiver determines whether the SM2 packet is represented by T3.
Then, the state of receiving packet is represented by P5.
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Now, decrypt the SM2-encrypted data, and the system needs to call the API func-
tion EVP_PKEY_decrypt(). Typically, an application will call the function twice during
decryption. The first time, the “out” parameter can be NULL, and the “outlen” parameter
is populated with the buffer size required to hold the decrypted plaintext. The application
can then allocate a sufficiently sized buffer.

Sensors 2022, 1, 0 8 of 15

decryption. The first time, the “out” parameter can be NULL, and the “outlen” parameter
is populated with the buffer size required to hold the decrypted plaintext. The application
can then allocate a sufficiently sized buffer.

1 i n t EVP_PKEY_decrpt (EVP_PKEY_CTX * ctx ,
2 unsigned char * out , s i z e _ t * outlen ,
3 const unsigned char * in , s i z e _ t i n l e n )

The second time, the “out” parameter can be the starting address of the newly as-
signed buffer. When the “out” parameter cannot be NULL, the system calls the function
SM2_plaintext_size() to perform the decryption operation.

1 i f ( out == NULL) {
2 i f ( ! sm 2 _ p la i n t e x t _ s i z e ( ec , md, inlen , out len ) )
3 re turn −1;
4 e l s e
5 re turn 1 ;
6 }

Next, the lengths of the x coordinate and y coordinate are represented by 2 * field_
size. The length of the SM3 hash value is represented by md_size. The minimum encoding
overhead of ASN.1 is 10 bytes, as mentioned above. The *pt_size parameter is always
used to indicate the length of the plaintext obtained after decryption. The value of the
md_size variable is constantly 32 bytes. Since the coordinates of a point on an elliptic curve
of the SM2 algorithm are usually represented by two 32-byte coordinates (x,y), the length
occupied is generally 32 bytes.

1 const s i z e _ t f i e l d _ s i z e = e c _ f i e l d _ s i z e ( EC_KEY_get0_group ( key ) ) ;
2 const i n t md_size = EVP_MD_size ( d i g e s t ) ;
3 s i z e _ t overhead ;
4 overhead = 10 + 2 * f i e l d _ s i z e + ( s i z e _ t ) md_size ;
5 * p t _ s i z e = msg_len − overhead ;

Therefore, we suppose vectors X and Y are 32 bytes, respectively. This operation is
represented by T4. At this time, the system is in the ready state and is represented by
P6. Next, the system allocates memory represented by T5. The state of the successfully
obtained buffer is represented by P8. The state of the obtained buffer size is represented by
P7, which is consistent with the actual plaintext size after decryption, whereas P9 indicates
inconsistency. Next, we use T6 and T7 to represent legal and illegal actions, respectively.
P10 and P11 indicate the buffer security status and buffer overflow status, respectively.
In this case, attacker injection failure is represented by T8, system security by P12, and token
recovery by T10. Similarly, the successful injection of the attacker is denoted by T9, and the
insecure state of the system is denoted by P13.

4.3. Patch Analysis of CVE-2021-3711

In this subsection, we illustrate the Petri net model by considering the patch analysis
of CVE-2021-3711 shown in Figure 3. A bug in the implementation of the SM2 decryption
code means that the calculation of the buffer size required to hold the plaintext returned
by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by
the second call. Table 4 shows the meaning of places. Table 5 shows the meaning of the
transitions.

The second time, the “out” parameter can be the starting address of the newly as-
signed buffer. When the “out” parameter cannot be NULL, the system calls the function
SM2_plaintext_size() to perform the decryption operation.
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The second time, the “out” parameter can be the starting address of the newly as-
signed buffer. When the “out” parameter cannot be NULL, the system calls the function
SM2_plaintext_size() to perform the decryption operation.

1 i f ( out == NULL) {
2 i f ( ! sm 2 _p la i n t e x t _ s i z e ( ec , md, inlen , out len ) )
3 re turn −1;
4 e l s e
5 re turn 1 ;
6 }

Next, the lengths of the x coordinate and y coordinate are represented by 2 * field_
size. The length of the SM3 hash value is represented by md_size. The minimum encoding
overhead of ASN.1 is 10 bytes, as mentioned above. The *pt_size parameter is always
used to indicate the length of the plaintext obtained after decryption. The value of the
md_size variable is constantly 32 bytes. Since the coordinates of a point on an elliptic curve
of the SM2 algorithm are usually represented by two 32-byte coordinates (x,y), the length
occupied is generally 32 bytes.
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5 * p t _ s i z e = msg_len − overhead ;

Therefore, we suppose vectors X and Y are 32 bytes, respectively. This operation is
represented by T4. At this time, the system is in the ready state and is represented by
P6. Next, the system allocates memory represented by T5. The state of the successfully
obtained buffer is represented by P8. The state of the obtained buffer size is represented by
P7, which is consistent with the actual plaintext size after decryption, whereas P9 indicates
inconsistency. Next, we use T6 and T7 to represent legal and illegal actions, respectively.
P10 and P11 indicate the buffer security status and buffer overflow status, respectively.
In this case, attacker injection failure is represented by T8, system security by P12, and token
recovery by T10. Similarly, the successful injection of the attacker is denoted by T9, and the
insecure state of the system is denoted by P13.

4.3. Patch Analysis of CVE-2021-3711

In this subsection, we illustrate the Petri net model by considering the patch analysis
of CVE-2021-3711 shown in Figure 3. A bug in the implementation of the SM2 decryption
code means that the calculation of the buffer size required to hold the plaintext returned
by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by
the second call. Table 4 shows the meaning of places. Table 5 shows the meaning of the
transitions.
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In this case, attacker injection failure is represented by T8, system security by P12, and token
recovery by T10. Similarly, the successful injection of the attacker is denoted by T9, and the
insecure state of the system is denoted by P13.

4.3. Patch Analysis of CVE-2021-3711

In this subsection, we illustrate the Petri net model by considering the patch analysis of
CVE-2021-3711 shown in Figure 3. A bug in the implementation of the SM2 decryption code
means that the calculation of the buffer size required to hold the plaintext returned by the
first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second
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Figure 3. Petri net model with the patch.

Table 4. The meaning of places.

Places Description

P0 OpenSSL is a normal state
P1 Construct the SM2 packet legally
P2 Construct the SM2 packet state
P3 Construct the SM2 packet illegally
P4 Packets sent by the client state
P5 Packets received by the receiver state
P6 Get the size of the X coordinate state
P7 Get the size of the Y coordinate state
P8 The ready state
P9 Get buffer state

P10 Consistent state
P11 Inconsistent state
P12 Buffer security state
P13 Buffer overflow state
P14 System security state
P15 System insecurity state

Table 5. The meaning of transitions.

Transitions Description

T0 Attempted to inject
T1 Legal structure
T2 Illegal structure
T3 Check whether SM2 packets are sent
T4 Decode
T5 Set X and Y equal to the actual value
T6 Allocate memory
T7 Do not decode
T8 Legal allocation
T9 Injection of failure

T10 Injection of success
T11 Recycling token

Therefore, in the fixed code for Version 1.1.11, the SM2 plaintext length calculation has
been modified. First, the SM2 ciphertext in ASN.1 encoding form is decoded.
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Table 4. The meaning of places.

Places Description

P0 OpenSSL is a normal state
P1 Construct the SM2 packet legally
P2 Construct the SM2 packet state
P3 Construct the SM2 packet illegally
P4 Packets sent by the client state
P5 Packets received by the receiver state
P6 Get the size of the X coordinate state
P7 Get the size of the Y coordinate state
P8 The ready state
P9 Get buffer state
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P11 Inconsistent state
P12 Buffer security state
P13 Buffer overflow state
P14 System security state
P15 System insecurity state

Table 5. The meaning of transitions.

Transitions Description

T0 Attempted to inject
T1 Legal structure
T2 Illegal structure
T3 Check whether SM2 packets are sent
T4 Decode
T5 Set X and Y equal to the actual value
T6 Allocate memory
T7 Do not decode
T8 Legal allocation
T9 Injection of failure

T10 Injection of success
T11 Recycling token

Therefore, in the fixed code for Version 1.1.11, the SM2 plaintext length calculation has
been modified. First, the SM2 ciphertext in ASN.1 encoding form is decoded.

1 sm2_ctext = d2i_SM2_Ciphertext (NULL, &ct , c t _ s i z e )
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Assign the SM2 plaintext length obtained at decoding to the parameter *pt_size. At last,
the system releases the buffer dynamically opened inside the decoding function d2i_SM2_
Ciphertext() when it is called.
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Assign the SM2 plaintext length obtained at decoding to the parameter *pt_size. At last,
the system releases the buffer dynamically opened inside the decoding function d2i_SM2_
Ciphertext() when it is called.

1 * p t _ s i z e = sm2_ctext −>C2−>length ;

After the restoration, the calculation of the buffer size required to hold the plaintext
returned can be equal to the actual size required. Therefore, the decoded cipher is repre-
sented by T4, and the values of the resolved vectors X and Y are represented by P6 and
P7, respectively. We set the values of X and Y to be the same as the actual values, which is
represented by T5. The parts marked with blue dotted lines are patching operations. Since,
in a patched model, the bytes of the vectors X and Y must be decoded, the probability
P = 1 is used to represent what is certain to happen. This operation without decoding
will not happen, which is represented by T8. For the sake of the experiment, P = 0 is
used to represent what is not happening. The red arrows are unreachable. The system is
always safe.

5. Experiment Analysis
5.1. Model Analysis

In this section, this paper counts the time when the Petri net model first arrives
at a secure state, the time when it first arrives at an insecure state, and the time of the
actual attack, respectively. The corresponding version numbers of the system environment,
the software for the model simulation, and the environment for the verification experiments
that will be used to complete the experiments are shown in Table 6.

Table 6. The environment of the experiment.

Environment Configuration

OS Win10
CPU Intelr CoreTM i7 – 10700

Tina tools 3.6.0
Python 3.8.6

First, Tina builds models and performs simulation experiments. The Petri net model
is used to reach a safe state for the first time, as shown in Figure 4. In this model, P0 is
considered to be the beginning of the model. The value of P0 represents the number of
injections attempted by the attacker. We set the value of P0’s token to 10.
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the number is displayed directly. The value of the token is equal to the number of black
dots displayed by the places. Red transitions mean it has the right to occur. There are many
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When the model starts to simulate and the token value of a place is greater than one,
the number is displayed directly. The value of the token is equal to the number of black
dots displayed by the places. Red transitions mean it has the right to occur. There are many
transitions in the entire model, and the software is designed to perform randomly, so the
total time to first reach the safe state P12 is random.

Similarly, we set the value of P0’s token to 10. Figure 5 shows the Petri net model used
to reach an unsafe state for the first time.
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Figure 5. The model reaches an unsafe state for the first time.

The firing duration can be set to 0 ms, 1 ms, 10 ms, 100 ms, or 1000 ms. The firing
duration means the speed of token flow in the model. The smaller the time, the faster the
token will run. We set the firing duration to 1 ms and selected the untimed option. Figure 6
shows ten groups of experiments. The average time of the first arrival of the safe state and
unsafe state was 31.84 ms and 30.042 ms, respectively.

This paper also counted how long it took an attacker to complete an attack. This time
included the time T1 when the packet was transferred back and forth, the time T2 when the
system allocates the buffer, the time T3 when the packet is processed, and the time T4 when
the packet is put into the buffer. We counted the time to construct 200-byte and 800-byte
packet injection, respectively. Figure 7 shows 10 groups of data, and the average time was
40.8041 ms and 43.6968 ms, respectively. The results showed that the running time of the
model simulation was less than that of a real attack, and the simulation environment can
realize faster-than-real-time simulation.

In Table 7, a fine-grained qualitative analysis and comparison of several typical vul-
nerability models are presented.The model proposed by Flammini F et al. [24] is a simple
generic model based on stochastic Petri nets from which we can find the location of vulner-
abilities. The model incorporates code for analysis and can be simulated using software.
The model developed by Padilha B et al. [25] analyzes the vulnerability at the code level.
Shen J et al. [26] built a model that can be simulated in software, but did not go up to
the code analysis. The models proposed in Fodor K et al. [27] and Liu X et al. [28] can
predict unknown vulnerabilities. However, the paper did not address the code for analysis.
In general, the existing studies have not provided a fine-grained description of the vul-
nerability exploitation process and the analysis of patch models. This paper implemented
a vulnerability exploitation mapping to a formal model from a micro perspective of the
CVE-2021-3711 attack scenario. The details of the vulnerability analysis are extended to
compensate for the shortcomings of existing approaches.
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Table 7. Result of the comparison with other studies.

Article Finding the Location of the
Vulnerability Patch Model Source Code

Level
Software

Simulation Predict

Flammini F. et al. [24] X × X X ×
Padilha B. et al. [25] × × X X ×

Shen J. et al. [26] × × × X ×
Fodor K. et al. [27] × × × × X

Liu X. et al. [28] × × × × X
This article X X X X X

5.2. Illustrative Example

In this subsection, the paper illustrates the proposed vulnerability by considering
ASN.1 decode. These data came from: https://fossies.org/linux/openssl/test/recipes/30

https://fossies.org/linux/openssl/test/recipes/30-test_evp_data/evppkey.txt
https://fossies.org/linux/openssl/test/recipes/30-test_evp_data/evppkey.txt
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-test_evp_data/evppkey.txt (accessed on 19 December 2021). The set of data was used to
test that the y coordinate was less than 32 bytes.
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-test_evp_data/evppkey.txt (accessed on 22 January 2022). The set of data was used to test
that the y coordinate was less than 32 bytes.

1 3072022070DAD60CDA7C30D64CF4F278A849003581223F5324BFEC9BB329229B
2 FFAD21A6021F18AFAB2B35459D2643243B242BE4EA80C6FA5071D2D847340CC5
3 7EB9309E5D04200B772E4DB664B2601E3B85E39C4AA8C2C1910308BE13B331E00
4 9C5A9258C29FD040B6D588BE9260A94DA18E0E6

The length of the ciphertext is 116 bytes. Decrypt this set of ciphertexts in ASN.1
format as mentioned above and shown in Table 8.

Table 8. Comparative analysis of the model.

Value Meaning

30 Sequence type
72 the total length of subsequent data is 114 bytes
02 Integer type
20 X coordinate is 32 bytes

70DAD60CDA7C30D64CF4F278A8490035 32 bytes of X coordinate81223F5324BFEC9BB329229BFFAD21A6
02 Integer type
1F X coordinate is 31 bytes

18AFAB2B35459D2643243B242BE4EA80 32 bytes of Y coordinateC6FA5071D2D847340CC57EB9309E5D
04 Octet string type
20 HASH is 32 bytes

0B772E4DB664B2601E3B85E39C4AA8C2 32 bytes of HASHC1910308BE13B331E009C5A9258C29FD
04 Octet string type
0B Ciphertext is 11 bytes long

6D588BE9260A94DA18E0E6 11 bytes of ciphertext

The values of x and y can be obtained from the above analysis. b and p are constants.
Equation (1) shows that the X coordinate and Y coordinate satisfy the SM2 elliptic curve.
We verified that the elliptic curve equation was satisfied with Python in cmd:

y2%p == (x3 − 3 ∗ x + b)%p (1)

1 [ language = Python ]
2 [>>> x = 0x70DAD60CDA7C30D64CF4F278A849003581223F5324BFEC9BB329229BFFAD21A6
3 [>>> y = 0x18AFAB2B35459D2643243B242BE4EA80C6FA5071D2D847340CC57EB9309E5D
4 [>>> b = 0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93
5 [>>> p = 0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFFFFF
6 [>>> pow( y , 2 ) % p == (pow( x , 3 ) − 3 * x+b )%p
7 True

The first time the function pkey_sm2_decrypt() is called, the parameter “out” is NULL
and parameter “msg_len” is 116 bytes. The function SM2_plaintext_size() returns 10 bytes.
Then, the function OPENSSL_malloc() allocates 10 bytes of memory.The second time, since
the ciphertext has 11 bytes, the function pkey_sm2_decrypt() results in 11 bytes. “Out”
points to ten bytes of memory, while decryption results in eleven bytes, resulting in one
byte overflow.

6. Conclusions and Future Work

In summary, this paper proposes a Petri net model for actual vulnerability exploitation.
The buffer overflow vulnerability ID used in the experiment was CVE-2021-3711. We
first analyzed the vulnerability’s underlying source code and proposed a Petri net model
with better finesse. Then, we used the Petri tool Tina to conduct a dynamic simulation.
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The first time the function pkey_sm2_decrypt() is called, the parameter “out” is NULL
and parameter “msg_len” is 116 bytes. The function SM2_plaintext_size() returns 10 bytes.
Then, the function OPENSSL_malloc() allocates 10 bytes of memory.The second time, since
the ciphertext has 11 bytes, the function pkey_sm2_decrypt() results in 11 bytes. “Out”
points to ten bytes of memory, while decryption results in eleven bytes, resulting in one
byte overflow.

6. Conclusions and Future Work

In summary, this paper proposes a Petri net model for actual vulnerability exploitation.
The buffer overflow vulnerability ID used in the experiment was CVE-2021-3711. We
first analyzed the vulnerability’s underlying source code and proposed a Petri net model
with better finesse. Then, we used the Petri tool Tina to conduct a dynamic simulation.

The first time the function pkey_sm2_decrypt() is called, the parameter “out” is NULL
and parameter “msg_len” is 116 bytes. The function SM2_plaintext_size() returns 10 bytes.
Then, the function OPENSSL_malloc() allocates 10 bytes of memory.The second time, since
the ciphertext has 11 bytes, the function pkey_sm2_decrypt() results in 11 bytes. “Out”
points to ten bytes of memory, while decryption results in eleven bytes, resulting in one
byte overflow.

https://fossies.org/linux/openssl/test/recipes/30-test_evp_data/evppkey.txt
https://fossies.org/linux/openssl/test/recipes/30-test_evp_data/evppkey.txt
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6. Conclusions and Future Work

In summary, this paper proposes a Petri net model for actual vulnerability exploitation.
The buffer overflow vulnerability ID used in the experiment was CVE-2021-3711. We
first analyzed the vulnerability’s underlying source code and proposed a Petri net model
with better finesse. Then, we used the Petri tool Tina to conduct a dynamic simulation.
The simulation result showed us that the experiment might reach an unexpected insecure
state, proving our method is feasible for vulnerability detection and repair of the network
system. Finally, we compared the time of actual attack and software simulation. It was clear
that the time used to simulate the attack was much shorter, with a 26.37% reduction in time
for 200 bytes, and the model was capable of faster-than-real-time simulation. Furthermore,
by applying our formal modeling approach, we could observe whether the token would
reach the insecure state in the simulation. Therefore, this lays a theoretical foundation in
detecting unknown vulnerabilities in the network system.

There are similar patch sketches of the model, and only one of them was drawn in this
paper. In addition, directions for further research include: (1) transforming the model into
a matrix and extracting features from it; (2) multiplying many features of the vulnerabilities
for aggregating into a graph. Furthermore, we may consider the use of the Petri net model
so that unknown vulnerabilities can be defended against.

Author Contributions: Conceptualization, X.D. and L.Z.; methodology, X.D. and Y.W.; software,
X.D.; validation, X.D., L.Z. and Y.W.; formal analysis, X.D.; investigation, X.D.; resources, X.D. and F.J.;
data curation, X.D.; writing—original draft preparation, X.D. and F.J.; writing—review and editing,
L.Z., Y.W. and F.J.; visualization, L.Z. and Y.W.; supervision, L.Z. and Y.W.; project administration,
L.Z. and Y.W.; funding acquisition, L.Z. and Y.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research work is supported by the National Joint Funds of China (U20B2050),
the National Natural Science Fundsof China (62072368), the Key Research and Development Program
of Shaanxi Province (2020GY-039, 2021ZDLGY05-09), and the Open Project Funds of Shaanxi Key
Laboratory for Network Computing and Security Technology (NCST2021YB-04).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiong, J.; Bi, R.; Zhao, M.; Guo, J.; Yang, Q. Edge-Assisted Privacy-Preserving Raw Data Sharing Framework for Connected

Autonomous Vehicles. IEEE Wirel. Commun. 2020, 27, 24–30. [CrossRef]
2. Xiong, J.; Bi, R.; Tian, Y.; Liu, X.; Wu, D. Towards lightweight, privacy-preserving cooperative object classification for connected

autonomous vehicles. IEEE Internet Things J. 2021, 9, 2787–2801. [CrossRef]
3. Liu, Y.; Fang, X. Analysis of SQL Injection behavior based on Petri Net theory. J. Chifeng Univ. 2021, 37, 13–17.
4. Kuhl, M.E.; Sudit, M.; Kistner, J.; Costantini, K. Cyber attack modeling and simulation for network security analysis. In

Proceedings of the 2007 Winter Simulation Conference, Washington, DC, USA, 9–12 December 2007; pp. 1180–1188.
5. Kotenko, I.; Stepashkin, M.; Doynikova, E. Security analysis of information systems taking into account social engineering attacks.

In Proceedings of the 2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing,
Ayia Napa, Cyprus, 9–11 February 2011; pp. 611–618.

6. Han, W.; Tian, Z.; Huang, Z.; Zhong, L.; Jia, Y. System architecture and key technologies of network security situation awareness
system YHSAS. Comput. Mater. Contin. 2019, 59, 167–180. [CrossRef]

7. Baskaran, M.M.; Henretty, T.; Ezick, J.; Lethin, R.; Bruns-Smith, D. Enhancing network visibility and security through tensor
analysis. Future Gener. Comput. Syst. 2019, 96, 207–215. [CrossRef]

8. Kim, D. Potential risk analysis method for malware distribution networks. IEEE Access 2019, 7, 185157–185167. [CrossRef]
9. Hanif, H.; Nasir, M.H.N.M.; Ab Razak, M.F.; Firdaus, A.; Anuar, N.B. The rise of software vulnerability: Taxonomy of software

vulnerabilities detection and machine learning approaches. J. Netw. Comput. Appl. 2021, 179, 103009. [CrossRef]

http://doi.org/10.1109/MWC.001.1900463
http://dx.doi.org/10.1109/JIOT.2021.3093573
http://dx.doi.org/10.32604/cmc.2019.05192
http://dx.doi.org/10.1016/j.future.2019.01.039
http://dx.doi.org/10.1109/ACCESS.2019.2960552
http://dx.doi.org/10.1016/j.jnca.2021.103009


Sensors 2022, 22, 1398 15 of 15

10. Tian, J.; Xing, W.; Li, Z. BVDetector: A program slice-based binary code vulnerability intelligent detection system. Inf. Softw.
Technol. 2020, 123, 106289. [CrossRef]

11. Singh, U.K.; Joshi, C.; Kanellopoulos, D. A framework for zero-day vulnerabilities detection and prioritization. J. Inf. Secur. Appl.
2019, 46, 164–172. [CrossRef]

12. Cao, Y.; Xiao, X.; Liu, Z.; Yang, M.; Sun, D.; Guo, W.; Cui, L.; Zhang, P. Detecting vulnerable plaque with vulnerability index
based on convolutional neural networks. Comput. Med. Imaging Graph. 2020, 81, 101711. [CrossRef] [PubMed]

13. He, W.; Li, H.; Li, J. Unknown vulnerability risk assessment based on directed graph models: A survey. IEEE Access 2019,
7, 168201–168225. [CrossRef]

14. Borbor, D.; Wang, L.; Jajodia, S.; Singhal, A. Securing networks against unpatchable and unknown vulnerabilities using
heterogeneous hardening options. In Proceedings of the IFIP Annual Conference on Data and Applications Security and Privacy,
Philadelphia, PA, USA, 19–21 July 2017; pp. 509–528.

15. Periyasamy, K.; Arirangan, S. Prediction of future vulnerability discovery in software applications using vulnerability syntax tree
(PFVD-VST). Int. Arab J. Inf. Technol. 2019, 16, 288–294.

16. Zhang, L.; Deng, X.; Wang, Y. Shellshock Bash Vulnerability Modeling Analysis Based on Petri Net. In Proceedings of the 2021
International Conference on Networking and Network Applications (NaNA), Lijiang City, China, 29 October–1 November 2021;
pp. 242–247.

17. Mohsenzadeh, A.; Bidgoly, A.J.; Farjami, Y. A novel reward and penalty trust evaluation model based on confidence interval
using Petri Net. J. Netw. Comput. Appl. 2020, 154, 102533. [CrossRef]

18. Yu, W.; Ding, Z.; Liu, L.; Wang, X.; Crossley, R.D. Petri net-based methods for analyzing structural security in e-commerce
business processes. Future Gener. Comput. Syst. 2020, 109, 611–620. [CrossRef]

19. Zhou, J.; Reniers, G.; Zhang, L. Petri-net based attack time analysis in the context of chemical process security. Comput. Chem.
Eng. 2019, 130, 106546. [CrossRef]

20. Santana, J.A.D.; Orozco, J.L.; Lantigua, D.F.; Furka, D.; Furka, S.; Cruz, A.G. Using integrated Bayesian-Petri Net method for
individual impact assessment of domino effect accidents. J. Clean. Prod. 2021, 294, 126236. [CrossRef]

21. Wu, R.; Li, W.; Huang, H. An attack modeling based on hierarchical colored Petri nets. In Proceedings of the 2008 International
Conference on Computer and Electrical Engineering, Phuket, Thailand, 20–22 December 2008; pp. 918–921.

22. Wang, L.; Zhu, Z.; Wang, Z.; Meng, D. Colored Petri Net Based Cache Side Channel Vulnerability Evaluation. IEEE Access 2019,
7, 169825–169843. [CrossRef]

23. Tian, Y.; Wang, Z.; Xiong, J.; Ma, J. A Blockchain-Based Secure Key Management Scheme with Trustworthiness in DWSNs. IEEE
Trans. Ind. Inform. 2020, 16, 6193–6202. [CrossRef]

24. Flammini, F.; Marrone, S.; Mazzocca, N.; Vittorini, V. Petri net modelling of physical vulnerability. In Proceedings of the
International Workshop on Critical Information Infrastructures Security, Lucerne, Switzerland, 8–9 September 2011; pp. 128–139.

25. Padilha, B.; Roberto, R.L.; Schwerz, A.L.; Pu, C.; Ferreira, J.E. WED-SQL: An intermediate declarative language for PAIS execution.
In Proceedings of the International Conference on Web Services, Seattle, WA, USA, 25–30 June 2018; pp. 407–421.

26. Shen, J.; Feng, D. Vulnerability analysis of clock synchronization protocol using stochastic petri net. In Proceedings of the
2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), Paris, France, 20–22 August 2014;
pp. 615–620.

27. Fodor, K.; Balogh, Z. Process Modelling and Creating Predictive Models of Sensory Networks Using Fuzzy Petri Nets. Procedia
Comput. Sci. 2021, 185, 28–36. [CrossRef]

28. Liu, X.; Zhang, J.; Zhu, P. Modeling cyber-physical attacks based on probabilistic colored Petri nets and mixed-strategy game
theory. Int. J. Crit. Infrastruct. Prot. 2017, 16, 13–25. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2020.106289
http://dx.doi.org/10.1016/j.jisa.2019.03.011
http://dx.doi.org/10.1016/j.compmedimag.2020.101711
http://www.ncbi.nlm.nih.gov/pubmed/32155412
http://dx.doi.org/10.1109/ACCESS.2019.2954092
http://dx.doi.org/10.1016/j.jnca.2020.102533
http://dx.doi.org/10.1016/j.future.2018.04.090
http://dx.doi.org/10.1016/j.compchemeng.2019.106546
http://dx.doi.org/10.1016/j.jclepro.2021.126236
http://dx.doi.org/10.1109/ACCESS.2019.2955282
http://dx.doi.org/10.1109/TII.2020.2965975
http://dx.doi.org/10.1016/j.procs.2021.05.004
http://dx.doi.org/10.1016/j.ijcip.2016.11.002

	Introduction
	Related Work
	Petri Net Model of a Vulnerability with CVE-2021-3711
	Models Analysis
	SM2 Ciphertext and ASN.1 Encoding
	Petri Net Model Analysis of CVE-2021-3711
	Patch Analysis of CVE-2021-3711

	Experiment Analysis
	Model Analysis
	Illustrative Example

	Conclusions and Future Work
	References

