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Abstract: Information on congestion of buses, which are one of the major public transportation
modes, can be very useful in light of the current COVID-19 pandemic. Because it is unrealistic to
manually monitor the number of riders on all buses in operation, a system that can automatically
monitor congestion is necessary. The main goal of this paper’s work is to automatically estimate the
congestion level on a bus route with acceptable performance. For practical operation, it is necessary
to design a system that does not infringe on the privacy of passengers and ensures the safety of
passengers and the installation sites. In this paper, we propose a congestion estimation system that
protects passengers’ privacy and reduces the installation cost by using Bluetooth low-energy (BLE)
signals as sensing data. The proposed system consists of (1) a sensing mechanism that acquires BLE
signals emitted from passengers’ mobile terminals in the bus and (2) a mechanism that estimates
the degree of congestion in the bus from the data obtained by the sensing mechanism. To evaluate
the effectiveness of the proposed system, we conducted a data collection experiment on an actual
bus route in cooperation with Nara Kotsu Co., Ltd. The results showed that the proposed system
could estimate the number of passengers with a mean absolute error of 2.49 passengers (error rate
of 38.8%).

Keywords: people counting; crowd density; BLE; route bus; machine learning

1. Introduction

Buses are one of the main forms of public transportation. Information on crowding,
or congestion, on buses can be very useful in light of the current COVID-19 pandemic
for both users and society in terms of avoiding congestion for individuals and equalizing
congestion in society. We believe that bus operators can improve their business by having
information on bus congestion, which can help them adjust the number of buses, change
their operating hours, and optimize their routes. In addition, we believe that passengers
can use buses in a systematic way to reduce the risk of infection, for example, by riding
buses that are less crowded, as determined from information about congestion on the bus.
Thus, there is a need for a service that visualizes real-time bus congestion information, a
route recommendation service that considers the degree of crowding to minimize the risk
of infection, and a service that predicts the degree of crowding in the future.

To provide these services, it is necessary to obtain congestion information for a bus in
advance. Because it is unrealistic to manually obtain congestion information for all currently
operating buses, a system that can automatically obtain such information is necessary. It
is possible to obtain the number of bus users on particular routes using information from
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prepaid transportation cards. However, many suburban areas and sparsely populated areas
have not adopted such cards, and using them for ridership information has problems such
as not being able to include commuter pass users and users who pay with cash. Hsu et al.
proposed a method to estimate the number of passengers using a deep learning algorithm
based on video data obtained from two cameras installed in a bus [1]. This method shows a
high accuracy of about 2.0 MAE on a crowded dataset. However, due to the specification of
using two cameras, the cost of installation and the privacy of passengers are not taken into
account, and it is not easy to implement the method in actual operation. Yamada et al. have
developed a system for detecting passengers using a LiDAR sensor that outputs distance
data to objects [2]. An algorithm that reduces the amount of computation enables highly
accurate estimation with an inexpensive single-board computer. However, the system
is vulnerable to overlapping passengers, so the accuracy is low in extremely crowded
conditions. Additionally, the LiDAR sensor is very expensive and there are restrictions
on the location of the device. To implement the system on an actual bus, it is necessary to
design a system that satisfies two main requirements: the collection of data that does not
include private passenger information and a low installation cost for the sensing devices.

Recently, with the rapid spread of smartphones, wireless communication technologies
such as WiFi and BlueTooth are receiving more attention in crowd behavior and crowd
density estimation [3]. Abedi et al. presents the benefits and critical challenges of the use of
Bluetooth and WiFi for crowd data collection and monitoring [4]. In this paper, we propose
a congestion estimation system that protects passengers’ privacy and reduces installation
costs by using Bluetooth low-energy (BLE) signals as sensing data. The proposed system
consists of (1) a sensing mechanism that acquires BLE signals emitted from bus passengers’
mobile terminals and (2) an estimation mechanism that determines the degree of congestion
in the bus from this data. The sensing mechanism obtains the Bluetooth device (BD) address
to identify the device and also obtains the received signal strength indicator (RSSI) included
in the BLE signal. Devices change their BD address at regular time intervals for privacy
reasons, so there is little risk of privacy violation. In addition, BLE signals can be received
by a single inexpensive and lightweight single-board computer, such as a Raspberry Pi,
without the use of special sensors, and there are no restrictions on the installation location.
Furthermore, if a device capable of receiving BLE signals is already present on a bus, the
system can be implemented by simply installing software. The estimation mechanism uses
the data obtained by the sensing mechanism to estimate the degree of congestion on a
bus route. Two methods of estimation are considered. One is to set a threshold value for
the RSSI for the obtained BD addresses and use the total number of addresses that satisfy
the threshold value as valid addresses. The other is to use a machine learning model. In
the machine learning method, the total number of addresses is dealt with as one of the
feature values. The model is trained by constructing a dataset that includes information
specific to the bus route, such as the operating time and route number. We also compare the
performance of the model with that of a model trained on a dataset that does not contain
such information.

To evaluate the effectiveness of the proposed system, we conducted a data collection
experiment on an actual bus route with Nara Kotsu Co., Ltd. (Nara, Japan, https://
www.narakotsu.co.jp/ (accessed on 9 December 2021)) The data collected covered a wide
range of time periods, from the morning commute to the evening return home, from the
central area of Nara City to the sparsely populated areas in the south, and from children
to elderly passengers. The types of data included BD address, the RSSI included in the
BLE signal, location information, and time information. In the results for estimating the
number of passengers based on the data obtained in the experiment, the estimation by
threshold showed a mean absolute error (MAE) of 3.4 passengers (error rate 61.4%), and
the estimation by machine learning showed an MAE of 2.49 passengers (error rate 38.8%).
We confirmed that the accuracy was greatly improved by adding information specific to
the bus route.

The contributions of this article include the following:

https://www.narakotsu.co.jp/
https://www.narakotsu.co.jp/
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• We propose a BLE-based congestion estimation system that protects the privacy of
passengers while reducing the cost of installation.

• We propose new features of learning models for estimating congestion of public
route buses.

• Our estimation model, which is trained data from real-world experiments, achieves
high accuracy for practical use.

2. Related Work

There are many studies on detecting people and estimating human congestion [5–13].
In this section, we introduce a study on estimating the number of passengers, and a study
on congestion estimation using BLE signals which are particularly relevant to our study.

2.1. Estimating the Number of Passengers

Methods using a camera for estimating the number of passengers have been pro-
posed [14–16]. Song et al. proposed a system for counting passersby using video data
obtained from surveillance cameras [14]. Although such a camera-based system provides a
more accurate estimation of the number of passengers, it is not easy to implement in local
buses because of the high installation and operation costs of the system and the fear of
privacy violations.

Methods using an infrared sensor for detecting the passengers have also been pro-
posed [17–21]. In order to measure the number of passengers in airports, Bauer et al.
proposed the system combining an infrared sensor and mat-type pressure sensor. This
method uses a small infrared sensor which can be easily installed in various locations.
However, the detection range of the infrared sensor is limited, so multiple sensors are
required, which increases the installation cost.

In addition, Methods for estimating crowd density using WiFi signals have also been
proposed [22,23]. Handte et al. used WiFi signals emitted from passengers’ mobile devices
to estimate the number of passengers on a bus route [22]. The error rate was 5.1 people,
but it increased when the bus was crowded. In addition, the estimation using WiFi risks
violating privacy because it obtains a unique MAC address for each device. Hidayat et al.
proposed a new data cleaning procedure to characterize bus passenger volume using a
combination of media access control (MAC) address and global positioning system (GPS)
data for estimating the number of passengers [24,25]. Their approach shows that the
correlation between WiFi estimation and ground truth is 0.78.

2.2. Congestion Estimation Using BLE Signals

With the widespread use of smartphones, many studies on estimation of crowd density
using wireless communication technologies such as BLE have studied [26–30]. Table 1
shows a comparison of our proposed method and these studies.

Table 1. Comparison table between related work and proposed method.

Domain Subject Sensor Privacy Number of
Sensors

Location
Constraints Estimate

[26] indoor pedestrian flow BLE © 1 4 correlation
[27] outdoor pedestrian flow Wi-Fi 4 3 4 correlation
[28] outdoor congestion BLE © 2 4 classification
[29] outdoor congestion BLE © 2 4 classification
[30] bus onboard devices BLE © 1 4 correlation

Proposed bus number of passengers BLE © 1 © regression

Umeki et al. focused on the RSSI intensity, which varies greatly depending on the
number of people, and proposed a system to estimate the congestion level of a sightseeing
spot in real time by observing the RSSI intensity distribution using BLE devices installed
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at the spot [28]. While it is possible to estimate the degree of congestion at tourist spots
without requiring tourists to wear special equipment, it is necessary to install two BLE
devices, a transmitter and a receiver, in the environment. This method estimates the degree
of congestion in three levels: low, medium, and high.

Weppner et al. proposed a method to estimate the crowd density by aggregating
the number of nearby BLE terminals detected from the mobile signals of users moving
in the environment [29,31]. Their method could effectively fuse information obtained
from multiple terminals through user-participatory sensing, and estimate the degree of
congestion without the need to install sensors in advance. However, the estimation accuracy
strongly depended on the proportion of users participating in the sensing.

These methods using wireless communication technologies such as BLE take privacy
into account. However, in actual operation, it is necessary to consider not only the privacy
of passengers but also the installation cost of the device (number of sensors required,
location constraints).

2.3. Positioning of This Research

This paper proposes a system for estimating the degree of congestion on a bus route
that protects the privacy of passengers and reduces the installation and operation cost of
the system. To evaluate the effectiveness of the system, we conducted a data collection
experiment on actual bus routes in Nara Prefecture. Although there have been studies on
detecting passengers in buses, they have been conducted only under limited environments
and conditions, and few studies have considered actual operation. In addition, it is a
unique approach to estimate the level of congestion on a bus route, whose usage varies
greatly depending on the region and time of day, by accounting for information such as the
operating time and route number. This system does not require any special sensors and can
be operated using a single-board computer, such as a Raspberry Pi, which is inexpensive
and lightweight. In addition, there are no restrictions on the location of the system, and the
system is designed with privacy in mind and to reduce operating costs.

3. Proposed System

In this section, we summarize the system requirements and then propose a system
that satisfies the requirements.

3.1. System Requirements

The requirements of the system to be implemented on an actual bus route are as follows:

• Collection of data that does not include passenger privacy information
• Reduction of the installation cost of sensing devices

One of the major barriers to introducing a system into actual buses is the issue of
passenger privacy. To solve this problem, it is necessary to collect data that do not contain
private passenger information. A camera-based estimation method can provide more
accurate estimation, but it also obtains private information, namely face images. As a
solution, we can reduce the risk of privacy violation by not uploading the privacy data to a
server, and instead discarding it immediately after the estimation is done locally. However,
it is necessary to install the system at a location where it can see the entire bus, such as
on the ceiling, which increases the installation and operation costs. Therefore, to ensure
the privacy of passengers and make the device location flexible, it is necessary to collect
data that does not include private information and make the device small and compact. In
addition, it is necessary to design a system that does not place restrictions on the location
of the devices.

3.2. Overview of the Proposed System

Based on the system requirements in Section 3.1, we propose a system for estimating
the congestion level on a bus route considering the actual operation. The outline of the
proposed system is shown in Figure 1. The proposed system consists of (1) a sensing
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mechanism to collect data for a bus and (2) an estimation mechanism to estimate the degree
of congestion from the data obtained by the sensing mechanism. These are explained
in detail in Section 3.3. The figure also shows the use cases of the system: (a) future
congestion prediction service and (b) congestion-aware route recommendation service. In
the case of (a), the future congestion prediction service will provide users with information
on the future congestion level on the bus routes. This will enable passengers to use the
bus avoiding congestion. In addition, we believe that in the case of (b), the congestion-
aware route recommendation service can save users the trouble of route selection by
recommending routes that take into account the level of congestion as well as the cost of
travel fees and travel time.

(1) Sensing Mechanism (2) Estimation Mechanism

Proposed System

Address RSSI Frequency

4 people

Machine Learning

Input Output

4 people

Line ID

Departure Time

Scan Number

Address Number

4 people

Features

? people

Prediction
Now 15 min Later

Next bus Bus after next

15 people 5 people
pick up

App

RSSI ≥ −85

BLE

BLE

BLE

Sensing 
Device

Sensing Data

Estimation by Threshold

Estimation by Machine Learning

Valid pickup addresses Estimation

Predict Congestion

Recommend Route

a

b

Congestion
Information

SERVICE

Future Work

Figure 1. Schematic diagram of the proposed system.

3.3. System Design
(1) Sensing Mechanism

The sensing mechanism uses BLE signals emitted from the passengers’ mobile termi-
nals as sensing data. BLE is a power-saving communication standard among the short-
range wireless communication standards called Bluetooth. To connect with other BLE
devices, a BLE device continuously broadcasts a communication signal, which is a one-way
transmission of data to an unspecified number of parties. The data transmitted includes
the BD address to identify the device and an RSSI to indicate the signal strength. The
sensing mechanism obtains the BD address and RSSI from the data contained in the BLE
signal emitted from the passengers’ mobile terminal. Because the BD address is randomly
changed at certain time intervals for privacy reasons, there is little risk of violating the
passengers’ privacy. In addition, BLE enables sensing without the use of special sensors,
and if the bus already has a device that can receive BLE signals, the system can be operated
by simply installing software without the need to install a sensing device.

(2) Estimation Mechanism

In the estimation mechanism, the degree of crowding on a bus is estimated from
the data obtained by the sensing mechanism. In this study, we estimated the number of
passengers between stops as an indicator of bus congestion. We consider the possibility of
detecting addresses outside the bus. In light of this problem, we cannot simply associate
the number of BD addresses detected with the number of passengers. Therefore we
first propose a threshold-based estimation that sets a threshold value for the RSSI of BD
addresses obtained by the sensing mechanism, and the total number of addresses that
equals or exceeds the threshold is used as the estimated value. On the other hand, we
assumed that some passengers on the bus do not have a mobile terminal, while others
have multiple mobile terminals. In addition, as mentioned in the previous section, the
BD address changes after a certain period of time, so there is a possibility that the same
terminal is counted twice. In order to deal with these problems, we next propose a machine
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learning-based estimation that uses the total number of addresses and information specific
to the bus route as features.

4. Implementing the Data Collection Device

In this section, we describe the sensing device for data collection implemented in
this study.

4.1. Implementation Overview

To evaluate the effectiveness of the proposed system, we implemented a sensing
device for data collection in the data collection experiment described in Section 5.

4.2. Sensing Device

The implemented device is shown in Figure 2. A Raspberry Pi 4 (https://www.
raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed on 9 December 2021)) ca-
pable of BLE communication was used as the sensing device. To acquire positional infor-
mation, we installed a GPS module (https://akizukidenshi.com/catalog/g/gK-09991/
(accessed on 9 December 2021)) on the Raspberry Pi. To remotely check system operation,
the acquired data were sent to a server. Because the bus did not have an internet connection,
we installed a communication module (https://candy-line.com/portfolio/candy-pi-lite-
lte-m/ (accessed on 9 December 2021)) on the Raspberry Pi. Because these modules could
be incorporated into the single-board Raspberry Pi, it was possible to reduce the overall
size of the sensing device. The data that can be acquired using the sensing device includes
the BD address and RSSI contained in the BLE signal, as well as the location and time
during data acquisition.

Antenna

GPS Senser

Raspberry Pi
(BLE module)

Figure 2. The sensing device.

4.3. Sensing Process

In this study, we estimated the number of passengers between bus stops as an indicator
of the degree of congestion on the bus route. The information of bus stops is given from
Nara Kotsu Co., Ltd. Therefore, we know the exact location of bus stops. The bus stops are
identified using the location information obtained from GPS. The sensing process is shown
in Figure 3.

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://akizukidenshi.com/catalog/g/gK-09991/
https://candy-line.com/portfolio/candy-pi-lite-lte-m/
https://candy-line.com/portfolio/candy-pi-lite-lte-m/
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scan scan scan

15 sec 15 sec

Nscan

bus stop bus stop bus stop

Figure 3. Sensing process.

This system detects the surrounding BLE terminals once every 15 s. On some routes,
the time interval between stops (the time it takes from leaving one stop to halting at the
next stop) is less than 1 min. Here, the total number of detections between stops is Nscan.
The BD address and RSSI of the detected BLE terminals are stored as data. We assume
that Nscan includes multiple detections of the mobile terminals of bus passengers. The
number of times the same BD address is detected is denoted as ndetected. The RSSI of the ith
detection is S(i), and the mean value of RSSI Smean and the frequency of occurrence F (%)
are defined by Equations (1) and (2), respectively.

Smean =
1

ndetected

ndetected

∑
i=1

S(i), (1)

F(%) =
ndetected

Nscan
× 100. (2)

An example of the sensing data obtained between stops is shown in Table 2.

Table 2. Example of sensing data acquired between stops.

BD Address The Mean Value of RSSI The Frequency of Occurrence

00:00:5e:00:53:1a −78.5 25
00:00:5e:00:53:38 −90.0 100
00:00:5e:00:53:90 −56.4 75

. . . . . . . . .

5. Data Collection Experiment
5.1. Experiment Overview

To evaluate the effectiveness of the proposed method, a data collection experiment
was conducted on 21 December 2020, using actual buses in cooperation with Nara Kotsu
Co., Ltd. (Figure 4). The bus seats about 20 people and has a maximum capacity of about
40 people. The data were collected from 39 routes (with overlaps) in Nara Prefecture
(shown as a blue line in Figure 5). The number of passengers on a bus route varies by
the time of day, such as rush hours for commuting or returning home. Therefore, we
conducted an experiment between 7:00 a.m. and 7:00 p.m. to collect data at various times.
To conduct the experiment on an actual bus route, the following three restrictions were
imposed: (1) no power supply from the bus, (2) no sensing device can be installed, and
(3) the actual number of passengers cannot be given. Therefore, the experimenter brought
the sensing device along with a mobile battery onto the bus to collect data and visually
check the number of passengers in the bus to obtain the actual passenger counts. For this
purpose, the experimenter sat at the rear of the bus, where it was easier to observe the entire
interior. Therefore, the sensing device was located at the same position as the experimenter.
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Figure 4. The actual bus in cooperation with Nara Kotsu Co., Ltd.

Created by editing GSI Tile, Geospatial Information Authority of Japan

Figure 5. The data collection area.

5.2. Results of the Experiment

We obtained a total of 662 stop-to-stop datasets for 39 routes. Each inter-stop dataset
included the departure time from the stop, the total number of BD addresses, and the actual
number of passengers. The results of the route section between Gakken Nara Tomigaoka
Station and Takanohara Station are shown in Table 3 as a part of the experimental results
from the 39 routes.
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Table 3. A part of the experimental results (Gakken Nara Tomigaoka Station–Takanohara Station).

Departure Time Bus Stop Number1 *a Number2 *b

08:52 Gakken Nara Tomigaoka 25 4
08:54 Kita Tomigaoka Ittyoume 25 4
08:55 Higashi Tomigaoka Yontyoume 25 5
08:56 Higashi Tomigaoka Gotyoume 25 6
08:57 Higashi Tomigaoka Rokutyoume 51 7
08:58 Tomigaoka Rokutyoume Higashi 104 8
09:00 Oshikuma/Jinkou 75 11
09:02 Seika Sakuragaoka Santyoume 40 15
09:03 Kabutodai Santyoume 44 15
09:04 Kabutodai Nityoume 51 15
09:05 Kabutodai Ittyoume Nishi 21 15
09:05 Kabutodai Ittyoume 78 15

*a Number1 means that the total number of BD address of the sensing data; *b Number2 means that the total
number of passengers in the bus (true value).

A graph plotting the total number of BD addresses (measured value) on the vertical
axis and the number of passengers (true value) on the horizontal axis for the 662 raw
datasets is shown in Figure 6.
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Figure 6. Measured values (BD address counts) versus true values (passenger counts) obtained from
raw data.

The blue line in the graph (y = x) represents the ideal state of no error between the
true value and the estimated value. As can be seen from this graph, the total number of
BD addresses obtained between each stop and the actual number of passengers are far
apart. This can be attributed to the fact that, in addition to the mobile terminals owned
by the passengers, signals are also received from people outside the bus and other BLE
terminals in the city. In addition, many passengers have multiple BLE devices, so it is
difficult to simply use the total number of addresses obtained as the number of passengers.
Therefore, in this study, threshold estimation was used to determine whether the obtained
BD addresses are valid by setting thresholds for the RSSI and frequency of occurrence and
machine learning models.
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6. Estimation and Evaluation

In this section, we describe the estimation of the number of passengers on a bus using
the proposed estimation mechanisms identified as (2) in Section 3.3.

6.1. Estimation by Threshold

As can be seen from Section 5.2, it is difficult to estimate the number of passengers
on a bus route simply from the total number of BD addresses in the sensing data. To solve
this problem, we set thresholds for the average RSSI and frequency of occurrence of BD
addresses to determine the validity of addresses, and then used the total number of valid
addresses as the number of passengers. We assume that the signal of the device in the bus
indicates the stronger RSSI and the higher frequency of occurrence. In order to evaluate the
proposed method, the score that shows the highest accuracy when a threshold is set only
for RSSI is adopted as the baseline in this study.

The MAE and the mean absolute percentage error (MAPE) averaged over all the stops
are calculated, and the thresholds of the mean RSSI and frequency are chosen to achieve the
smallest MAE. The results are shown in Table 4. The threshold estimation method performs
poorly because it cannot deal with the case in which the observed value is lower than the
true value. As can be seen from Figure 7, the threshold estimation method performs poorly
when the estimated value is lower than the true value.

Table 4. Results of threshold estimation.

Method MAE MAPE

All 75.8 2182.5
Baseline (RSSI ≥ −74) 3.9 77.3

Proposed (RSSI ≥ −80, F ≥ 40%) 3.4 61.4
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(b)

Figure 7. Values estimated by threshold (number of BD addresses) versus true values (number of
passengers). (a) Baseline (RSSI ≥ −74); (b) Proposed (RSSI ≥ −80, F ≥ 40%).

6.2. Estimation by Machine Learning Models

As mentioned in Section 3.3 (2), there are some remaining problems, such as passengers
who have multiple terminals or no terminals. Therefore, instead of using the total number
of addresses as the number of passengers, we propose a machine learning estimation
method that deals with the total number of addresses as a feature and takes into account
information such as the operating time of the bus route and the route number. It is believed
that data such as departure times and route numbers contain important information for
estimating the degree of congestion because they indicate conditions such as commuter
rush, going home rush, urban area, and suburban area. Thus, we proposed a machine
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learning model that accounts for information specific to bus routes. For each of the 662 inter-
stop datasets, 19 feature dimensions are given. We believe that the RSSI and frequency of
occurrence of a BD address are important indicators to evaluate the effectiveness of the
address. Therefore, we added the total number of each address to the feature when the
threshold is set in steps. This gave us 16 features for the number of addresses. In addition
to these, three other features specific to route buses are route ID, departure time, and the
total number of detections. To compare the results of the different methods, we constructed
two types of datasets: a dataset called the Narabus dataset (ND) which does not include the
three bus-specific features and another dataset, called ND+, which includes all the features.

Four types of learning models, linear regression (LR), a support vector machine (SVM),
a random forest (RF), and XGBoost (XGB), were employed. In regards to the evaluation, we
first divide all 662 data into a 3(496):1(166) ratio of training data and test data. Then, we run
a grid search using leave-one-out cross-validation and train models with train data. Finally,
we calculate the performance of each model with test data. As in the threshold estimation,
MAE and MAPE were calculated as evaluation indices, and the results are shown in Table 5.
For all the machine learning models, we confirmed that the performance was improved by
using the dataset ND+, which contains features specific to bus routes, as input. Among the
models, XGB showed the best accuracy, with an error rate of 38.8%. The feature importance
of the XGB model is shown in Figure 8. “ble_rssixx” and “ble_appearyy” mean the total
number of addresses with average RSSI xx or higher and the total number of addresses
with the frequency of occurrence yy or higher, respectively.

A graph plotting the measured value on the vertical axis and the true value on the
horizontal axis is shown in Figure 9.

Table 5. Performance of each model for each dataset.

ND ND+

Model MAE MAPE MAE MAPE

LR 3.65 81.4 3.41 64.4
SVM 3.09 66.5 2.97 44.7
RF 2.93 63.1 2.54 47.7

XGB 2.98 60.0 2.49 38.8
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Figure 8. The feature importance of the XGB model.
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Figure 9. Values estimated by machine learning versus true values (number of passengers). (a) XGB
(ND); (b) XGB (ND+).

7. Discussion

Looking at the raw data of Figure 6, we can see that when the true value is less than
20 people, we obtain more addresses than the true value for most of the inter-stop data.
One of the possible causes is the reception of signals from BLE terminals outside the bus,
as described in Section 5.2. To deal with this problem, we set appropriate thresholds
for the average RSSI and frequency of occurrence of BD addresses and selected only
valid addresses, which greatly reduced the error, as seen in Table 4. Ji et al. reports on the
attenuation of the BLE signal with distance [32]. According to the report, it can be confirmed
that the signal is attenuated as the distance increases. On the other hand, variations in
the attenuation of the signal are shown even at the same distance. The variability of the
signal attenuation may have a significant impact on the threshold estimation and machine
learning estimation in this study. As a future work, we will consider a method to set a
dynamic threshold for each section, for example, in order to make the collection robust to
signal noise. In addition, from Figure 8, it was confirmed that BLE signals with high signal
strength (−70 or higher) are effective for counting the number of passengers. The signals
with weak strength are thought to be acquired from devices outside the bus and are likely
to be noise. In the future, it will be possible to acquire signals more efficiently by setting a
suitable threshold value.

In contrast, when the true value of the raw data was more than 20 people, the number
of detected addresses tended to be less than the true value. This may be due to BLE signals
being blocked by people and objects in the crowded bus, making it difficult for BLE signals
to propagate and be detected properly. Ma et al. show that the human body can attenuate
BLE signal [33]. In addition, because the sensing device was located at the rear of the bus
due to the limitations of the experiment, we believe that it could not detect the BLE devices
of some of the passengers in front of it. One possible solution is to install the sensing device
in the center of the bus or to use two devices, one in the front and one in the rear, but this
would impose restrictions on the installation position of the devices and increase the cost
of installation, which is a dilemma.

In this study, to solve the aforementioned problem, we used the machine learning
model with added information specific to the bus route, such as time and route information,
to improve the accuracy. The results of the performance evaluation showed that the model
with the best accuracy had an error rate of 38.8%, which is a significant improvement over
the estimation using a threshold. Figure 9 also shows a decrease in the error when the true
value is more than 20 people. In addition, to examine whether the estimation is sufficient in
congested situations, we re-calculated the MAE and the MAPE using only data with a true
value of 10 or more people. The results showed that for the dataset ND+, the XGB model
had an MAE of 3.7 people and a MAPE of 25.7%. This result confirms that the estimation
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can be done under the condition of crowded buses without any loss of accuracy. Three of
the machine learning models (SVM, RF, XGB) selected for this study are known for their
accuracy, and Table 5 confirms that the accuracy of these models is significantly higher
than that of the most lightweight linear regression model. However, these models are not
very lightweight compared to simple linear regression models. It is important to reduce
the weight of the models in order to perform real-time estimation in the automation of
congestion estimation, and this is an issue that needs to be addressed in the future.

8. Conclusions

In this study, we proposed a system for estimating the degree of congestion on a
bus route using BLE signals as sensing data to protect passengers’ privacy and reduce
installation costs, taking into account that the system will be installed on a bus that is
actually in operation. To count passengers correctly who have multiple BLE devices and
passengers who do not have any devices, we developed a machine learning model that
accounts for information specific to bus routes, such as passenger demographics, that
vary by region. This system consists of a single-board Raspberry Pi computer, which is
inexpensive and lightweight. The system can be implemented by only installing software
if the bus already has a device that can receive BLE signals. This has the advantage
of installation without any restrictions on the location. As a result of evaluating the
effectiveness of the proposed system by conducting data collection experiments on an
actual bus, we showed that the system can estimate the number of passengers with high
accuracy enough for practical use.

One of the future challenges is to design a system that can accurately acquire the
BLE terminals of passengers even under crowded conditions. In consideration of actual
operation, it is desirable to use a method that does not impose restrictions on the installation
position of the sensing device. One possible solution is a participatory sensing method
that uses the smartphones carried by passengers as sensing devices. In addition, we are
planning to conduct a data collection experiment using a new actual bus route, and we
will attempt to improve the accuracy by building a new model from the obtained data.
In the future, we are going to monitor the level of congestion in all public transportation
systems, and aim to solve social problems such as avoiding congestion for individuals and
equalizing congestion in society.
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