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Abstract: Navigating unknown environments is an ongoing challenge in robotics. Processing large
amounts of sensor data to maintain localization, maps of the environment, and sensible paths can
result in high compute loads and lower maximum vehicle speeds. This paper presents a bio-inspired
algorithm for efficiently processing depth measurements to achieve fast navigation of unknown
subterranean environments. Animals developed efficient sensorimotor convergence approaches,
allowing for rapid processing of large numbers of spatially distributed measurements into signals
relevant for different behavioral responses necessary to their survival. Using a spatial inner-product to
model this sensorimotor convergence principle, environmentally relative states critical to navigation
are extracted from spatially distributed depth measurements using derived weighting functions.
These states are then applied as feedback to control a simulated quadrotor platform, enabling
autonomous navigation in subterranean environments. The resulting outer-loop velocity controller is
demonstrated in both a generalized subterranean environment, represented by an infinite cylinder,
and nongeneralized environments like tunnels and caves.

Keywords: bio-inspired navigation; sensorimotor convergence; subterranean exploration; quadrotor
control

1. Introduction

There is significant interest in using small Unmanned Aerial Systems (sUAS) for au-
tonomous tasks, ranging from rapid situational awareness of hazardous environments to
search and rescue missions. In each application, the system’s ability to sense the environ-
ment around itself is critical to autonomous navigation, and generating control commands
in a fast and efficient manner is still an ongoing challenge. This challenge is even more
difficult in subterranean environments, where degraded sensing, diverse unstructured
terrain, and a lack of Global Positioning System (GPS) signals can cause problems with
traditional navigation methods. More detail on the challenges and proposed solutions to
autonomous subterranean navigation are presented in [1–12]. Generally, proposed methods
for subterranean navigation include some mix of the following subsystems: sensing and
perception, state-estimation, map generation, planning, and guidance. These subsystems
and processes can require multiple sensing modalities and significant computing resources,
which ultimately leads to undesired size, weight, and power (SWaP) constraints on the
vehicle. Additionally, all of these processes are directly affected by state-estimation accu-
racy; if the state estimates are noisy or experience significant drift over time, it can affect
the quality of the map, which in turn affects the system’s ability to navigate. To overcome
these challenges and limitations, novel sensors and sensor processing methods need to be
developed to continue to push forward robot autonomy.

For inspiration, researchers can look to countless examples in nature of elegant solu-
tions to complex perception and navigation problems. Animals evolved for hundreds of
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millions of years. As a result, they developed efficient sensorimotor systems for processing
spatially distributed sensor measurements. As engineers, we can learn from these incredi-
ble biological systems and use the underlying principals to come up with unique solutions
to the different challenges of robot autonomy.

One example is the mechanosensory lateral line system, which allows fish to navigate
their surroundings by sensing water flow. The mechanosensory lateral line system is
composed of two different types of spatially distributed sensors: the superficial neuromast
(SN) and the canal neuromaster (CN). The SNs are located on the body of the fish and sense
local flow velocity, while the CNs are located in subepidermal canals and sense flow accel-
eration [13,14]. Specialized neural pathways enable the fish to achieve different behaviors
like rheotaxis [15,16], schooling [17], obstacle avoidance [13], and prey detection [18,19].
By mimicking the mechanosensory lateral line system, reflexive obstacle avoidance can
be achieved through the spatial decomposition of electric field measurements [20,21]. An-
other example is the spider mechanosensory system composed of hair and strain sensors
that cover the abdomen and legs [22]. By processing many different spatially distributed
measurements from the touch sensitive hairs, spiders are more equipped to detect and
localize prey [23,24]. These hairs also allow them to sense air flow, allowing them to local-
ize airborne prey and estimate ego-motion [25–27]. A third example of particular interest
is the insect visuomotor system, which enables fast flight and obstacle avoidance. The
insect compound eye is composed of thousands of ommatidea, or light receptors. Insects
rely on optic flow, or the characteristic patterns of visual motion that are excited as they
move [28–30]. By processing the changing patterns of light (optic flow) sensed by the
ommatidia (the insect compound eye), insects are able to generate reactive motor com-
mands allowing them to make rapid adjustments to their flight and avoid obstacles [31].
Additional analysis of the insect visuomotor system shows how specialized tangential
cells process distributed optic flow measurements, inspiring the wide-field integration
framework presented in [32–34]. Through observation of insects and other flying animals
in different environments, optic flow-based navigation methods were developed [35–42].
Small-obstacle avoidance algorithms based on optic flow measurements are demonstrated
onboard a multirotor platform in [43,44].

In each of these examples, hundreds to thousands of spatially distributed sensor
measurements are processed simultaneously to produce different behavioral responses.
Past studies focused on extracting ego-motion estimates and/or relative proximity to
obstacles from optic flow or electric field measurements, whereas the main sensing mode
for this study is relative depth observed by a spherical LiDAR sensor model. The proposed
controller is reactive, which means that it generates control commands directly from the
raw sensor measurements. Other reactive control approaches can be divided into the
following subgroups: artificial potential fields, admissable-gap navigation, and laser-
based reactive control approaches. In artificial potential field approaches, the known,
or sensed, environment is converted to a field of forces [45–48]. The admissible-gap
approach uses depth scans to generate a nearness diagram and then identify gaps to
traverse [49]. The approach is strictly planar, however improvements to the initial algorithm
were made including smooth nearness-diagram navigation [50], closest gap navigation [51],
and tangential gap navigation [52]. This approach was recently implemented onboard a
small multirotor platform and tested in both indoor and outdoor environments [53]. Other
noteworthy LiDAR-based approachs are presented in [54], where depth scans are used to
plan a path through the known environment using an improved rapidly-exploring random
tree algorithm (RRT*) and [8], where depth scans are used to generate a centering response
for graph navigation.

In this work, a bioinspired wide-field integration (WFI) framework for subterranean
navigation is presented where the primary sensing modality is measured depth. Spatially
distributed depth measurements are a rich source of information relevant to navigation.
Using the spatial inner-product, a WFI method inspired by the Lobula Plate Tangential Cells
(LPTCs) of the insect visuomotor system, environment relative states can be extracted from
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depth scans and applied as feedback to achieve a 3D centering response in subterranean
environments. With careful selection of 3D weighting shape functions, or sensitivity
shapes, control commands can be computed directly from depth scans in a single operation.
The control algorithm is demonstrated onboard a simulated quadrotor platform in both
a generalized cylinder environment and other subterranean environments with more
diverse topology. The main advantage to this approach is its simplicity: it does not
require state-estimates, local or global maps, or planned paths, and control commands are
generated directly from each successive depth scan. By integrating across thousands of
depth measurements, the algorithm is robust to sensor noise. The algorithm is also robust
to changes in the environment. In the development of the algorithm the local environment
is approximated as an infinite cylinder, however, navigation in more diverse subterranean
environments is demonstrated.

This paper is outlined as follows. In Section 2, the development of the bio-inspired
nearness controller is presented, as well as a description of the platform and simulated
testing environment. Following the presentation of the algorithm, results from autonomous
flight tests are presented in Section 3. The advantages and limitations of the controller are
discussed in Section 4

2. Materials and Methods
2.1. System and Sensing Models

For the purpose of testing the algorithm, the DARPA SubT Simulator is used (Available
online: https://www.subtchallenge.com (accessed on 17 January 2022). The DARPA SubT
Simulator provides access to a number of different simulated subterranean environments
that fall into three main subdomains: tunnel, urban, and cave. Each subdomain provides
unique navigation challenges to autonomous platforms, such as the tight and narrow
corridors of the tunnel worlds or the nonuniform caverns present in the cave worlds.
Examples of these environments are shown in Figure 1. Initial formulation of the controller
assumes an infinite cylinder as the generalized environment, which can also be loaded
into the DARPA SubT simulator as a custom world. The SubT virtual code repository and
resources on how to use it are hosted on GitHub (Available online: https://github.com/
osrf/subt/wiki (accessed on 17 January 2022).

Figure 1. Screenshots of different virtual environments, each spanning hundreds of meters in
length and width. (a) A simple, straight tunnel environment of radius 1.75 m and length 600 m.
(b) Overview of a larger, more complex tunnel environment with an average radius of 1.75 m and
spanning approximately 200 m width × 300 m length. (c) Top-down view of a cave environment
spanning approximately 600 m length × 425 m width, with an average cave radius greater than
5 m. (d) Entrance to a cave world environment, spanning approximately 10 m width × 15 m
height × 20 m length.

In addition to simulation worlds, the DARPA SubT Simulator provides access to
robotic platforms developed by DARPA SubT Challenge Virtual competition teams com-
plete with full sensor suites . Users can customize different platforms, like multirotor
aerial systems or quadrupedal ground vehicles, with sensors that suite the needs of their
algorithms. For the purpose of this study, the standard quadrotor “X3” model is used with
outer-loop velocity control. Navigation of the different environments is achieved by setting
a fixed forward speed and generating lateral and vertical velocity commands as well as
heading rate commands. The inner-loop attitude controller is handled by the DARPA SubT
Simulator quadrotor controller, which converts velocity commands to individual motor

https://www.subtchallenge.com
https://github.com/osrf/subt/wiki
https://github.com/osrf/subt/wiki
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speeds of the simulated vehicle for attitude control and stabilization. A depth sensing
model based on existing LiDAR sensors is used to measure depth to discrete points in the
environment. Current LiDAR-based sensors have limited field of views, however for the
purpose of this study a LiDAR sensor with a full spherical field of view is used. Depth mea-
surements d(θv, φv, x) are discretized according to the body-referred viewing angles θv and
φv, where θv ∈ [0, 2π] is the inclination angle and φv ∈ [−π, π] is the azimuthal angle, and
are a function of the environment relative system states x, which are described in greater
detail in Section 2.2.1. In this case, 64 equally spaced inclination angles and 360 equally
spaced azimuthal angles are used, resulting in just over 23,000 depth measurements per
scan. In the Robot Operating System (ROS), the incoming depth scans are represented as
collections of (x, y, z) points, and so each depth measurement is made up of 3 floating point
numbers. Depth scans are reported at a rate of 20 Hz, and the bandwidth of the sensor
data is estimated to be around 5.27 MB/s. The LiDAR model has a max sensing distance
dmax = 100 m and minimum sensing distance dmin = 0.05 m. Additive Gaussian white
noise is added to each depth measurement, with a nominal standard deviation of 0.03.
Measured depth is hypothetically unbounded, and so depth is converted to nearness, as
shown in Equation (1):

µ(θv, φv, x) =
1

d(θv, φv)
∈ (0, d−1

min) (1)

2.2. Bio-Inspired Nearness Control

The goal is to develop an outer-loop velocity controller that produces a 3D centering
response in subterranean environments using spatially distributed nearness measurements,
or nearness scans. This is achieved by extracting environment relative information from the
nearness scan using the spatial inner-product. First, the local environment is approximated
as an infinite cylinder, which appropriately represents a subterranean environment where
large obstacles can exist above, below, and to the sides of the vehicle. When navigating
unknown environments, it is often desirable to fly as far away from large obstacles, such
as walls, floors, and ceilings, as possible. In the case of subterranean environments, this
can be achieved by driving the system to the middle of the local environment. By selecting
appropriate weighting shapes for the spatial inner-product, these environment relative
states can be extracted from the nearness scans of the onboard sensor. Linear feedback
control is used to drive the system away from obstacles towards the center of the cylinder
and point down the centerline. The general process is shown in Figure 2.

Figure 2. Process flow diagram demonstrating interactions between main subsystems. Nearness
is measured from environment and environment relative states are extracted and used for control
feedback, ultimately affecting vehicle dynamics.
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Section 2.2.1 presents the lytic function for nearness in the approximated local environ-
ment. In Section 2.2.2, the process of extracting the environment relative states through WFI
is presented in detail. Design of the linear feedback controller is presented in Section 2.2.3.

2.2.1. Parameterization of the Environment

It is useful to approximate the local environment around the vehicle as some gen-
eralized shape with a known analytic representation. This enables the determination of
the environment relative states to use for feedback and also allows an initial set of feed-
back gains to be derived. As stated above, a cylinder is selected as the generalized local
environment, as it simulates the presence of obstacles above, below, and to the sides of
the vehicle. Figure 3 shows different views of a quadrotor model flying through a simple
cylinder environment. The controller goal is to drive the system towards the centerline of
the cylinder, and the environment relative states that can be used for feedback to achieve
this are the lateral, vertical, and heading displacements from the cylinder centerline defined
as y, z, and ψ. As the system moves through the environment, the expected shape of the
measured nearness can be determined by intersecting a line in the body-referred spherical
coordinate system with the surface of a cylinder (see Appendix A for a more detailed
derivation). One simplifying assumption is made, which is that the roll and pitch angles
of the vehicle are assumed to be negligibly small. The analytic representation of nearness
as a function of the cylinder radius r, the body-referred viewing angles (θv, φv), and the
environment relative states x =

[
y z ψ

]T is shown in the following equation:

µ(θv, φv, x) =
c(θv)2 + s(φv + ψ)2s(θv)2

zc(θv) + ys(φv + ψ)s(θv) +
√

ac(θv)2 + s(φv + ψ)[bs(φv + ψ)s(θv)2 + yzs(2θv)]
(2)

where sin(x) and cos(x) were simplified to s(x) and c(x), a = (r − y)(r + y), and b =
(r− z)(r + z). While this is a complicated nonlinear function, estimates of the environment
relative states can be extracted using WFI.

Figure 3. Different views of an infinite cylinder environment are shown with corresponding environ-
ment relative variables. (a) View looking down cylinder. (b) Full 3D view of cylinder environment.
(c) Top-down view of cylinder. (d) Example of a measured depth scan in a cylinder environment
using spherical LiDAR sensor. The points are colored based on their z position, with warmer colors
representing points below the x-y plane and cooler colors representing points above the x-y plane.
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2.2.2. Wide-Field Integration

In the visuomotor system of the fly, tangential cells are large motion-sensitive neurons
that are sensitive to different flow patterns. Different tangential cells are sensitive to dif-
ferent stimulus patterns, and the integrated output is effectively a comparison between
the cell’s sensitivity pattern and the measured stimulus. The outputs of these cells are
pooled to produce different motor responses. This process can be represented mathemati-
cally by the spatial inner-product, shown in Equation (3), which compares two spherical
nearness patterns.

〈µ, Fi〉 =
∫∫

Ω
µ(θv, φv, x)Fi(θv, φv)dΩ (3)

Here, dΩ = sin(θv)dθvdφv is the solid angle of the sphere. By projecting nearness
onto different weighting shape functions Fi, the function’s dependence on the viewing
angles θv, and φv is removed. Real spherical harmonics, shown in Figure 4, are used as the
basis set for the sensitivity shapes, and are parameterized by the viewing angles θv and φv
according to:

Ym
l (θv, φv) =

√
(2l + 1)

4π

(l −m)!
(l + m)!

Pm
l (cos θv)eimφv (4)

where Pm
l (cos θ) is the associated Legendre function l ∈ Z, m ∈ Z, l ≥ 0, |m| ≤ l. With

spherical harmonics as the weighting shapes Fi, Equation (3) can be rewritten as:

pi(x) = 〈µ, Ym
l 〉 =

∫∫
Ω

µ(θv, φv, x)Ym
l (θv, φv) sin(θv)dθvdφv (5)

Figure 4. Examples of spherical harmonic shapes, where red points have positive magnitude and
blue points have negative magnitude. (a) Y0

0 Mode (b) Y1
0 Mode (c) Y2

−1 Mode.

The resulting outputs pi(x) from Equation (5) are nonlinear functions of the state, and
can be linearized for small motions around x0 to produce a set of linear equations of the form
p = Cx. This observation model can be inverted to produce a linear relationship between
the projections and the environment relative states x = C† p, where C† = (CTC)−1CT. The
C† matrix relating the projections to the states for the first nine spherical harmonics is found
to be:

C† =


0 0 0 r2

2
√

π
3

0 0 0 0 0

0 r2

2
√

π
3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3r2

8
√

π
3

 (6)

The spatial inner-product is a linear operator, and so the C† matrix, which relates
projections to states, can be moved inside the inner-product resulting in the following:

x̂i = 〈µ,
M

∑
j=1

C†
ijFj〉 (7)
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where M is the number of weighting shapes. The second term in the inner-product can be
interpreted as the weighting shape for extracting the i’th environment relative state:

Fx̂i =
M

∑
j=1

C†
ijFj (8)

For the first nine spherical harmonics, a single projection correlates with each of the
three environment relative states. The closed forms of the state sensitivity shapes are shown
in Equations (9) and (10), and a visual representation is shown in Figure 5.

Fŷ =
r2

2
√

π
3

Y−1
1 (θv, φv) (9)

Fẑ =
r2

2
√

π
3

Y1
0 (θv, φv) (10)

Fψ̂ =
3r2

8
√

π
3

Y−2
2 (θv, φv) (11)

Figure 5. State sensitivity shapes where red points have positive magnitude and blue points have
negative magnitude. Origin axis markers are of length 0.5 m. In this linearized example, state
sensitivity shapes are simply scaled versions of Laplace spherical harmonics. (a) Lateral state y
sensitivity shape Fŷ; (b) vertical state z sensitivity shape Fẑ; (c) heading state ψ sensitivity shape Fψ̂.

2.2.3. Feedback Control Design

Quadrotor platforms are able to move in any direction, subject to dynamic constraints.
At low speeds, the linear dynamics models for the forward, lateral, vertical, and heading
states can be decoupled and represented by the following dynamics models:

u̇ = Xuu + XδFwd δFwd (12)

[
ẏ
v̇

]
=

[
0 1
0 Yv

][
y
v

]
+

[
0

YδLat

]
δLat (13)

[
ż
ẇ

]
=

[
0 1
0 Zw

][
z
w

]
+

[
0

ZδVert

]
δVert (14)

[
ψ̇
ṙ

]
=

[
0 1
0 Nr

][
ψ
r

]
+

[
0

NδHead

]
δHead (15)

Equation (12) shows the forward velocity dynamics of the vehicle where Xu is the
forward, or longitudinal, stability derivative and XδFwd is the forward control derivative. A
fixed, or regulated forward speed is desired, and no forward position states are required.
Equation (13) shows the lateral dynamics model of the system where Yv, Yp, Lv, and Lp
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are the lateral stability derivatives and YδLat and LδLat are the lateral control derivatives.
Similarly, Equation (14) shows the vertical dynamics model where Zw is the vertical stability
derivative and ZδVert is the vertical control derivative. Last is Equation (15), which shows
the heading dynamics of the system where Nr is the heading stability derivative and NδHead
is the heading control derivative. The inputs to the system are the forward, lateral, vertical,
and heading control efforts δFwd, δLat, δVert, and δHead. The table in Appendix B lists the
values used for all the stability derivative constant terms, which were estimated for a
similar quadrotor platform in [55].

The control efforts are determined using a simple feedback control scheme where the
desired states are compared to the estimated states:

δLat = Kv(ydes − ŷ) (16)

δVert = Kw(zdes − ẑ) (17)

δHead = Kr(ψdes − ψ̂) (18)

where Kv, Kw, and Kr are the lateral, vertical, and heading controller gains. A fixed forward
speed is used directly as an input to the controller. The closed loop dynamics equations are
shown in Equations (19)–(21): [

ẏ
v̇

]
=

[
0 1

−YδLat Kv Yv

][
y
v

]
(19)

[
ż
ẇ

]
=

[
0 1

−ZδVert Kw Zw

][
z
w

]
(20)

[
ψ̇
ṙ

]
=

[
0 1

−NδHead Kr Nr

][
ψ
r

]
(21)

Stability of the controlled system can be determined using simple linear stability
analysis. In each case, with a selection of Ki > 0 the decoupled linearized systems are stable
for small deviations from the equilibrium.

Similar to before, the controller gains can also be moved inside the spatial inner-
product:

ui = 〈µ,
M

∑
j=1

KiC†
ijFj〉 (22)

Now, the control commands ui can be directly computed from the measured nearness
scan using the spatial inner-product. In this case, the second term in the inner-product is a
spatially distributed weighting shape that is not only sensitive to the different environment
relative states, but is also scaled to produce the desired control commands:

Fui =
M

∑
j=1

KiC†
ijFj (23)

For each of the three environment relative states, a different weighting function Fui is
used to generate control commands from the measured nearness scans. In this case, the
estimated states are linear functions of a single projection, as seen in Equations (9)–(11),
and so the control command weighting shapes are just scaled versions of the shapes seen
in Figure 5.

While a fixed forward speed can work in most environments, performance can be
improved by regulating the forward speed. In this case, the speed response from [33] is
used for inspiration for the following control law:

udes = umax(1.0− Kuv |ŷ| − Kuw |ẑ| − Kuψ |ψ̂| − Ku f wd p(3)) (24)
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Here, the forward speed control gains Kuv , Kuw , Kuψ , Ku f wd are used to tune the forward
speed regulation response to errors in the lateral, vertical, and heading states as well as
approaching obstacles through the p(3) projection. By regulating the forward speed based
on errors in the environment relative states, the system is better equipped to navigate
changes in the environment.

3. Results

In the following subsections, performance of the algorithm in different simulated
environments is presented. In Section 3.1, the performance of the system in a perfect
cylinder environment is demonstrated. Zero-mean Gaussian white noise is added to the
depth measurements in Section 3.2, demonstrating the algorithm’s robustness to sensor
noise. To demonstrate the robustness of the algorithm in nongeneralized environments,
results from tests conducted in tunnel and cave environments are presented in Section 3.3.

3.1. Performance in Generalized Cylinder Environment

In this section, the algorithm is tested in a simulated perfect cylinder environment to
demonstrate the effectiveness of the method. For the first set of tests, the quadrotor system
was manually perturbed off the centerline of the cylinder and state estimates generated
from the state sensitivity shapes Fxi were recorded. No sensor noise was added to any
of the tests presented in this subsection. Figures 6–8 compare the environment relative
state estimates, shown as a red dashed line, to the ground truth, shown in blue. In each
of these cases, the estimation error is negligible for small perturbations, however, large
perturbations eventually begin to skew the estimated states.

Figure 6. (top) Comparison of estimated lateral distance of cylinder centerline to ground truth as
system moves back and forth laterally in environment. (bottom) State error plotted as a function
of time.
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Figure 7. (top) Comparison of estimated vertical distance of cylinder centerline to ground truth as
system moves up and down in environment. (bottom) State error plotted as a function of time.

Figure 8. (top) Comparison of estimated heading relative to cylinder centerline to ground truth as
system yaws back and forth. (bottom) State error plotted as a function of time.

In Figures 9–11, the stability of the controller is demonstrated for different perturba-
tions away from the centerline of the cylinder. Isolated tests were conducted for each state
where the system is initialized with some nonzero initial condition. Control commands
were generated using the control sensitivity shapes Fui , and control gains Kv = Kv = Kr = 1
are used simply to prove stability claims. In each case, the nearness controller drives the
system back to the centerline of the cylinder, confirming the stability of the controller.
With equal gains, the heading control is seen to have the slowest response, which is to be
expected based on the quadrotor model stability derivatives.
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Figure 9. Collection of system responses to a nonzero initial lateral state. Each line represents a
different trajectory with a unique nonzero initial perturbation to lateral position.

Figure 10. Collection of system responses to a nonzero initial vertical state. Each line represents a
different trajectory with a unique nonzero initial perturbation to vertical position.

Figure 11. Collection of system responses to a nonzero initial heading state. Each line represents a
different trajectory with a unique nonzero initial perturbation to heading of system.
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3.2. Robustness to Noise

To evaluate the algorithm’s robustness to additive Gaussian white noise on the depth
measurements, the quadrotor platform was piloted through the cylinder environment for
60 s. During the flight, the system was perturbed away from the cylinder centerline along
each environment relative state and the sensor data were recorded. Zero-mean Gaussian
noise with varying standard deviations was added to the depth measurements offline, and
the standard deviation of the error in the state estimates was computed. The results are
shown in Figure 12.

Figure 12. Evolution of measurement error distributions as standard deviation of sensor noise increases.

The standard deviation of the state estimates remain extremely small relative to the
standard deviation of the added sensor noise. Even with large noise distributions, the
algorithm is still able to maintain state estimates that are usable for feedback control.

3.3. Performance in Nongeneralized Subterranean Environments

Using different SubT simulation environments, the performance of the algorithm
in nongeneralized environments is demonstrated. The control gains listed in the Table
in Appendix C were used in both the tunnel and cave tests presented. Figure 13 shows
different views of the “Simple Tunnel 03” world, which is composed of sloping ramps,
curved bends, vertical shafts, and dead-ends.

Figure 13. DARPA SubT simulation world: Simple Tunnel 03, 120 m × 100 m × 10 m. (a) Top-down
view of tunnel environment showing banked turns. (b) Side-view of a ramp section where a descent
of approximately 7 m occurs over 20 m of forward motion. (c) Side-view of vertical shaft section,
which spans about 10 m vertically.

The speed of the system and the control commands are shown in Figure 14. The system
is able to quickly navigate through all sections of the course in 4 min, covering 506 m of
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tunnel in the process. The average speed of the system was 2.01 m/s. The first section of the
environment is the downward sloping ramp shown in Figure 13b. The vertical centering
response is demonstrated in the uw plot in Figure 14 between the 20 and 35 s mark where
the system is commanded to descend. Perturbations in the uv commands that correlate
with the ur commands are indicative of the system navigating a bend in the tunnel. At the
80-s mark, the system approaches the vertical shaft, as seen by the decrease in the forward
speed command. Even though the control algorithm is not explicitly designed to navigate
vertical shafts, the system is still able to get through the section and continue exploring.

Figure 14. Plots showing speed of system and control commands. (a) Speed of system. (b) Forward
speed command. (c) Lateral speed command. (d) Vertical speed command. (e) Yaw rate command.

The SubT virtual cave worlds provide even more diverse terrain for systems to navi-
gate, consisting of large caverns connected by tight passageways. Figure 15a shows a top
down view of the DARPA SubT sim world “Simple Cave 02”, and a sample of the inside of
the environment is shown in Figure 15b. The cave environments deviate massively from
the cylinder model used to approximate the local environment, however the algorithm is
still able to produce a centering response that keeps the vehicle exploring. The red line in
Figure 15 shows the approximate route taken by the system through the cave environment
starting at the green dot near the bottom and proceeding counter-clockwise. During this
test, the system covered 1.2 km in just under 15 min, with an average speed of 1.35 m/s.
The speed of the system and the control commands as it navigates through environment
shown in Figure 15 are shown in Figure 16.
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Figure 15. DARPA SubT simulation world: Simple Cave 02, 230 m × 170 m × 75 m (a) Top-down
view of cave environment consisting of large unstructured tunnels. The red line in Figure 15 shows
the approximate route taken by the system through the cave environment starting at the green dot
near the bottom and proceeding counter-clockwise. (b) View of the orange quadrotor system moving
through a larger cavern.

Figure 16. Plots showing speed of system and control commands as it navigates through environment
shown in Figure 15. (a) Speed of the system. (b) Forward speed command. (c) Lateral speed command.
(d) Vertical speed command. (e) Yaw rate command.

4. Discussion

In general, the WFI method works well on spatially distributed depth scans, and
sensible state sensitivity shapes are presented in Figure 5. The magnitude of the lateral
state weighting shape Fŷ is greatest at the sides of the vehicle, which makes sense because
these are the measurements that should carry the most weight when estimating ŷ. Similarly,
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the vertical state weighting shape Fẑ magnitude is largest at the top and bottom poles, and
it decreases as they get closer to the x− y plane. The heading state sensitivity shape Fψ̂ is
slightly more interesting. With opposing positive and negative components, this shape
becomes sensitive to changes in the heading of the system.

The state estimates from the perfect cylinder environment demonstrated in Section 3.1
were computed using the full state sensitivity shapes. However, different responses can
be achieved if subsets of the full shapes are used. For example, if only the front half of the
heading state sensitivity shape Fψ̂ is used in the spatial inner-product (i.e., measurements
from behind the vehicle are not used), a more reactive steering response is produced. By
only processing points that are in front of the vehicle, the system is more responsive to
changes in the environment in front of it and can steer accordingly. The results presented in
Section 3.3 were achieved using the front half of the Fψ̂. The same heading state-estimates
can be achieved by recomputing the projection coefficient in the C† matrix in Equation (6).
Other responses, like ground and wall following can be achieved through half shapes as
well. With small changes to the feedback controller, a ground-following response can be
produced by using only the bottom half of the vertical state sensitivity shape Fẑ. Similarly,
using only the left- or right-hemisphere of the lateral state sensitivity shape Fŷ can produce
a wall-following response.

The algorithm’s robustness to additive Gaussian sensor noise is demonstrated in
Section 3.2. No appreciable change in the standard deviation of the state estimate errors
is excited until relatively large deviations in the noise are added to the measurements.
Modern LiDAR depth sensors have noise distributions with standard deviations to the
order of millimeters to centimeters, which is on the lower end of the data presented in
Figure 12. The main takeaway here is that this algorithm enables the use of lower fidelity
(and often cheaper) sensors whose noise levels are unacceptable for other applications.

The algorithm is also robust to occlusions, or discontinuities in the measurements, as
long as the occlusions are symmetric. Occlusions in pointclouds could result from using
multiple, nonoverlapping depth sensors. In this study, occlusions in the depth scan were
present due to the presence of the quadrotor body. The quadrotor model body is detected
by the onboard LiDAR sensor in the SubT sim, as it is impossible to place a spherical
depth sensing model on a quadrotor and not experience some occlusions. These points are
obviously not measurements of the environment, and so they should not be processed by
the spatial inner-product. In this case, these measurements can simply be thrown away, as
long as the corresponding point is removed from every other hemisphere quadrant. This
ensures that the resulting state estimates are not skewed in any one direction.

One of the biggest advantages to this solution is the computational efficiency and
simplicity. The entire control algorithm can be condensed down into a single equation,
Equation (22), which directly produces controls commands from sensor measurements.
Producing a single control command requires 2N floating point operations, where N is
the number of measurements, and so only 6N floating point operations are required to
generate a set of control commands. Actual implementation of the algorithm requires some
additional data conditioning and processing, however the entire operation takes less than
0.01 s of processing time. This means that scans from equivalent LiDAR sensor models
could be processed at rates up to 100 Hz. Faster processing of sensor measurements enables
faster reactions to changes in the environment, in which case the limiting factor becomes
the vehicle dynamics and control response.

While this algorithm is computationally efficient and enables fast flight, it can be
susceptible to local minima in the environment such as corners, split paths, or unique
environments that produce trajectory loops. In the case where the vehicle is approaching
a symmetric split path or corner, the system will not deviate from its current trajectory
because the local environment may already be balanced. In this case, the controller may
not generate steering commands to avoid a collision. This situation can be thought of as
an unstable equilibrium state. In real environments, these scenarios are rare because the
relative environment is rarely perfectly symmetric, and even sensor noise can be enough to
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perturb the system off the unstable equilibrium state and back onto a centering trajectory.
As mentioned above, trajectory loops can be excited in certain unique environments. For
example, if the system were to fly into a large cavern from a small hallway, it may never
exit the cavern and get stuck in a continuous loop flying around the cavern.

5. Conclusions

Using bio-inspired WFI methods, high-bandwidth sensor data can be efficiently pro-
cessed to produce a 3D centering response in subterranean environments. The derivation
of the sensitivity functions presented in Section 2.2.2 shows how different weighting func-
tions can be used to extract environment relative information. With proper selection of
the feedback controller gains, the algorithm is demonstrated to be stable for a range of
perturbations from the equilibrium state in the cylinder environment. By integrating across
thousands of sensor measurements, the algorithm is robust to additive white noise and
occlusions in the depth scans. The 3D centering response is robust to large deviations away
from the generalized local environment presented in Section 2.2.1, as demonstrated in the
flight tests presented in Section 3.3.

Work on this framework can continue in several different directions. In Section 2.2.1,
the local environment was approximated as an infinite cylinder with some known radius r.
In this framework, computing controller gains requires some initial value for the expected
radius of the environment. If the actual radius of the local environment is significantly
larger than the expected radius, the system performance will be sluggish as the control
commands are effectively scaled down. Conversely, if the actual radius is much smaller
than the expected radius, the control commands could grow too large and make the system
unstable. Using principals of robust control theory, a dynamic controller can be designed
which provides performance and stability guarantees for a range of perturbations to the
expected radius.

As noted in Section 3.3, the system is able to navigate a vertical shaft using this
3D centering approach; however, it required the vehicle to slow to a near stop. This
subterranean exploration framework could be expanded by determining new sensitivity
functions for vertically oriented infinite cylinders. By feeding back on a different set of
pooled projections, forward- and lateral-centering could be achieved while the system
ascends or descends the vertical shaft. This requires additional logic for determining
when the system should switch between the different centering modes. Deeper analysis of
different projection values may provide insight into signals that could be used to facilitate
the mode switching.

This work focuses on a spherical LiDAR sensor model that produces the same dis-
tribution of points each scan. In other words, the viewing angles of each scan point are
constant and known. Novel depth sensing modalities, such as millimeter wave radar, also
produce depth scans, however the incoming, unfiltered points are often spurious and have
no known spatial distribution. Future work can be done to apply this algorithm to sensors
with unknown spatial distributions of their depth scan points.
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Appendix A. Intersection of a Line and a Cylinder Surface

Surface of a cylinder as a function of of the viewing angles θv and φv:

y2
c + z2

c = r2 (A1)

Components of a line segment that intersect with the cylinder as a function of the
viewing angles θv and φv:xc

yc
zc

 =
[[

M3(φv)
][

M2(θv)
]]T

0
0
d

 = d

cos(φv) sin(θv)
sin(φv) sin(θv)

cos(θv)

 (A2)

By plugging in the yc and zc components of Equation (A2) into Equation (A1):

d2
[
sin2(φv) sin2(θv) + cos2(θv)

]
= r2 (A3)

Solving Equation (A3) for d:

d(θv, φv) = r
[
sin2(φv) sin2(θv) + cos2(θv)

]− 1
2 (A4)

This is the unperturbed case, so now we want to add in the lateral (y), vertical (z), and
heading (ψ) states. The new equations for the cylinder and line that encode these values is:

(yc − y)2 + (zc − z)2 = r2 (A5)xc
yc
zc

 = d

cos(φv + ψ) sin(θv)
sin(φv + ψ) sin(θv)

cos(θv)

 (A6)

Now, if we combine Equations (A5) and (A6) and solve for d we get:

d(θv, φv, y, z, ψ) =
b±
√

b2 − ac
a

(A7)

a = sin2(φv + ψ) sin2(θv) + cos2(θv)

b = y sin(φv + ψ) sin(θv) + z cos(θv)

c = y2 + z2 − r2
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Equation (A7) is simply inverted to get the final closed form solution for nearness
presented in Equation (1).

Appendix B. Quadrotor Model Parameters

Table A1. Quadrotor model parameters used for stability analysis and the development of initial
controller gains.

Quadrotor Model Parameters

Parameter Value Units

Yv −0.3022 1/s
Yδlat

0.0172212 m/(s2%)
Zw −0.1734 1/s

ZδVert −14.95504248 m/(s2%)
Nr −0.5617 1/s

NδHead
6.0308 rad/(s2%)

Appendix C. Controller Gains

Table A2. Controller gain values used to collect the presented datasets.

Controller Gains

Gain Value

Kv 1.25
Kw 1.5
Kr 1.5
Kuv 0.4
Kuw 0.25
Kur 0.4

Ku f wd 2.0
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