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Abstract: We present in this paper a framework for damage detection and localization using neural
networks. The data we use to train the network are m× d pixel images consisting of measurements
of the relative variations of m natural frequencies of the structure under monitoring over a period of
d-days. To measure the relative variations of the natural frequencies, we use the stretching method,
which allows us to obtain reliable measurements amidst fluctuations induced by environmental
factors such as temperature variations. We show that even by monitoring a single natural frequency
over a few days, accurate damage detection can be achieved. The accuracy for damage detection
significantly improves when a small number of natural frequencies is monitored instead of a single
one. More importantly, monitoring multiple natural frequencies allows for damage localization
provided that the network can be trained for both healthy and damaged scenarios. This is feasible
under the assumption that damage occurs at a finite number of damage-prone locations. Several
results obtained with numerically simulated data illustrate the effectiveness of the proposed approach.

Keywords: machine learning; stretching method; damage detection

1. Introduction

The necessity and significance of Structural Health Monitoring (SHM) to ensure the
long-term integrity of structures is well recognized. Damage inevitably occurs during the
lifetime of a structure. It may be induced by environmental factors, operational conditions
or a hazard event and it may cause premature aging, operation malfunction or even
the failure of the structure. Monitoring structural damage is therefore considered to be
extremely important for sustaining the original functionality and possibly extending the
lifetime of structures.

To monitor structural health conditions, SHM systems have been implemented in
almost all areas of engineering including civil, mechanical and aerospace engineering
applications. In this context, SHM is defined as the process of detecting, localizing and
possibly quantifying structural damage. Here, we think of damage as modifications that
have occurred in an engineering structure affecting its performance with respect to some
reference configuration, usually defined as the healthy state. An important category of
SHM techniques is the vibration-based method, where the vibration response of a structure
is recorded and analyzed using signal processing methods. A standard classification for
vibration-based SHM procedures is that of parametric (response-based) and non-parametric
(model-based) methodologies [1]. The latter category usually requires a numerical model
for the structure, which may be a data-driven simulation of the existing structure. A recent
review on vibration-based damage identification for civil engineering structures can be
found in [2].
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Our approach also falls into this class of vibration-based damage identification methods.
The key idea of these techniques is that the damage-induced changes in the physical proper-
ties of the system will cause a detectable change in modal properties [3]. It is well known,
however, that vibration-based damage identification methods are affected by environmental
and operational variability [4]. This is because such variations also induce changes in modal
properties. The main challenge is therefore to develop methods that can detect the effect of
a small damage in the presence of noise induced by environmental variations.

With the recent explosion of machine and deep learning techniques, their use in SHM
and related damage detection problems is also becoming very popular. We refer the reader
to [5,6] for recent reviews focused on the use of machine learning and deep learning in
SHM. A usual distinction between damage detection algorithms, which may be considered
as anomaly detection [7], is into supervised, semi-supervised and unsupervised categories.
The first one requires data of both the baseline and damaged (anomalous) configurations,
while the second one needs only data for the baseline healthy configuration. In the latter
case, there is no need for labeling the data. A supervised non-parametric approach is
proposed in [8], while auto-associative neural networks are employed in [9] to discriminate
system changes. In [10], a multilayer artificial neural network, which resembles an auto-
associative neural network using temperature variables in addition to the frequencies as
inputs, is explored to identify patterns in frequencies of undamaged structures under
varying temperatures. An unsupervised machine learning approach is applied in [11] using
PCA and an autoencoder using as inputs mode shapes and temperature in addition to
natural frequencies for effective damage detection. Finally, more integrated approaches for
long-term vibration-based SHM systems with real-time damage identification capabilities
are proposed in [12] as well as in [13].

In this work, we only use eigenfrequencies as inputs, which we refer to as natural
modes. The main source of noise is assumed to be induced by ambient temperature
variations. Eigenfrequencies are much easier to be measured compared to the eigenvectors;
i.e., the modal shapes of the structure under investigation. Specifically, we use the stretching
method (SM) to estimate relative shifts in the natural frequencies (∆ν/ν with ν denoting one
of the eigenfrequencies of the structure) as in [14]. In these works, damage identification is
performed by visually observing the graph of ∆ν/ν over time, looking for permanent and
environmental noise-independent variations. We use SM because it was shown to provide
a robust estimation of damage-induced variations in the natural frequencies amidst noise
due to environmental variations such as wind, humidity and temperature.

The main contribution of this paper is the automation of the damage detection process
using machine learning. More precisely, we propose to train a machine learning network to
classify if a given measurement ∆ν/ν contains damage or not. In the proposed approach,
∆ν/ν measurements are considered as images, which we call a measurement image matrix
(MIM). A MIM is of size m× d, with m denoting the number of natural modes monitored
and d denoting the number of days over which we monitor the variations of ∆ν/ν. These
MIMs are used to train different neural networks that have the ability to detect damage
or even localize a damage. Several configurations are considered using single or multiple
natural frequencies monitored over a single day or a multiple day period. In general, the
results improve as the number of natural frequencies monitored and the number of days
over which they are monitored increases. Typically, several networks can be trained and
used in parallel. This allows for both early damage detection using single-day MIMs as
well as localization using multiple-day and/or multiple-mode MIMs. Note that the SHM
problem has long been perceived as fundamental in statistical pattern recognition [15,16].

Training such a network requires a large set of measurements of ∆ν/ν corresponding
to a structure with and without damage; in contrast, for localization, measurements cor-
responding to different damage locations are needed. For that, we assume that damage
usually occurs in structures at a finite number of damage-prone locations. Then, we can
produce such data utilizing numerical models; for example, a finite element-based model
of the structure. Note that the idea of digital twins, containing detailed and simplified
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models as well as components of co-simulation entities through the dynamic decoupling of
the structure [17], has already been employed; for example, in [18]. Thus, obtaining such
measurements seems feasible.

The remainder of the paper is as follows. In Section 2, we briefly present SM and
explain how we use it to compute ∆ν/ν from which MIMs are formed. In Section 3, we
describe the neural network we use for damage detection, while in Section 4, we explain
the process that we use to generate realistic MIMs for both damaged and healthy scenarios
accounting for ambient temperature variations. In Section 5, we present results for damage
detection and localization using MIMs to train neural networks. Finally, Section 6 contains
our conclusions.

2. The Stretching Method for SHM

The stretching method is a signal processing technique widely used in geophysics to
detect velocity variations in the Earth’s interior [19–21]. More recently, this method was
used to monitor natural frequency variations in the context of SHM [14,22]. The idea is to
monitor changes in the natural frequencies of a structure by estimating a frequency shift
∆ν that maximizes the normalized correlation coefficient [14]

Cs(∆ν) =

∫ ν2
ν1

σc(ν + ∆ν)σr(ν)dν
√∫ ν2

ν1
(σc(ν + ∆ν))2dν

∫ ν2
ν1
(σr(ν))2dν

. (1)

where σ(ν) is understood as an appropriate mode indication function [23]. The basic
assumption is that this frequency-dependent quantity, σ(ν), undergoes a constant shift ∆ν
in the frequency range [ν1, ν2], as is also shown in Figure 1. In other words, we assume
that the current form of the frequency quantity, denoted as σc, may be approximated as
σc(ν + ∆ν) ≈ σr(ν) for ν in the range [ν1, ν2], with σr being the reference quantity. If there
is no frequency shift between the reference and the current quantity, then the minimizer of
Equation (1) is ∆ν=0, as expected.
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The idea is to work with a quantity σ that is a function of the natural modes of a
structure. In practice, we proceed as follows: assuming n degrees of freedom are measured,
ui, i = 1, . . . , n (e.g., acceleration measurements along different directions at different
locations), we compute the empirical cross-correlation of these measurements over the time
interval [0, T],

Ci,j
T (τ) =

1
T

∫ T

0
ui(t)uj(t + τ)dt, (2)

Figure 1. Stretching of function σ(ν) for ν defined in some specific range in order to fit with σr(ν),
∆ν is the maximizer of correlation coefficient Cs given in Equation (1).

The idea is to work with a quantity σ that is a function of the natural modes of a
structure. In practice, we proceed as follows: assuming n degrees of freedom are measured,
ui, i = 1, . . . , n (e.g., acceleration measurements along different directions at different
locations), we compute the empirical cross-correlation of these measurements over the time
interval [0, T],

Ci,j
T (τ) =

1
T

∫ T

0
ui(t)uj(t + τ)dt, (2)
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with τ denoting the lag-time. Using different time intervals [0, T], we compute two quanti-
ties: the reference one for which T is of the order of days and the current one for which T is
of the order of hours. Then, we form the matrix

[A#(ν)]i,j = A#
i,j(ν), # = r, c

where A#
i,j(ν) is the Fourier transform of the reference (# = r) or current (# = c) empirical

cross-correlation defined in Equation (2),

A#
i,j(ν) =

∫
Ci,j

T (τ)eı2πτνdτ, (3)

for 1 ≤ i, j ≤ n. By construction, the matrix A#(ν) is symmetric, and thus it admits a
symmetric singular value decomposition (SVD) of the form,

A#(ν) = U#(ν)Σ#(ν)U
#,T(ν). (4)

The matrix Σ#(ν) is a real diagonal matrix with the singular values σ#
1 (ν), . . . σ#

n(ν)
placed on the diagonal while the columns u#

1(ν), . . . , u#
n(ν) of the matrix U#(ν) are the

corresponding singular vectors. Here, U
#,T denotes the transpose of the matrix U

#
. The

frequencies at which the first singular value admits peaks correspond to the natural fre-
quencies of the structure, while the first singular vector at the corresponding frequency
is identified as the modal shape associated to this natural frequency (see Section 10.3.3
of [24]).

To monitor changes in the natural frequencies of a structure, we can use Equation (1)
with σ equal to σ1(ν), the larger singular value of the matrix A(ν). Alternatively, we can also
use the Fourier transform of the cross-correlations, A#

i,j(ν), directly. As we know from [14],
all the peaks present at the first few singular values are also present in A#

i,j(ν). Moreover,
as observed in [14], working with A#

i,j(ν) directly presents some advantages: (i) the cost of
the singular value decomposition is avoided and (ii) more accurate measurements of ∆ν/ν
are obtained. The latter is true because not all modes appear in all the A#

i,j(ν) components.
Thus, it is possible to decouple modes that correspond to nearby frequencies by examining
different A#

i,j(ν) components.
Note that by adjusting the frequency window [ν1, ν2] in Equation (1), the shifts for

several natural modes of the structure can be monitored. Traditionally, the identification
of a damage is performed by visually observing the graph of ∆ν/ν over time looking
for permanent and temperature-independent shifts. The measurements of ∆ν/ν may be
regarded as an image (i.e., each element of the matrix may be viewed as a pixel in the
image), which we call the measurements image matrix (MIM). The dimension of the image
is m× d, with m denoting the number of natural modes monitored and d the number of days
over which they are monitored. Using these MIMs as data, a machine learning network
is trained to classify if a given MIM contains damage or not. Moreover, as we show in
Section 5.2, not only damage detection but damage localization may be also accomplished
by monitoring only a few natural frequencies.

This requires a large set of ∆ν/ν measurements for both the healthy and the damaged
structure; in contrast, for localization, measurements corresponding to different damage
locations are needed. Measurements of ∆ν/ν without damage can be easily obtained from
the structure’s normal state, but measurements for a wide range of damage states are
realistically not available. To avoid this pitfall, we produce data here using a simplified
finite element model of the structure, which in specific cases and under certain assumptions
may be representative for some real structure; for example, the masonry lighthouse in
Rethymno’s port [22]. This finite element model is used to produce data for both dam-
aged and undamaged scenarios. The SM method is subsequently used to produce ∆ν/ν
measurements from which the MIMs are formed.
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3. Classification Using Neural Networks

In this section, we describe the proposed methodology for identifying potential dam-
age by replacing the visual inspection of ∆ν/ν measurements with a machine learning
algorithm. As explained in Section 2, using SM, we obtain ∆ν/ν measurements. These
measurements are used to train a simple neural network [25]. Neural networks have been
successfully used to classify an image library into different classes depending on the sub-
jects of those pictures. In our application, the images of different subjects are replaced by the
MIMs which are m× d pixel images. In the training set, half of the MIMs contain a damage
that occurs on the fifth day and the other half correspond to a healthy configuration with
no damage. The neural network is trained to classify the MIMs into two classes: “MIMs
with damage” and “MIMs without damage”.

Single
Eigenvalue

Multiple
Eigenvalues

Figure 2. For the purpose of this work, ∆ν/ν measurements are used to form the MIMs which are
images of m× d pixels. Here, m denotes the number of natural modes monitored and d the number of
days over which they are monitored. Here, we illustrate MIMs using either one (top) or five (bottom)
natural modes monitored over a 10 day period.

As illustrated in Figure 2, a single ∆ν/ν measurement corresponding to one natural
mode may be considered as a one-dimensional image. We will see that considering multiple
∆ν/ν measurements corresponding to multiple natural modes significantly improves the
performance of the method. In this case, the measurements may be regarded as two-
dimensional images. For the heatmaps (right column) in Figure 2 and elsewhere in the
paper, we do not show the colormap. This is because the actual values do not play an
important role, the key observation being that we need to recognize the pattern that is
created in the presence of damage.

The neural network that we use consists of a single hidden layer, the size of which
is determined by the size of the input data; i.e., it depends on how many natural mode
measurements are used to construct the MIMs. The first layer of the neural network is a
flattened layer—a non-learning layer that acts as a transformation of the 2D MIMs to a 1D
array. Then, we have one hidden layer—a multiple connected layer whose dimension is
md× 2, with md the dimension of the input and 2 the dimension of the output. The last
layer is the output layer and has two possible outcomes: “damage” or “no damage”.

To train the network, we use 80% of the available synthetic data, and the remaining
20% are used to evaluate the efficacy and the efficiency of the classification network. After
the training, if a test MIM is given, the trained network will return a probability of “damage”
or “no damage”.
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4. Data Acquisition for Training

In this section, we present the data acquisition procedure. As mentioned earlier, data
corresponding to a structure with and without damage are needed. The damage considered
could be any local stiffness degradation of structural members; e.g., some joint deterioration
in a concrete structure, as illustrated in the schematic example in Figure 3. In practice such
data could be collected from a structure and/or its digital twin. To validate the method
and illustrate its performance, we use in this paper synthetic, numerically simulated
data generated with a finite element model of a simple structure for both damaged and
undamaged scenarios.

Figure 3. Schematic illustration of healthy and damaged structure. The red boxes indicate the
sensors’ locations.

The structure considered is a simply supported beam. Despite its simplicity, it allows
us to obtain the necessary structural features. Furthermore, this structure can be considered
as a standard benchmark system since it has been used in previous research; e.g., [10,11].
We focus on the effect of temperature on the mechanical properties of construction materials
as the dominant environmental variable affecting the dynamic features [4].

Raw Ambient Noise Data Acquisition

Following previous research [11], the structure under investigation is a simply sup-
ported beam with length L = 5 m, cross section area A = 1.624× 10−3 m2 and moment
of inertia I = 1.971× 10−6 m4. A value for the mass density equal to $ = 3693.5 kg/m3 is
used so that the first natural frequency of the structure is close to 0.5 Hz for an ambient
temperature of 15 ◦C. For the finite element model, an assembly of 40 beam elements has
been considered as illustrated in Figure 4. The nonlinear relation between the material’s
elasticity modulus E and the temperature T is assumed to be of the form

E = (206.216− 0.4884T + 0.0044T2)× 109N/m2. (5)

where the temperature T is in Fahrenheit units.

1 2 3 . . . 20 21 22 . . . 39 40 41

’20’

Figure 4. Sketch of the finite element model of the beam where some node numbers are indicatively
shown, as well as the 20th element where damage is to be introduced.

Note that for reference, for the healthy configuration of the simply supported beam,
the natural modes are known analytically:

ωn(T) = n2π2

√
E(T)I
$AL4 (6)
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Damage is considered by reducing the stiffness using a degradation coefficient that
multiplies the moment of inertia of specific beam cross-sections. The smallest degradation
coefficient leads to the highest damage level.

Using FEM, performed in a pure Java framework for numerical methods mainly
developed by one of the authors (CGP) and freely available on the internet [26], the ambient
noise recordings are simulated. Then, the empirical cross-correlations are computed using
Equation (2) for T equal to 24 h. The computation of a A#

i,j for a specific day, according to

Equation (2), requires ambient noise recordings ui(t) for a duration of 24 h for the current
quantity and 7 days for the reference. In practice, data are stored in smaller segments, so
we proceed as follows: first, the cross-correlations of these smaller segments are computed;
then, the average of all the cross-correlations corresponding to every given day is obtained,
and then A#

i,j(ν) is computed by performing the Fourier transform on the average.
For our study case, we generate small segments of measurements corresponding to

ambient temperatures from −15 to 45 degrees Celsius. To calculate the A#
i,j(ν) for a day

for which, for example, the temperature varies from 5 to 10 degrees Celsius, we randomly
select such small segments of simulated data obtained for the same temperature range.
We use enough of those small segments so that the total length of the recordings used
corresponds to one day of measurements.

For our training to form the MIMs, we need ∆ν/ν measurements for d consecutive
days. To realistically consider day to day temperature variations, we randomly select the
temperature variation range from predetermined temperature ranges, and then we semi-
randomly select the temperature variation of the following day according to the undirected
graph of Figure 5 to guarantee that day to day temperature variations are not too extreme
too often. For example, it is not possible for one day that belongs to the temperature
group −15 to −5 Celsius to be followed by a day that belongs to the temperature group
35 to 45 Celsius. Using the graph to generate the measurements allows for relatively large
but realistic variations of temperatures within the d day measurement of ∆ν/ν. The data
produced are challenging for the classification problem since large temperature variations
could be misclassified as damage. We test different levels of damage in order to determine
the size at which damage will no longer be differentiated from temperature variations.

Following the temperature selection process described above, we produced a large
number of d-day long ∆ν/ν measurements.



Sensors 2022, 22, 830 8 of 18

Temperatures:

−15.0 to −5.1


Celsius

Temperatures:

−5.0 to 4.9


Celsius

Temperatures:

5.0 to 14.9


Celsius

Temperatures:

15.0 to 24.9


Celsius

Temperatures:

25.0 to 34.9


Celsius

Temperatures:

35.0 to 45.0


Celsius

Temperatures:

−15.0 to 4.9


Celsius

Temperatures:

5.0 to 24.9


Celsius

Temperatures:

25.0 to 45.0


Celsius

Temperatures:

−15.0 to 14.9


Celsius

Temperatures:

15.0 to 45.0


Celsius

Figure 5. Temperature graph: To construct a d-day MIM, we chose data from different tempera-
ture groups for each day. The temperature group for the first day was chosen randomly, and the
temperature groups for the following day were chosen according to the graph above.

5. Results

In this section, we show the results for damage detection and localization using MIMs
to train our neural network. Our measurements have realistic temperature variations
that affect the mechanical properties of the structure under investigation as described in
Section 4. We start with the simple network that uses MIMs for a single natural mode
and show that using machine learning indeed improves the accuracy of damage detection
compared to the visual inspection of the ∆ν/ν curve. We next show that using MIMs
for multiple natural modes significantly improves the accuracy of the network. Another
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advantage of using multiple natural modes is that a neural network can be trained beyond
detection to damage localization as well.

5.1. Damage Detection
5.1.1. Single Mode Neural Network

Following the process described in Section 4, we produce 10,000 MIMs with some level
of damage determined by the degradation coefficient and another 10,000 MIMs without
any damage. Here, the monitoring period is d = 10 days long. Figure 6 shows some
typical examples of measurements that correspond to the first two natural modes, for
different levels of damage occurring at the middle of the 10 day period. For the first natural
mode, we observe that as the degradation coefficient approaches 1 (smaller damage level),
the jump of ∆ν/ν at the middle of the 10 day period becomes increasingly difficult to
distinguish from temperature-induced variations. In general, for a degradation coefficient
larger than 0.6, the damage becomes undistinguishable from temperature variations when
we visually inspect the graph of ∆ν/ν. For the second natural mode, we do not observe
any jump in the value of ∆ν/ν, and this is independent of the level of the damage. This is
due to the location of the damage, which is very close to one of the nodes of the second
natural mode (see Figure 7—red curve).

0.02

0.00

0.02

dv
/v

degradation = 1 degradation = 0.9

0.02

0.00

0.02

dv
/v

degradation = 0.85 degradation = 0.8

0.02

0.00

0.02

dv
/v

degradation = 0.75 degradation = 0.7

0.02

0.00

0.02

dv
/v

degradation = 0.65 degradation = 0.6

2 4 6 8 10
days

0.02

0.00

0.02

dv
/v

degradation = 0.55

2 4 6 8 10
days

degradation = 0.5

Figure 6. Examples of the first (green) and second (blue) natural modes for different degradation
coefficient values. The red vertical line indicates the day on which the damage occurs. For the first
natural mode, it becomes quite challenging to distinguish damage from variations due to temperature
for examples with a degradation coefficient larger than 0.6. The second natural mode does not show
any measurable variation in ∆ν/ν because the damage is located near one of the nodes of the second
natural mode (see Figure 7—red curve).

Training a simple neural network using MIMs of the first natural mode slightly in-
creases the chances of correctly identifying measurements containing damage as compared
to visual inspection. As we can see in Figure 8, in the left column, when the degradation
coefficient is 0.5, we correctly identify damage in all the examples considered. However,
when the degradation increases to 0.8 (smaller damage; see Figure 8, right column) we
may misidentify (first example) or correctly identify the damage but with high uncertainty
(third and fifth example). The accuracy of the neural network for different degradation
coefficients when using one natural frequency is given by the blue color plot in Figure 9.
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We see that an accuracy of at least 90% can be achieved for damage levels corresponding to
a degradation coefficient of 0.75 or smaller.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

Figure 7. The shapes of the modes and the locations of the damage. The bottom plot considers the
symmetry, and it is given in absolute values.

damage
Measurements

0.00

99.99
Predictions

no damage
96.1

3.832

damage
0.00

99.99

no damage
99.4

0.547

0 2 4 6 8
days

damage

no damage damage
0.58

99.41

damage
Measurements 76.7

23.20

Predictions

damage
0.20

99.79

no damage
59.2 40.76

no damage
12.3

87.62

0 2 4 6 8
days

damage
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Figure 8. Performance of the proposed neural network using a single natural mode. On the left, the
degradation coefficient is 0.5 (severe damage easy to be identified), and on the right, the degradation
coefficient is 0.8 (limited damage that is hard to be identified).

5.1.2. Multiple Mode Neural Network

As observed in Figure 6, the second natural mode does not show any measurable
variation in ∆ν/ν due to the imposed damage. Even for the severe damage case when the
degradation is 0.5 and the first natural mode clearly shows damage, the second natural
mode does not show anything. This difference in behavior is due to the fact that the damage
is located very close to a node of the second natural mode. Indeed, the damage is located at
the middle of the beam, and as we can see in Figure 7, two out of the first five eigenmodes
have a node at this location. This explains why we cannot measure the damage at this
location using the second natural mode.

The observation above raises the question of what to expect if we use more than one
natural mode. In that case, the measurements will look like 2D images where each row
is the measurement of a natural mode and each column is a different day-measurement.
In our case, we use the first five natural modes, so the MIM can be considered as a
5× 10 pixel image. If we assume no damage, then we expect similar ∆ν/ν behavior for
the five natural modes (every natural mode should have similar ∆ν/ν when this is only
induced by temperature variations). On the other hand, when there is damage to be
detected, there is going to be a difference between the natural modes depending on how
close the nodes of the eigenmodes are to the location of the damage.
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Indeed, as we can see in Figure 10, using five natural modes dramatically increases the
accuracy of the neural network, since detecting a pattern created by the different behaviors
of eigenmodes is a much easier task than trying to distinguish damage from temperature
variations of a single eigenmode. In Figure 9, we can see how the accuracy of the neural
network is improved by increasing the number of natural modes used. The accuracy in
this case is measured as the average probability with which the trained network correctly
identifies the damage status of the 20% of synthetic data used for testing the network. A
neural network that uses four or five natural modes provides an accuracy very close to
1, which means that we can correctly identify damage even as the damage gets smaller;
i.e., the degradation gets very close to 1.
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Figure 9. Comparison of the performance using different numbers of natural modes for different
levels of damage.
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Figure 10. Performance of the proposed neural network using the first five natural modes. On the
left ,the degradation coefficient is 0.5 (easy case), and on the right, the degradation coefficient is 0.8
(hard case).

Going from the single-mode to a multiple-mode neural network allows us to detect
specific patterns after the damage has occurred. That is because different modes feel the
damage in a different way depending on the location of the damage (see Section 5.2). The
pattern that emerges after the occurrence of the damage helps us not only with the damage
localization, as we see in the next section, but also allows us to detect the presence of
damage using only single-day measurements. This is possible by comparing patterns
created by measurements of single columns of the MIM.

To illustrate this, we train a new network using only one day as a healthy measurement
and one day of unhealthy (damaged structure) measurement. In this case, damage detection
is based on the pattern that is created, since for different modes we observe ∆ν/ν with
different amplitudes. In Figure 11, we see the comparison of a single-day MIM network
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and a 10-day MIM network. A single-day network performs similarly to a 10-day network
that uses the first two eigenvalues only. In Figure 9, we have observed better performance
by using four or five eigenvalues in the 10-day measurement network for smaller damage
levels. This means that a single-day network will be less reliable but also will require
less time for measurements. This suggests that such a network is appropriate for crude
immediate guesses of the probability of damage while waiting for more measurements that
will provide a more accurate estimate.
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Figure 11. Comparison of the performance between networks using a single and a 10-day long
MIM. A single-day MIM network performs similarly to a 10-day long MIM network that uses two
natural modes.

Another question that arises is the effect of the degradation level we use to train our
network on how well we can detect a damage that occurs but has a different degradation
level. In Figure 12, we can see that a network trained with a degradation of 0.8 can easily
detect a larger damage but struggles if the damage level is lower than the one we used to
train the network. As a result, we suggest to always train the network with a very low level
of damage so that a broader range of damage level can be detected.
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Figure 12. Comparison of the performance between networks using a single and a 10-day long MIM
when the training is done with a degradation coefficient of 0.8 while the testing is performed for
damages with different degradation levels. Five natural modes are monitored.

A direct qualitative comparison for similar examples given in the literature (see for
example [10,11]) indicates the very good performance of the current approach. It is worth
mentioning that while the current approach is a supervised one, it does not use temperature
variations as an input of the network.
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5.2. Damage Localization

We have already illustrated that using multiple natural modes significantly increases
the accuracy of the neural network in identifying the presence of damage. The reason
behind this improvement is that the neural network has in this case information about how
well the damage is seen by the different natural modes. However, how the damage affects
the different natural modes is determined by the location of the damaged which motivates
us to modify our neural network to determine the location of the damage as well.

We assume that the appearance of damage will not tremendously affect the mode
shapes. The main factor that determines how well a natural mode detects damage is the
amplitude of the modal shape at the location of the damage. If the damage is located at
a node (zero amplitude) of the modal shape, we expect the corresponding natural mode
not to detect the damage. On the other hand, when the damage is located close to the
maximum amplitude of the mode, then the corresponding natural mode will detect the
damage with the maximum ∆ν/ν (see Figure 13).

In Figure 7, we can see the shapes of the modes for the first five natural modes for
the finite element model we used. Due to the symmetry of the shape of modes, we are not
able to uniquely determine the location of the damage (except for the middle of the beam),
so we focus on the left half of the beam. Needless to say that for real world applications,
actual symmetry in the modes is rare, and so focusing on the left part of the beam is not
unreasonable.
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Measurements ExpectationDay 7
measurement

Figure 13. Examples of MIMs from the first five natural modes (first column), the measurement from
the seventh day (second column) and the amplitudes of the corresponding modes at the location of
the damage (third column). We can see that the pattern created because of the damage after the fifth
day closely resembles the pattern of the modal amplitudes at the same location.

We now consider three additional possible damage locations, making a total of four
locations, and following the same procedures as before, we generate data for the neural
network training using 0.8 as the degradation coefficient. This time, the task is to locate
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where the damage is. The idea here is that the MIMs will show a different pattern for the
days that there is damage because of the fact that the shapes of the modes have different
amplitudes at different damage locations. More specifically, in Figure 13, we can see
examples of MIMs for the four locations (see locations at Figure 7). During the seventh
day, which is a day on which damage has happened, we compare the corresponding ∆ν/ν
measurements for the first five natural modes with the amplitude of the corresponding
modes on the same locations. As we can see, the ∆ν/ν measurements closely match the
amplitudes of the corresponding modes. This means that if there is damage, we expect to
see a specific pattern for the days after day five, and the pattern will match the amplitude
of the corresponding modes.
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Figure 14. Accuracy for damage localization. MIMs monitoring five natural modes over a 10 day
period are used.

This observation implies that a network can be trained to classify between the four
different patterns that correspond to the four damage locations. In Figure 14, we give the
accuracy of the network for the four damage locations, revealing an overall high accuracy in
damage localization. This experiment involves only four different locations, but we expect
similar accuracy even for more damage locations as long as the corresponding patterns
differ. It should be pointed out that in the majority of real structures, we may consider that
there is a finite number of such possible locations of damage appearance; for example, the
joints of a reinforced concrete or steel frame.

A more practical test is training a network to classify damage between the four
locations and the scenario without damage. To test the network, we ask for predictions
using sets of test MIMs with damage in the four locations: a set for a specific location
of the four possible ones and also MIMs without damage. In Figure 15, we can see the
average probability of damage when we provide MIMs with damage at specific locations.
In Figure 15a, we see the distribution of the average probability of damage among the
different locations when using MIMs without damage. We observe that single-day MIMs
have a higher probability of a false positive, identifying a MIM as one that comes from a
structure with damage while that is not true. Using 10-day long MIMs, we avoid having
false positives. On the other hand, as we see in Figure 15b–e, when we provide MIMs with
damage, we are more likely to identify them as such.

At this point, we can observe that any neural network that uses the 10-day MIMs
performs much better than a single-day MIM neural network. However, a 10-day MIM
network will only be able to detect damage with a lag of several days in comparison to
the single-day MIM networks that can detect damage within a single day. It is worth
mentioning that the actual amount of days, for a multiple-day measurement, does not
have to be 10. The optimal number of days may be different for different structures and
can be determined using a sensitivity analysis. A system composed of several types of
networks can provide both early detection results as well as more accurate results with a
lag of several days. Such a system can be practically useful for an inspection team to begin
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preliminary inspection until the multiple-day MIM networks can provide more details
about the existence and the location of the potential damage.
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Figure 15. Average probability of damage obtained after training a network with five classes; mea-
surements without damage (a) and measurements with damage at four locations (b–e) corresponding
to locations 1 to 4 respectively. Location 0 means no damage. In general, we detect the location of the
damage with a higher probability when we use multiple-day measurements instead of single-day
measurements. Five natural modes are monitored.

5.3. Additive Noise

All the results we have presented so far are based on simulated data. The simulated
data lack any type of instrument noise that real world data could possibly have. To
study the effect of instrument noise, we train our neural network using five natural mode
measurements based on simulated noise-less data (degradation = 0.8), as in the previous
sections. Here, we test the network with noisy measurements produced by adding to the
data Gaussian additive noise corresponding to different SNR values.

We observe in Figure 16 that the accuracy is indeed affected as the noise in the data
increases. However, for all the levels of noise tested, the accuracy remains above 0.95,
which is quite high. This robustness to additive measurement noise is expected since the
cross-correlation and averaging over time we perform in SM alleviates most of the effects
of the noise.

The results presented here are very satisfactory and show the good performance of
the proposed approach. Its robustness to noise suggests that the method can be easily
applied to more realistic scenarios for structures. As expected, when the degradation

Figure 15. Average probability of damage obtained after training a network with five classes; mea-
surements without damage (a) and measurements with damage at four locations (b–e) corresponding
to locations 1 to 4 respectively. Location 0 means no damage. In general, we detect the location of the
damage with a higher probability when we use multiple-day measurements instead of single-day
measurements. Five natural modes are monitored.

5.3. Additive Noise

All the results we have presented so far are based on simulated data. The simulated
data lack any type of instrument noise that real world data could possibly have. To
study the effect of instrument noise, we train our neural network using five natural mode
measurements based on simulated noise-less data (degradation = 0.8), as in the previous
sections. Here, we test the network with noisy measurements produced by adding to the
data Gaussian additive noise corresponding to different SNR values.

We observe in Figure 16 that the accuracy is indeed affected as the noise in the data
increases. However, for all the levels of noise tested, the accuracy remains above 0.95,
which is quite high. This robustness to additive measurement noise is expected since the
cross-correlation and averaging over time we perform in SM alleviates most of the effects
of the noise.
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The results presented here are very satisfactory and show the good performance of
the proposed approach. Its robustness to noise suggests that the method can be easily
applied to more realistic scenarios for structures. As expected, when the degradation
coefficient increases, the damage becomes smaller and therefore becomes more difficult to
detect. Increasing the number of observed natural frequencies is expected to improve the
performance of the network. Furthermore, preliminary results indicate that the performance
improves when temperature variation data are included in the input of the network.
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Figure 16. Neural network using MIMs monitoring five natural modes over a 10-day period. Accuracy
of damage detection using noisy data with different SNR values.

6. Conclusions

In this paper, we presented a new framework using neural networks to automate the
damage detection and localization procedure in Structural Health Monitoring applications.
The network is trained with simulated data for both healthy and damaged scenarios. Our
approach is based on the stretching method presented previously in the literature. A
significant advantage of the proposed methodology is that only natural frequencies are
used, which are much easier to measure compared to natural shapes. The data we feed the
network comprise the measurement image matrix (MIM)—an m× d pixel image with m
being the number of natural modes monitored over a period of d-days. Our results obtained
using a simple structure and including realistic ambient temperature variations are very
encouraging. They suggest that relatively small damages can be detected and localized by
monitoring only a few natural modes. Networks trained with a single-day MIM can be
used for early damage detection, while using multiple-day MIM significantly improves
the accuracy and allows for damage localization. The effect of additive measurement noise
was also studied, and the approach is shown to be stable to noise as very accurate results
were obtained even for low signal-to-noise ratios.

In this work, we intentionally did not use the temperature variations as inputs, as
this was not necessary for our supervised machine learning approach. Our next focus
will be on unsupervised machine learning approaches. Preliminary results show that for
such techniques to be effective, measured temperature variations in addition to frequencies
should be considered as inputs. Other future research directions include the application of
the proposed approach to experimental data from laboratory setups corresponding to more
realistic complex structural systems.
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