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Abstract: The variation in skin textures and injuries, as well as the detection and classification of
skin cancer, is a difficult task. Manually detecting skin lesions from dermoscopy images is a difficult
and time-consuming process. Recent advancements in the domains of the internet of things (IoT)
and artificial intelligence for medical applications demonstrated improvements in both accuracy and
computational time. In this paper, a new method for multiclass skin lesion classification using best
deep learning feature fusion and an extreme learning machine is proposed. The proposed method
includes five primary steps: image acquisition and contrast enhancement; deep learning feature
extraction using transfer learning; best feature selection using hybrid whale optimization and entropy-
mutual information (EMI) approach; fusion of selected features using a modified canonical correlation
based approach; and, finally, extreme learning machine based classification. The feature selection step
improves the system’s computational efficiency and accuracy. The experiment is carried out on two
publicly available datasets, HAM10000 and ISIC2018. The achieved accuracy on both datasets is 93.40
and 94.36 percent. When compared to state-of-the-art (SOTA) techniques, the proposed method’s
accuracy is improved. Furthermore, the proposed method is computationally efficient.

Keywords: skin cancer; contrast enhancement; deep learning; evolutionary algorithms; fusion; ELM

1. Introduction

Skin cancer is caused by the abnormal growth of skin cells. Skin cancer cases have
increased dramatically in recent years [1]. The increase in skin cancer is because of the
reduction in the ozone layer, which is protection against ultraviolet rays [2]. Squamous cell
carcinoma, actinic keratosis (solar keratosis), melanoma, and basal cell carcinoma are all
types of skin cancer [3]. Melanoma is the most dangerous type of skin cancer, out of all the
others. Melanoma begins in the melanocyte cells, which resemble a mole and are brown or
black in color [4]. The occurrence rate of melanoma is 7%, but 75% of deaths are caused by
this type of deadly cancer [5].

In 2017, in the USA, 3590 deaths occurred from 95,360 cases. From these cases, 87,110
were melanoma cases. The reported deaths in 2018 are 13,460 from a total of 99,550 cases.
The melanoma cases that occurred in 2018 are 91,270. In 2019, 104,350 cases of skin cancer
were reported in the USA alone. The number of reported cases in men was 62,320 and
in women was 42,030. The number of melanoma cases was 96,480 (reportedly 57,220 in
men and 39,260 in women) of all skin cancer cases reported in 2019. The number of deaths
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in 2019 due to melanoma was 7320 [6]. More than 15,000 people in the USA die every
year from skin cancer lesions. In the next few decades, the mortality rate by melanoma
infections could increase [7].

Because of the differences in skin textures and injuries, detecting skin cancer is a
difficult task. As a result, dermatologists employ a noninvasive technique known as
dermoscopy to detect skin lesions at an early stage [8]. The first step in dermoscopy is
to apply the gel to the infected area. Then, a magnified image is acquired by using a
magnifying tool. This magnified image provides a better visualization to examine the
structure of the lesion area. The detection accuracy depends on the experience of the
dermatologist [9]. A study shows that the dermatologist’s detection accuracy can vary
between 75% and 84% [10]. Manual identification of skin lesions using dermoscopy, on the
other hand, is a time-consuming procedure with a high risk of error, even for experienced
dermatologists [11]. Therefore, researchers have introduced different computer-aided
diagnostic (CAD) techniques based on machine learning and deep CNN features [12].

Dermatologists can use CAD systems to identify skin lesions more quickly and ac-
curately. A CAD system’s key steps are skin image dataset acquisition, feature extraction
and selection, and classification [13]. The utilization of deep features for skin lesion de-
tection and classification has been shown to be of immense importance in the last few
years compared to the traditional feature extraction techniques [14]. The deep features are
extracted from the fully connected layers of a CNN model that was later employed for
the classification [15]. Deep features, as opposed to traditional methods, such as texture,
color, and shape, include both local and global information about an image. An image’s
local information is extracted from the convolutional layer, while the global information
is captured from the 1D layers (global average pooling and fully connected) [16]. In the
traditional methods, shape features, such as HOG, color, and texture (LBP), are extracted
separately [17].

A few researchers faced the problem of redundant features that mislead the multiclass
lesion classification. Therefore, it is essential to develop a feature selection technique
that selects the most appropriate features for final classification [18]. A few recently
introduced feature selection techniques include grasshopper, binary whale optimization,
among others [19]. As compared to the binary class classification problem, the multiclass
classification is more complex due to the similar nature of skin lesions. Moreover, the
intraclass similarity is another problem for the multiclass classification.

In this work, a new framework is proposed based on the hybrid whale optimization
deep feature selection that later fused with a modified canonical correlation approach. The
contrast stretching method is proposed to improve the visibility quality of the lesion region.
The deep learning model is trained on the contrast enhanced lesions instead of original
dermoscopic images. Further, two feature selection techniques are utilized in order to
improve the accuracy and reduce the computational time.

2. Related Work

Several techniques and methods have been developed for the robust segmentation and
classification of skin lesions [8]. The developed techniques utilized computer vision-based
machine learning techniques [20]. Machine learning algorithms utilized supervised learn-
ing and deep learning methods for robust detection, segmentation, and classification of
skin lesions [21]. Dorj et al. [22] utilized the deep features from pre-trained AlexNet model
and that had been given to SVM for classification. Their technique produced promising
results for lesion classification. Ren et al. [23] presented a fusion mechanism for the seg-
mentation of a skin lesion. The spatial attention and channel attention modules extracted
the information from channels of skin images. The implementation of serial network fusion
for segmentation achieved competitive accuracy. Automated skin lesion segmentation [24]
and classification was performed using the deep CNN-based mutual boot strapping net-
work. The segmentation and classification used learned information of both phases using
a bootstrapping technique. The proposed method was implemented on challenging skin
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lesion datasets and achieved robust segmentation and classification performance. A deep
learning [25] technique was deployed to detect and classify the melanoma from dermo-
scopic images. A deep residual network was used to extract deep feature and fisher vectors
utilized for image encoding. SVM classification was performed with chi-square to detect
and classify the melanoma from discriminatory images of dermoscopy. The presented
method achieved robust performance on the challenging ISBI 2016 dataset. Khan et al. [26]
came up with a novel deep learning-based methodology for efficient segmentation and
classification of skin lesions. The segmentation was performed using mask recurrent neural
network (Mask-RNN). A pyramid network feature was used with Resnet50 for feature
extraction and lesion classification performed with the SoftMax classifier. The HAM10000
dataset was utilized for the presented deep learning method evaluation and achieved com-
petitive performance. A deep learning-based novel cascaded architecture [27] presented
the ability for recognition of skin lesions. The diffusion of knowledge was required to
perform analysis of the skin lesion and segmentation of lesions. The data augmentation
was performed to remove the class disparity and implanted technique compared with the
state-of-the-art (SOTA) technique of skin lesion classification and segmentation. The super
pixel [28] method adopted for efficient segmentation and recognition of skin lesions used a
novel segmentation technique. Image registration and segmentation techniques were fused
for feature derivation, in order to achieve the better lesion segmentation results. The deep
learning-based techniques [29] achieve robust performance in skin lesion segmentation,
detection, and classification. Sikkandar et al. [30] came up with a new GrabCut and neuro
fuzzy algorithm for recognition and segmentation of skin lesion. Preprocessing performed
using top hat filter, GrabCut method used for segmentation, feature extraction performed
using deep CNN model inception, and images of skin lesions classified using neuro fuzzy
classifier. The presented technique applied on ISIC dataset and achieved robust perfor-
mance in terms lesion segmentation and classification. Researchers in [31] used the transfer
learning technique on the PH2 dataset for the classification of skin lesions. They performed
transfer learning on the AlexNet network and achieved an accuracy of 98.61%.

The methods described above follow some standard steps for lesion classification,
including preprocessing of lesion images, segmentation of skin lesions, extraction of deep
learning features from segmented lesions, and, finally, classification using supervised
learning methods. The accuracy of features extracted using pre-trained deep learning
models is higher than that of features extracted using traditional techniques. The key
limitation of the methods described above is the inclusion of redundant features, which
not only reduces system accuracy but also increases computational time. Furthermore,
the majority concentrated on the binary class classification problem. In this paper, we
proposed a new framework for multiclass classification using deep learning and fusion of
best selected features.

3. Datasets

Two datasets are utilized in this work for the experimental process, such as HAM10000
and ISIC2018. The detail of both datasets is given below.

HAM1000 Dataset: The HAM10000 “Human Against Machine with 10,000 training
images” dataset is one of the largest datasets, which contains 10,015 total dermoscopy
images, used for detecting pigmented skin lesions, that are publicly accessible through the
ISIC repository [32]. This dataset is grouped into seven different classes with a number of
images, i.e., melanocytic nevus (nv = 6705), actinic keratosis (akiec = 327), dermatofibroma
(df = 115), basal cell carcinoma (bcc = 514), vascular lesion (vacs = 115), benign keratosis
(bkl = 1099), and melanoma (mel = 1113) [33]. The dataset contains 54% male and 45%
female skin lesion images. It is a complex dataset with many skin lesion images having
low inter-class and high intra-class variation issues, therefore the classification of these skin
classes is not an easy task, and the chances of a high misclassification rate are significant. A
few sample images are shown in Figure 1.
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Figure 1. Sample images of HAM1000 dataset. melanoma (mel), melanocytic nevus (nv), basal cell
carcinoma (bcc), actinic keratosis intraepithelial carcinoma (akiec), benign keratosis (bkl), dermatofi-
broma (df), and vascular lesion (vasc).

ISIC 2018 Dataset: The ISIC 2018 dataset was published by the International Skin
Imaging Collaboration (ISIC) as a large-scale dataset of dermoscopy images that included
over 12,500 images. The dataset performs three different tasks, i.e., lesion segmentation,
attribute detection, and disease classification, respectively [34]. For the classification task,
this dataset consists of more than 10,000 images of seven type of classes [35]. The sample
images are illustrated in Figure 2. The ISIC 2018 challenge has two main problems: first,
the limited number of images in some classes; and, secondly, the imbalanced number of
images in different classes makes the classifier difficult to correct classification.
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Figure 2. Sample images of ISIC 2018 dataset.

4. Proposed Methodology

The proposed method for multiclass skin cancer classification used deep learning and
the fusion of the best selected features, and is presented in this section. The architecture
of the proposed method is illustrated in Figure 3. Five primary steps are performed
in the proposed method: image acquisition and contrast enhancement; deep learning
features extraction using transfer learning; selection of best features using hybrid whale
optimization and entropy-mutual information (EMI) approach; fusion of selected features
using modified canonical correlation based approach; and, finally, ELM-based classification.
The detail of each step is given below subsections.

4.1. Contrast Enhancement

Contrast enhancement is an important step in the area of medical imaging to improve
the local contrast of an image. In medical image processing, contrast stretching is usually
applied for accurate skin lesion detection; however, in this step, contrast stretching is
applied for the sake of more useful feature extraction. Many techniques are presented
in the literature for global contrast enhancement, but a very few of them focused on
local contrast stretching. In this work, a hybrid contrast stretching technique is proposed
based on absolute mean deviation and a skewness function. This method increases the
contrast of skin lesion region and makes the image more useful for the further processing.
Mathematically, this process is defined as follows:

Consider ∆ is dermoscopic database, X is an input image of dimension N ×M. Let, n
represent the total number of pixels in the image and xi is the each image pixel. The absolute
mean deviation (AMD) and skewness are formulated through Equations (1) and (2).

M̃D =
1
n

n

∑
i=1

∣∣xi − φ(X)
∣∣ (1)
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S̃K =
∑n

i=1
(
xi − X

)3

(n− 1)× σ3 (2)

where the M̃D is AMD of the image, φ(X) is average mean of the dataset (∆), and σ is
the standard deviation, respectively. By employing these values, the final transformation
image is obtained as follows:

I1 =
∣∣∣M̃D(i) + X

∣∣∣ (3)

IF =
∣∣∣I1 − S̃K(i)

∣∣∣ (4)

where IF is final transformed image and i denote the image pixel’s. This process is applied
on the entire selected datasets before training of the deep learning models. A few sample
results are illustrated in Figure 4. In this figure, it is clearly illustrated that after the proposed
transformation, the lesion region is more easy to identify.
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4.2. Convolutional Neural Network

In the area of medical imaging, CNN showed promising performance for both seg-
mentation and classification tasks. Generally, a CNN architecture consists of a number
of layers, such as input layer, convolutional layer, activation layer, ReLu, pooling, fully
connected, and SoftMax.

The first layer of a convolutional layer is the input layer. This layer is always in
N ×M× k, where k denotes the number of channels. In this layer, the whole image pixels
are considered as input to the next layer. Through this layer, both low-level and high-level
features are extracted.

The second layer is a convolutional layer, mainly utilized to extract feature information
from the images using convolutional operation and dot product. This layer is defined
as follows:

zl
ij =

n−1

∑
a=0

n−1

∑
b=0

fab xl−1
(i+a)(j+b) (5)

where, zl
ij denotes the output of the convolutional layer. The result of this layer returned

into a matrix format, which consists of the number of positive and negative values. The
negative values are not required for the next step; therefore, converting those pixel values
into positive ones is essential. For this purpose, an activation layer, called the ReLu layer, is
applied. This layer transforms the negative pixel values into zero and keeps positive values
as it is. Mathematically, it is defined as follows:

f (z) = maximum(0, z) (6)

ReLU(Z) =
{

0 i f Z < 0
Z i f Z ≥ 0

(7)

The next layer is the pooling layer, which reduces the spatial size of an image after
the convolutional layer. This layer is usually applied between two convolutional layers.
Visually, the pooling layer operations are illustrated in Figure 5 and mathematical output is
defined as follows:

W2 =
W1 − G

Z
+ 1 (8)
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H2 =
H1 − G

Z
+ 1 (9)

d2 = d1 (10)
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Figure 5. An example of max pooling, average pooling, and min pooling.

The fully connected layer (FC) comprises neurons fully linked with all preceding layers
of activations. After that, the activations can be calculated using matrix multiplication and
bias offset. Finally, the performance of this layer is graded using the SoftMax classifier.
Mathematically it is defined as:

µ
(→

q
)

i =
exi

∑n
j=1 exj µ(q)i =

exi

∑n
j=1 exj (11)

q =


q1
.
.
.

qn

 (12)

A SoftMax function is used to take either positive, zero, or negative real value as input
to all the values of pi. As an input vector, each value is subjected to an exponential equation.

4.3. Deep Learning Features Extraction

NASNET Large: A neural architecture search (NAS) [36] deep network trained over a
million images of the challenging image database ImageNet [37]. The input size of image
for the NasNet Large is 331-by-331. A child network of unique structure is created in NAS
by the recurrent neural network (RNN). The child networks are trained using a holdout
method to achieve accuracy. The controller is updated using the combined accuracy of
child networks to create a better architecture for the network. The controller structure is
represented in Figure 6. The controller predictions are gathered into A blocks. Five unique
SoftMax classifiers make five predictions at five steps of the block in accordance with the
discrete choices of blocks.

In the process of model fine-tuning, we first remove the last three layers of this model
and add a new layer according to the number of dataset classes. After the fine-tuning
process, transfer learning is employed for the training of the model. In the training process,
several hyperparameters are selected, such as the learning rate of 0.001, epochs of 100,
minimum batch size of 64, and SGD for learning. The transfer learning process is illustrated
in Figure 7. After the training of a finely tuned model on skin datasets, features are extracted
from the average pool layer and utilized for the further processing, such as feature selection.
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4.4. Optimal Feature Selection

The selection of the best features is an important step, with the advantage of improving
the classification accuracy and reducing the computational time [38]. In this work, two
methods are applied for the selection of best features. In the first method, a hybrid whale
optimization algorithm is proposed. HWO Algorithm: Originally, the WOA was introduced
by Mirjalili [39]. This algorithm is executed in two phases: (i) encircling prey and (ii) search
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for prey. In other words, two steps are performed: an exploitation phase and an exploration
phase. Mathematically, these phases are formulated as:

ψ =
∣∣∣V1 ∗ B̃∗(t)− B̃(t)

∣∣∣ (13)

B̃(t + 1) = B̃∗(t)−V2.ψ (14)

V1 = 2.r (15)

V2 = 2α. r− α (16)

where B̃ is position vector, B̃∗ is best solution, V1 and V2 are coefficient vectors, r is random
vector of value [0, 1], α is decrease linearly from 2 to 0 over the iterations, and |.| is absolute
value, respectively. The B̃(t + 1) update the positions according to the best known solutions
B̃∗. The values V1 and V2 are located in the whale according to their best solutions. The
shrinking behavior is updated through the following equation:

α = 2− t
2

maxIt
(17)

Later, the distance is computed among B̃ and B̃∗ to create the position of a neighbor
search agent.

B̃(t + 1) = ψ′. ebh. cos(2πh) + B̃∗(t) (18)

ψ′ =
∣∣∣B̃∗(t)− B̃(t)

∣∣∣ (19)

where b is a constant and value is 1, and h is a random number between −1 and 1. The
final shrinking process is formulated through the following equation:

B̃(t + 1) =
{

B̃(t + 1)← Equation (14) i f (ran < 0.5)
B̃(t + 1)← Equation (18) i f (ran ≥ 0.5)

(20)

where the ran is a random number of value between 0 and 1. In the exploration phase, a
random search agent is selected to guide the search.

ψ =
∣∣∣V1.B̃rand − B̃

∣∣∣ (21)

B̃(t + 1) =
∣∣∣B̃rand − ψ. V2

∣∣∣ (22)

where ψ is a random search agent and B̃(t + 1) is selected agents (features). The extreme
learning machine (ELM) classifier [40] is adopted for the classification error and to make
the balance among classification classes, the following fitness function is employed:

Fit = αϕr(ψ) + β
|R|

|Total Features| (23)

where ϕr is classification error computed from ELM. The best solutions are picked and
saved in B̃∗(t). These best solutions are further refined using the sorting and absolute
mean deviation (AMD)-based function. AMD is computed through Equation (1) and final
selection function is defined as follows:

Ftn =

{
ˆ̃B∗(t) f or B̃∗(t) ≥ M̃D
Discard, Elsewhere

(24)

EMI Selection Technique: Another technique, named Fuzzy Entropy Mutual Informa-
tion (EMI), is proposed for features uncertainty handling. The fuzzy entropy is initially
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computed from the original feature vector and then embedded into the mutual information
equation for the final selection. Fuzzy entropy is defined as follows:

Fuzzy (E) = −K
n

∑
i=1
{xi log(xi) + (1− xi) log p(1− xi)} (25)

Using this equation, the join entropy of two variables is computed as follows:

J(E) = ∑
xi ,xj

p
(
xi, xj

)
log
(

xi, xj
)

(26)

J
(
xi
∣∣xj
)
= − ∑

xi , xj

p
(
xi, xj

)
log p

(
xi
∣∣xj
)

(27)

After that, the common information is computed among xi and xj, known as mutual
information.

I
(

xi; xj
)
= − ∑

xi , xj

p
(
xi, xj

)
log

(
p
(

xi, xj
)

p(xi), p
(
xj
)) (28)

The resultant vector I
(
xi; xj

)
is finally fused with the HWOA-based selected feature

vector using modified canonical correlation analysis (MdCAA).

4.5. Optimal Feature Fusion

The best selected features of HWO and EMI are finally fused in one matrix using
modified canonical correlation analysis. Mathematically, the original CCA is formulated
as follows:

{xi}n
i=1 ε Sj ,

{
yj
}n

j=1 ε Sk , {zk}n
k=1 ε Sl (29)

where j, k, and l represent dimensions of sample space, n denotes observation size. CCA
aims to find projection directories.

ax ε Sj , ay ε Sk, az ε Sl (30)

That raises the correlation between aT
x X, aT

y Y, aT
z Z where X = [x1, x2, . . . xn],

Y = [y1, y2, . . . yn] and Z = [z1, z2, . . . zn] represents sample matrices. Formally, in CCA
we solve:

ρ = max
aT

x ay Zxyz az√
(aT

x Zxx ax) (aT
y Zyy ay) (aT

z Zzz az)
(31)

where Zxyz = XYZT define covariance matrix between feature sets and Zxx = XXT ,
Zyy = YYT , Zzz = ZZT represents covariance within three feature sets. When the matrices
within feature sets are non-singular, then CCA can be obtained by computing generalized
Eigen-problem. Zxyz Z−1

zz Zzxy 0 0
0 Zzxy Z−1

yy Zyzx 0
0 0 Zyxz Z−1

xx Zxzy

 Ax
Ay
Az

= λ

 Ax
Ay
Az

 (32)

Let Ax = [ax1, ax2, . . . axn], Ay =
[
ay1, ay2, . . . ayn

]
, Az = [az1, az2, . . . azn] denote three

projection directories matrices. Where the vector pairs (axi, ayi, azi)
d
i=1 corresponds to the

largest d generalized Eigen value. From the three modalities we can get the fused feature
as termed below:

F (i) =

 AT
x x

AT
y y

AT
z z

 (33)
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where F (i) is the fused vector that later sorted into descending order and remove the
redundant features by comparing approach. The final results features are finally classified
using ELM classifier.

4.6. Extreme Learning Machine

The final features are classified using extreme learning machine (ELM) [41]. The
structure of ELM is illustrated in Figure 8. Compared to classical gradient-based neural
networks (GBNN), the ELM rate of learning and generalization efficiency is better. In the
case of the ELM algorithm, the assignment of weights and hidden biases are carried out
randomly. Although a least square technique is used for the calculation of output weight.
Mathematical representation of ELM is as follows:
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Suppose ELM has S unique samples (ai, bi) from the fused feature set. The approxi-
mation of the desired output can be carried out with help of ELM having zero error which
can be denoted as

bi=|
L

∑
j=1

β jg
(
ωj.ai + cj

)
, i = 1, . . . , S (34)

where ai is input samples and bi is output samples. L refers to nodes of hidden layer, ci are
weights for output, activation function is referred to as g(.). εj and cj refer to input weights
and input bias, respectively. The activation function for ELM is the radial basis function.
The matrix of Equation (35) can be denoted as:

B = Hβ (35)

where the weights of matrix are represented as β = [β1, β2, . . . , βL], the target output is
represented as B = [b1, b2, . . . , bN ], the hidden layer output can be represented as H.

H =

 g(ε1.a1 + c1) · · · g(εL.a1 + cL)
...

. . .
...

g(ε1.aN + c1) · · · g(εL.aN + cL)

 (36)

Practically, the nodes of hidden layer (L) are less than the total number of samples
of training (S). The matrix c of the output weight is not a singular matrix. The ELM
approximation for target output cannot be with zero error. That is why the Moore Penrose
(MP) generalization inverted method is utilized to obtain approximation and to express
output weights.

β∗ = H‡ (37)

where H‡ refers the generalized inverse of hidden layer of output.
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5. Results and Analysis

The proposed multiclass skin lesion classification framework results are presented in
this section. Two publicly available datasets, named HAM10000 [32] and ISIC2018 [42], are
employed for the experimental process. Both datasets consist of seven different skin lesion
classes. As mentioned in Section 4.1, the data augmentation process is employed in this
work to handle the imbalanced issue. Therefore, the balanced datasets are considered for
the experimentations. Several parameters are employed in this work during the training
process, such as a training rate of 0.001; a mini batch size of 64, and max epochs of 500. The
50:50 is considered for the training and testing process for both datasets, whereas the cross
validation value is 10. Several classifiers are utilized for the experimental process, such as
multiclass SVM (MC-SVM), fine KNN (F-KNN), decision trees (DT), Naïve Bayes, ensemble
tree (EBT), and single hidden layer extreme learning machine (ELM). The performance of
each classifier is computed using accuracy, precision, FDR, and computational time. The
simulations of proposed framework are performed on MATLAB2020b. Moreover, an 8GB
graphics processing unit (GPU) is utilized for processing of the proposed framework.

Experiments: The following experiments are performed in this work for validation of
the proposed framework:

- Classification using originally deep features;
- Classification using HWOA-based best features selection;
- Classification using EMI-based best features selection;
- Classification using best selected features fusion approach.

5.1. Results on HAM10000 Dataset

Table 1 presents the classification results of HAM10000 dataset using originally deep
extracted features from fine-tuned NasNet large network. The features are extracted
from the global average pool layer and the classification is performed. On this layer, the
length of extracted deep features is N × 1056. The highest achieved accuracy noted in
this table is 84.90%, for the ELM classifier. The precision and FDR values are 84.10 and
15.90%, respectively. Additionally, the computational time of ELM is 214.5536 (s). A few
other classifiers are also implemented, such as MC-SVM, F-KNN, DT, Naïve Bayes, and
EBT, and the accuracy value is 84.72, 80.90, 79.63, 81.50, and 82.96%, respectively. The
accuracy and precision value of ELM is better, compared to these classifiers. Additionally,
computationally, ELM is more efficient than rest of the classifiers.

Table 1. Classification accuracy using originally extracted deep features for HAM10000.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 84.72 84.02 15.98 456.1129

F-KNN 80.90 80.20 19.80 350.0492

DT 79.63 78.94 21.06 298.1104

Naïve Bayes 81.50 80.76 19.24 496.9860

EBT 82.96 82.16 17.84 404.1542

ELM 84.90 84.10 15.90 214.5536

After the experimentation on the originally deep features, two feature selection tech-
niques are introduced, named HWOA and EMI. Table 2 presents the classification results
of the HWOA-based best features selection algorithm. The higher noted accuracy in this
table is 85.10%. The precision and FDR values of this classifier are 84.86 and 15.14%, respec-
tively. Computation time of ELM is 147.6329 (s), which is less as compared to the other
mentioned classifiers, such as MC-SVM, F-KNN, to name a few. Compared to the results of
HWOA-based feature selection with originally deep extracted (from Table 1), it is noted
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that a minor improvement is occurred in the accuracy but there is significant change in the
computational time.

Table 2. Classification accuracy using HWOA based feature selection for HAM10000 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 85.13 84.76 15.24 216.0492

F-KNN 81.06 80.60 19.40 204.9106

DT 79.94 79.62 20.38 196.9946

Naïve Bayes 82.69 82.13 17.87 278.5543

EBT 83.58 82.96 17.04 201.5436

ELM 85.10 84.86 15.14 147.6329

Table 3 presents the classification accuracy using EMI-based best feature selection
approach. In this table, the best noted accuracy value is 84.90, whereas the computational
time is 90.3560 (s). This selection method has also shown slight improvement in the accuracy
but there is a high change in the computational time (compared with Tables 1 and 2). Based
on these three experiments, it is analyzed that the selection of the best features shows slight
improvement in the accuracy value but higher change in the computational time. After the
process of best features selection, time is significantly reduced.

Table 3. Classification accuracy using EMI-based feature selection for HAM10000 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 85.00 84.62 15.38 174.5506

F-KNN 80.96 80.46 19.54 166.1056

DT 80.20 80.02 19.98 186.5092

Naïve Bayes 82.13 81.98 18.02 201.1136

EBT 83.86 83.40 16.60 103.0542

ELM 84.90 84.74 15.26 90.3560

The best selected features through HWOA and EMI are finally fused using proposed
fusion approach. Table 4 presents the results of features fusion. In this table, the best noted
accuracy value is 93.40% that is improved than the accuracy values given in Tables 1–3.
After the fusion process, the change in the accuracy value is approximately 8%. The values
of precision and FDR is 93.10 and 6.90%, respectively. Additionally, the computational time
is reduced and reached to 69.2036 (s). The recent best time was 90.3560 (s) for EMI-based
features selection approach. For the rest of the classifiers, such as MC-SVM, F-KNN, DT,
Naïve Bayes, and Ensemble trees, also showed the improved performance after the fusion
process. The accuracy value of ELM is further verified by Figure 9 in the form of confusion
matrix. In this figure, the diagonal value represents the correct prediction rate. Figure 10
illustrated the overall depiction of computational time for all four experiments using
HAM10000 dataset. Based on this figure, it is clearly analyzing that the fusion process
is computationally less expensive than original deep features, HWOA, and EMI. The
fusion process reduced some features that are not meet the criteria, given in Equation (33).
Moreover, the ELM is performed overall better than rest of the classifiers.
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Table 4. Classification accuracy using selected features fusion approach for HAM10000 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 89.56 89.14 10.86 150.5042

F-KNN 88.04 87.68 12.32 141.5036

DT 87.00 86.92 13.08 154.4432

Naïve Bayes 89.94 89.54 10.46 163.3940

EBT 91.42 91.10 8.90 86.1152

ELM 93.40 93.10 6.90 69.2036
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5.2. Results on ISIC2018 Dataset

The classification results on ISIC2018 dataset are presented in this section. Several
experiments are performed to validate the propose results. Table 5 presents the classi-
fication results of ISIC2018 dataset using originally deep extracted features. The ELM
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classifier achieved a highest accuracy of 85.96%, whereas the precision value is 85.52%.
The rest of the classifiers achieved an accuracy of 83.90, 81.40, 82.56, 83.50, and 82.16%,
respectively. The computational time of each classifier is also noted and minimum noted
time is 286.1009 (s). To overcome the problem of higher computational time and improved
accuracy, a hybrid WOA is proposed. The results of HWOA are given in Table 6. This table
presents the best accuracy of 87.86%, whereas the computational time is 184.5294 (s). The
computed accuracies of other classifiers are 85.14, 82.96, 84.60, 85.36, and 83.90%, respec-
tively. This results in this table showing that the use of HWOA improved in the accuracy
and minimizes the computational time. To further reduce the computational time, another
feature selection technique is proposed named EMI. The results of this approach are given
in Table 7. This table showed that the accuracy is almost consistent but the computational
time is minimized.

Table 5. Classification accuracy using originally extracted deep features for ISIC2018 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 83.90 82.98 17.02 512.1129

F-KNN 81.40 81.16 18.84 404.2904

DT 82.56 81.86 18.14 396.5526

Naïve Bayes 83.50 82.90 17.10 576.3625

EBT 82.16 81.78 18.22 475.1108

ELM 85.96 85.52 14.48 286.1009

Table 6. Classification accuracy using HWOA-based feature selection for ISIC2018 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 85.14 84.76 15.24 316.4428

F-KNN 82.96 82.12 17.88 210.5006

DT 84.60 84.06 15.94 204.3992

Naïve Bayes 85.36 84.90 15.10 356.5216

EBT 83.90 83.42 16.58 211.8692

ELM 87.86 87.40 12.60 184.5294

Table 7. Classification accuracy using EMI-based feature selection for ISIC2018 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 84.29 83.80 16.20 276.5540

F-KNN 82.60 82.14 17.86 190.4029

DT 84.96 84.30 15.70 181.1056

Naïve Bayes 85.70 85.28 14.72 289.1198

EBT 82.86 82.50 17.50 176.5920

ELM 87.12 86.92 13.08 151.1036

The accuracy of HWOA- and EMI-based feature selection is not improved as compared
to the existing techniques; therefore, a fusion technique is proposed. Table 8 presents the
results of features fusion. In this table, the best noted accuracy value is 94.36% that is
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improved than the accuracy values given in Tables 5–7. After the fusion process, the
change in the accuracy value is approximately 7%. The computational time is also reduced
after the fusion process and reached to 132.1990 (s). The recent best time was 184.5294 (s)
for EMI-based features selection approach. For the rest of the classifiers accuracy is also
improved (91.84, 90.60, 92.56, 92.80, and 90.46%, respectively). Figure 11 illustrated the
confusion matrix of ELM classifier for ISIC2018 dataset. Through this figure, the ELM
accuracy can be verified. Figure 12 illustrated the overall depiction of computational time
for all four experiments using ISIC2018 dataset. Based on this figure, it is clearly analyzed
that the fusion process is computationally less expensive. Moreover, ELM classifier is
computationally less expensive than other listed classifiers in this table.

Table 8. Classification accuracy using selected features fusion approach for ISIC2018 dataset.

Classifiers
Performance Measures

Accuracy (%) Precision (%) FDR (%) Time (s)

MC-SVM 91.84 91.52 8.48 212.5546

F-KNN 90.60 89.90 10.10 170.2918

DT 92.56 92.16 7.84 163.5829

Naïve Bayes 92.80 92.40 7.60 204.5116

EBT 90.46 90.12 9.88 160.0342

ELM 94.36 94.08 5.92 132.1990
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5.3. Discussion

A comparison is conducted among extracted deep features and traditional features, as
illustrated in Figures 13 and 14. In these figures, it is illustrated that the deep learning-based
extracted features (i.e., NAsNet Large, VGG16, Alexnet) give better results than traditional
features (i.e., HOG, LBP, SIFT, and Color) on selected datasets. In the traditional features,
HOG and color give better results than SIFT and LBP. In addition, Figure 15 showing the
comparison among original WOA-, HWOA-, and EMI-based best feature selection.

A comprehensive analysis of different contrast enhancement techniques is also per-
formed, with the proposed enhancement technique as the chosen enhancement technique.
In place of the proposed enhancement technique, three well-known techniques, such as
HE [43], BBHE [44], and DSIHE [45], are chosen and included in the proposed framework.
Figures 16 and 17 show the computed and plotted results after the addition of these tech-
niques. Based on these figures, it is clear that the proposed contrast enhancement technique
produces superior results. The second best accuracy is provided by the DSIHE contrast
enhancement technique.
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Figure 13. Comparison of deep learning and traditional features in terms of accuracy on
HAM10000 dataset.



Sensors 2022, 22, 799 18 of 22

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

5.3. Discussion 

A comparison is conducted among extracted deep features and traditional features, 

as illustrated in Figures 13 and 14. In these figures, it is illustrated that the deep learn-

ing-based extracted features (i.e., NAsNet Large, VGG16, Alexnet) give better results 

than traditional features (i.e., HOG, LBP, SIFT, and Color) on selected datasets. In the 

traditional features, HOG and color give better results than SIFT and LBP. In addition, 

Figure 15 showing the comparison among original WOA-, HWOA-, and EMI-based best 

feature selection. 

A comprehensive analysis of different contrast enhancement techniques is also 

performed, with the proposed enhancement technique as the chosen enhancement tech-

nique. In place of the proposed enhancement technique, three well-known techniques, 

such as HE [43], BBHE [44], and DSIHE [45], are chosen and included in the proposed 

framework. Figures 16 and 17 show the computed and plotted results after the addition 

of these techniques. Based on these figures, it is clear that the proposed contrast en-

hancement technique produces superior results. The second best accuracy is provided by 

the DSIHE contrast enhancement technique. 

 

Figure 13. Comparison of deep learning and traditional features in terms of accuracy on 

HAM10000 dataset. 

 

Figure 14. Comparison of deep learning and traditional features in terms of accuracy on ISIC2018 

dataset. 

100

80

60

40

20

84.9

N
as

N
et

 L
ar

ge

79.5

V
G

G
16

76.3

A
le

xN
et

65.1

L
B

P

71.6

C
ol

or

72.9

H
O

G

62.6

S
IF

T

Extracted Features

A
cc

ur
ac

y 
(%

)

100

80

60

40

20

85.96

N
as

N
et

 L
ar

ge

81.5

V
G

G
16

79.3

A
le

xN
et

67.5

L
B

P

73

C
ol

or

70.7

H
O

G

59.1

S
IF

T

Extracted Features

A
cc

ur
ac

y 
(%

)

Figure 14. Comparison of deep learning and traditional features in terms of accuracy on
ISIC2018 dataset.
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Finally, a comparison is also conducted with state of the art (SOTA) techniques, as
shown in Table 9. In this table, Huang et al. [46] used the HAM10000 dataset for the
experimental process and achieved an accuracy of 85.80%. Hamsi et al. [47] achieved
an accuracy of 87.70% for the HAM10000 dataset. Chaturvedi et al. [48] improved accu-
racy on Ham10000 and reached to 92.83%. Recently, Khan et al. [26] introduced a deep
learning framework and obtained an accuracy of 86.50% on the Imbalanced HAM10000
dataset. Authors in [49,50] introduced a deep learning-based framework and achieved an
accuracy of 92.40% and 93.4%. In the proposed method, the obtained accuracy is 93.40%
on HAM10000 dataset and 94.36% on ISIC2018 dataset. This showed that the proposed
method outperformed than SOTA.

Table 9. Comparison of the proposed method accuracy with SOTA techniques.

Methods Year Datasets Accuracy (%)

[46] 2020 HAM10000 85.80

[47] 2020 HAM10000 87.70

[48] 2020 HAM10000 92.83

[26] 2021 HAM10000 86.50

[49] 2020 ISIC2018 92.40

[50] 2021 ISIC2018 93.4

Proposed
HAM10000 93.40

ISIC2018 94.36

The key strength of this work is the selection of optimal features. The fusion process of
optimal features shows better results. The key limitation of this work is high computational
time due to more number of steps. In the future, the lesion segmentation step will be
adopted and utilized for the direct deep learning features extraction process. Moreover, the
ISIC2019 and ISIC2020 datasets will be employed for the experimental process.

6. Conclusions

This paper proposes an automated deep learning-based framework for multiclass
skin lesion classification. The proposed method includes a number of important steps,
including contrast enhancement of the skin lesion using a new function, deep learning
model learning via TL using enhanced images, best feature selection via two techniques—
HWO and EMI, fusion of selected features via a modified CCA approach, and finally ELM-
based classification. The experimental process demonstrates that the proposed method
outperformed the other methods on the chosen datasets. Overall, it is concluded that:
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• The contrast enhancement step improve the quality of lesion region that later extracts
the more relevant features;

• The selection of optimal features improves the classification accuracy and reduces the
computational time;

• The fusion process further helps in the improvement of classification accuracy and
reduces some redundant features through comparing approach.

In the future, the recent deep learning models shall be considers and refine in the
middle layers [51–53]. Augmentation of datasets is important step and it can be refining
through more up-to-date methods [54,55]. Moreover, the optimization through some latest
techniques should be opted [56,57].
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