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Abstract: Nowadays, electric vehicles have gained great popularity due to their performance and
efficiency. Investment in the development of this new technology is justified by increased con-
sciousness of the environmental impacts caused by combustion vehicles such as greenhouse gas
emissions, which have contributed to global warming as well as the depletion of non-oil renewable
energy source. The lithium-ion battery is an appropriate choice for electric vehicles (EVs) due to
its promising features of high voltage, high energy density, low self-discharge, and long life cycles.
In this context, State of Charge (SoC) is one of the vital parameters of the battery management
system (BMS). Nevertheless, because the discharge and charging of battery cells requires complicated
chemical operations, it is therefore hard to determine the state of charge of the battery cell. This
paper analyses the application of Artificial Neural Networks (ANNs) in the estimation of the SoC of
lithium batteries using the NASA’s research center dataset. Normally, the learning of these networks
is performed by some method based on a gradient, having the mean squared error as a cost function.
This paper evaluates the substitution of this traditional function by a measure of similarity of the In-
formation Theory, called the Maximum Correntropy Criterion (MCC). This measure of similarity
allows statistical moments of a higher order to be considered during the training process. For this
reason, it becomes more appropriate for non-Gaussian error distributions and makes training less
sensitive to the presence of outliers. However, this can only be achieved by properly adjusting
the width of the Gaussian kernel of the correntropy. The proper tuning of this parameter is done
using adaptive strategies and genetic algorithms. The proposed identification model was developed
using information for training and validation, using a dataset made available in a online repository
maintained by NASA’s research center. The obtained results demonstrate that the use of correntropy,
as a cost function in the error backpropagation algorithm, makes the identification procedure using
ANN networks more robust when compared to the traditional Mean Squared Error.

Keywords: estimation; state of charge; batteries; correntropy; cost function; Artificial Neural
Networks

1. Introduction

With the development of electric vehicles, the technologies related to energy manage-
ment systems have been of extreme importance in recent years. One of the main problems
is how to control the process of charging and discharging the battery as well as how to
extend its useful life [1]. Lithium-ion batteries, in this context, have been intensely used
in various electric vehicle and renewable energy applications due to their power density
and high energy density, which provides a smaller package volume when compared to
other chemical materials in the construction, as well as intrinsic characteristics associated
with safety, accelerated charging, and longer operational life [2]. In electric vehicles (EVs)
or hybrids (HEVs), the battery pack is one of the most essential elements, and because it
is composed of several coupled batteries, there are devices dedicated to monitoring these
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components: the Battery Management System (BMS) and the Intelligent Battery Sensor
(IBS). Both are responsible for collecting data such as voltage, operating current, and tem-
perature and, from this, estimating performance and quality indicators such as State of
Charge (SoC), State of Health (SoH), and State of Function (SoF). Among these performance
parameters, the SoC and SoH are the variables that stand out the most, because their esti-
mations are more complex and their methods require more robust mechanisms to produce
an accurate estimation. The main adversity found in identifying these parameters is their
highly non-linear behavior [3].

The systems identification by means of linear models does not allow for satisfactory
approximations, especially when the physical aspects of battery discharge operations are
considered. Recent studies on batteries have shown that the discharge rates are non-linear
in time, and, furthermore, depend on the residual capacity of the battery [4–6], i.e., for
different operating conditions there are different lifetimes, so the effective capacity of
the battery is not the same for different discharge operations [7].

Understanding the battery aging process is a complex task, as many factors, from
environmental conditions to the use of the vehicle, generates different aging effects [8].
Battery degradation is accelerated with factors that include, but are not restricted to:
the frequency of cycling, large change in the state of charge, large current magnitudes
during charging and discharging, high temperatures and exposure to high temperature [8].
The unknown weight and non-linear behavior of each of these factors makes the precise
estimation of the SoC a complicated task [9]. It is often difficult to establish a reasonable
and precise mathematical model for the charge and discharge process.

In the current practical scenario, there are two main research guidelines for SoC
estimation. The first is the nonlinear filtering method based on the equivalent battery
model [10], which is the Kalman filter method and the artificial neural network method [11],
respectively. However, both guidelines have their disadvantages, the performance of
the model estimated by Kalman filter is extremely dependent on the equivalent circuit
adopted, while the performance of the model to neural networks requires a sufficiently
large database with a suitable cost function to be able to accurately estimate the output of
the network, especially when there is the possibility of the output being contaminated with
noise and outliers. If combined with each other or with guidelines from other methods,
they may be able to overcome their respective shortcomings.

The objective of this paper is to develop a methodology for estimating the SoC of
lithium-ion batteries. In order to overcome the limitations that the estimation model based
on neural networks presents, this work proposes the development of an ANN that contains
as cost function the Correntropy and a training performed from a database from an online
repository maintained by NASA’s research center [12]. However, the successful metric
application of Correntropy in various scenarios depends on the proper tuning of the width
of its kernel (represented by the Greek letter σ). This kernel is a new parameter intrinsic to
this Correntropy-based estimation methodology.

In this paper, in order to properly determine this parameter and consequently use
the Maximum Correntropy Criterion (MCC) method, this parameter is determined in two
ways according to the data set, as presented in the sequence:

• From genetic algorithms, when the data set has no presence of noise and outliers;
• From adaptive strategies, when the data set presents added noise and outliers, follow-

ing the expression of [13].

Among the contributions of this work are:

1. Unlike the classical MSE-based function, which is a criterion related only to the second-
order moment of the error, the Maximum Correntropy Criterion (MCC) allows statis-
tical moments of higher orders to be taken into account during the fitting of model
parameters, such as skewness and kurtosis. These moments may contain relevant
dynamic information that should be inserted into the model structure;
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2. With the insertion of MCC, there is the possibility that a set of highly discrepant
values (outliers) can be disregarded or eliminated, through the appropriate selection
of the kernel width [14].

2. Related Works

SoC of batteries has a direct mapping relationship with their external (static) char-
acteristic parameters, such as the open circuit voltage (OCV), impedance, etc. Thus, by
measuring their parameters and then using the method of the Lookup Table, which was
built with the relationships 88 between SoC and one or more parameters, we can infer
the SoC [15–17]. However, it is hard to measure the precise OCV in real-time because
the measurement of battery OCV requires cutting off the power and having the battery rest
for an extended period. On the other hand, the measurement of battery impedance relies
on the measurement device, thus, it cannot be implemented for running EVs.

In another context, when the maximum available capacity of a battery is known
and its current can be measured precisely, the ampere-hour integral method can permit
the accurate calculation of the variation of the SoC. If we know the initial SoC, we can
obtain the accurate SoC. This method works very accurately for batteries because there
are no significant side effects during normal operation. However, for the estimation of
the SoC by this method, there are two drawbacks that need to be dealt with first. First,
the initial SoC must be known. Second, the measurement errors of battery current from
random disturbances, such as noise and temperature drift, are inevitable.

One of the solutions traditionally approached to deal with nonlinear ones, for SoC
estimation, are those based on adaptive systems, in particular Kalman filter (KF) and its
variants [18–20]. In this method, the battery is seen as a power system and is described
as an equivalent circuit. Based on the error between the voltage output of the model
and the measured voltage, the KF adjusts the SoC parameters to change the voltage
output of the model, in order to minimize the voltage error. However, its performance is
extremely dependent on the accuracy of the equivalent model used, which directly reflects
its complexity. In the paper published by [21], Lagrange multiplier technique and sigma
point Kalman filter (SPKF) is proposed for the lithium-ion battery model identification and
state of charge (SoC) estimation, respectively. This model is based on the construction of
the state-space model of an RC equivalent circuit. SPKF uses the unscented transformation
to handle the non-linearity in the systems. The Kalman filter is an iterative algorithm
that requires the experimental survey of the SOC-OCV to construct the Lookup Table for
a constant temperature. However, in the literature, the Lookup Table is constructed of
the SoC as a function of OCV and temperature, to compensate for the thermal effects
in SOC estimation. In this new proposal, the proposed neural network is built based on
the black box model, which does not require the construction of state space models. In this
proposal, the ANN learns from battery tests, with different operating conditions.

Methods based on Artificial Intelligence, such as Artificial Neural Networks (ANNs)
and Fuzzy Neural Networks (FNNs), have been used in the estimation of the SoC, as well
as in the estimation of current and temperature parameters [20,22,23]. These methods can
be applied in almost all types of batteries and present an excellent non-linear performance.
However, SoC estimation by Artificial Neural Networks is extremely dependent on a data
set that is robust enough to represent possible operating conditions. In the case where
the operating conditions of the system differ from the training data set, the artificial neural
network usually presents relevant errors. Fuzzy logic, on the other hand, is dependent
on the architecture built by a human expert in that particular domain. If the architecture
does not have a vast knowledge base about the problem domain, the system tends to
present errors.

From the literature review, it is observed a growing interest in the development of
models for SoC estimation, based on new paradigms and theoretical references, that allow
to optimize the models and extract the most amount of information from battery tests.
This paper analyses the application of Artificial Neural Networks (ANNs) in the estimation
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of the State of Charge (SoC) of lithium battery. Normally, the learning of these networks is
performed by some method based on the gradient, having the mean squared error as a cost
function. This paper evaluates the substitution of this traditional function by a measure of
similarity of the Information Theory, called Correntropy. This measure of similarity allows
for statistical moments of a higher order to be considered during the training process. For
this reason, it becomes more appropriate for non-Gaussian error distributions and makes
training less sensitive to the presence of outliers.

3. Database—National Aeronautics ans Space Administration (NASA)

The proposed identification model was developed using information for training and
validation, using a dataset made available in an online repository maintained by NASA’s
research center [12]. The data used for the overall objective are generated in the test table
described in [24]. In all, the dataset used for training covers 34 batteries, totaling 2794 tests,
distributed in continuous charge and discharge tests, dynamic stress tests, and among other
types of tests. The variables of interest in this database revolve around discharge current,
terminal voltage, operating temperature, and battery capacity after several discharge cycles.

For the development of the algorithm in this work, the discharge tests present in NASA’s
database were used, as they provide a good consistency of data and the amount of tests
performed is quite satisfactory for the training process, and in a more detailed study, it
also makes it possible to verify the degradation of the battery over time. In general, 93% of
the available sample set was used for identification model training, in which the others are
subdivided among validation tests. This value was defined empirically, the intention being
to separate a large enough training data set to contemplate the most diverse operating
conditions. Table 1 shows the electrical specifications of the 18.650 battery.

Table 1. Electrical Characteristics Of The Battery 18.650.

Nominal capacity 6000 m Ah
Operating temperature −5 ◦C∼+60 ◦C

Internal resistance 30 mΩ
Nominal voltage 3.7 V

Discharge cut-off voltage 2.5 V
Discharge current 1, 2 and 4 A

In the selection of variables for the identification process, the main variables that affect
the battery’s behavior, such as current, voltage, and temperature, were considered.

Figure 1. Discharge voltage, current, state of charge and temperature curves in a single test.

At first, the battery voltage was chosen as input for the identification system because
it represents the result of all the intrinsic dynamic processes of the battery. The current
was selected because it has a direct relationship with the charge available in the battery.
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The third variable that will compose the model is the temperature. In [25], SoC is defined
as the present charge of the battery proportional to its capacity. It indicates the remaining
percentages of the battery of an EV. In [26], it is observed that the maximum capacity
increases with temperature. This increase is expected from enhanced electrochemical
reduction-oxidation (redox) at the anode and cathode as shown by [27,28]. The increase
is significant after 35 ◦C, and it slows down after 45 ◦C. This implies that temperature
plays a relevant role in SoC estimation, since it can be directly relate to the charge capacity
present in the battery of an Electric Vehicle.

Figure 1 shows the variables of interest for a single test. In Figure 1a the operating
voltage and the state of charge are observed. The operating voltage stays within the maxi-
mum limit (4.2 V) and the breakdown voltage (2.6 V). Figure 1b represents the discharge
current of this test (2 A), together with the temperature to which the test was subjected.

A possible limitation for the proposed method is found around the discharge value of
the operating current. Although the database is extremely complete in order to provide
tests at temperatures considered low (5° to 15 °C), medium (25° to 35 °C) and high (45° to
55 °C), the operating current only has three discharge values, which are: 1 A, 2 A, and 4 A.
This restriction of values in the discharge current can cause problems in the estimation of
the identification model when, for example, a possible discharge value of 1.5 A is used.

Another limitation of this work is the use of the battery in extreme temperature
conditions (T < 0 ◦C or T > 55 ◦C). In [29], for example, it is observed that at a temperature
of −10 ◦C, the average SoC in an electric vehicle is incremented by 3–6% units every hour,
because a larger charge current is accepted at the same voltage.

These limitations can be overcome by fine tuning the neural network. The basic idea
with fine tuning is to take another very large data set that is hopefully somewhat similar
to your domain, train a neural network, and then fine tune this pre-trained network with
your more specific data set.

4. Background Definitions

In this section, we show the definitions background regarding the Correntropy theory
as error minimization criteria for the estimation of the adaptive system parameters.

4.1. Adaptive System

Considering that most industrial processes of interest to engineering have a certain
degree of inherent nonlinearity, there is an important need to investigate the performance
of new techniques derived from artificial intelligence, capable of dealing with nonlinearity
in an advanced way.

The systems identification (especially nonlinear systems) using artificial neural net-
works has been one of the most explored subjects in the model identification literature
in the last years (for control purposes or not), with applications in practically all areas of
human knowledge that use mathematical models. Specifically, process identification using
artificial neural networks began to be explored with the work of [30].

It is believed that the wide use of this technique was only possible due to certain
peculiar characteristics of artificial neural networks, such as:

• Potential to model complex dynamics such as those usually presented by nonlinear
systems;

• Artificial neural networks can be trained easily (when compared to other techniques),
using historical data from the process under study;

• Are easily applied to multivariable systems;
• Have the ability to infer general rules and extract typical patterns from specific exam-

ples, and recognize input-output mapping from multi-dimensional complex, multi-
dimensional field data.

In this context, in adaptive systems used to process identification, most of the works
found in the literature adopt the Mean Squared Error (MSE) as a cost function both for
parameter tuning and for performance analysis of the designed models [13], as shown
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in the diagram of Figure 2. In this Figure, ym is the neural network signal, y is the reference
model signal, and e is the error model signal.

Figure 2. Estimation diagram by reference model.

This can be verified by observing that among the works researched so far, which
apply ANN to identification tasks, all of them use MSE as a cost function of their learning
algorithms. According to [31], the use of MSE in identification problems seems so natural
that in most cases this criterion is adopted without questioning. However, as presented
by [32], the application of MSE for model parameter fitting is considered optimal if, and
only if, the Probability Distribution Function (PDF) of errors presents a Gaussian behavior.

The existence of non-Gaussian distributions has motivated the research for techniques
based on minimizing a larger amount of information from the error distribution instead of
just minimizing its variance [33]. In this sense, Information Theory provides some measures
of similarity, such as entropy and correntropy, which can be used to obtain dynamic models.

Uniting techniques derived from artificial intelligence, such as artificial neural net-
works, classic methods of identification and the modern theory of control, as well as a more
robust cost function, it was shown that these methodologies can be successfully used
in the search for better performances of electrical processes under the action of automatic
control.

4.2. Correntropy Theory

The correntropy is a measure of generalized similarity between two random variables
X and Y, and is mathematically defined by the following expression (1).

vσ(X, Y) = E[κ(X, Y)] =
∫∫

κ(x, y) fXY(x, y)dxdy (1)

where: fXY is the joint probability density function of X and Y, E[.] is the statistical operator
and k[.] is a positive symmetric kernel.

The concept of correntropy can be applied to the estimation of nonlinear dynamical
systems, being used as an evaluation criterion, whose objective is to estimate a model
capable of satisfactorily representing the existing dynamic relationships between the input
and output variables of the system to be identified [34]. Thus, the main objective is to
make, for the same input values, the output of the model obtained during the estimation
process, as close as possible to the output of the dynamic system.

The most popular kernel used in correntropy is the Gaussian kernel, according to
Equation (2). Its popularity comes from the fact that it has several advantages. It is
universal, and you can integrate it against most functions that you need to.

κ(x, y) = Kσ(xi − yi) =
1

σ
√

2π
exp[− (xi − yi)

2

2σ2 ] (2)
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where: σ is the standard deviation, being responsible for defining the width of kernel.
The kernel width is an adjustable parameter of correntropy that works as a zoom lens

capable of controlling the observation window in which the similarity between two random
variables is evaluated. The possibility to adjust the size of the kernel provides a mechanism
that allows very discrepant values outliers in a data set to be disregarded or eliminated [14].

In general, the density and probability function established by Equation (1) is un-
known, and usually only a finite amount of data is available. Given this, the correntropy
can be calculated by the sample correntropy estimator, which is given by Equation (3) [33].

vσ(X, Y) =
1
N

N

∑
i=1

κσ(xi, yi) (3)

where: N represents the number of samples available.

4.3. Kernel Width—Optimization by Genetic Algorithm and Adaptive Strategy

In general, the training algorithms perform the minimization of some quadratic error
function. Among these, the most widely used, regardless of the type of net application,
is the Mean Squared Error. In [35], cite some characteristics that justify the popularity of
this evaluation function: it has a smooth error surface, it is a continuously differentiable
function, has a single global minimum, and its simple computation does not require high
computational effort.

Despite its attractive properties, [32,33] state that the mean squared error has optimal
application only if the probability density function of the error is Gaussian. In nonlinear
problems with high noise, the presence of outliers and non-Gaussian error distribution
means the use of this cost function has limitations.

In supervised training algorithms, the comparison between the output provided by
the neural net and a desired output value can be interpreted from a statistical perspective.
In this case, what you want to analyze is the probability that these two variables are
similar [13], making it clear that it is possible to replace the traditional mean square error
with some measure of similarity, such as correntropy.

However, the successful application of correntropy depends on the proper choice of
the Gaussian kernel width. Therefore, this parameter can influence the performance, con-
vergence rate, and robustness of the training algorithm. According to [36], the kernel width
should be set aiming at a balance between outliers rejection and model estimation efficiency.

In the literature, there can be found some approaches that can be applied to the kernel
width of the correntropy, such as Silvermann’s rule [37]. Although widely used, this
method is not able to provide an optimal value for this parameter. It is usually used to
indicate a reference value for further refinement. Silvermann [37] further suggests using
an alternative estimator based on interqualite intervals to determine the kernel width, as it
is a dispersion method that is more robust to outliers. However, both suggestions work
well in practice when the actual density is close to the normal distribution

A possible solution to the kernel width optimization problem is the use of genetic
algorithms and adaptive strategies. In general, genetic algorithm (GA) has been widely
adopted to find quality approximate solutions, even for large scale cases of the problem,
in a reasonable time. Therefore, in scenarios where you only want to optimize the kernel
width, resulting in a reduction of the estimation model error, the genetic algorithm is
suitable. Adaptive strategies, on the other hand, are more appropriate when the estimation
model is contaminated with noise and outliers, since this strategy allows the estimation
model to ignore discrepant measures of the identification process.

5. Methodology

The proposed methodology is based on the Maximum Correntropy Criterion (MCC)
with Gaussian kernel as mechanisms for adaptation and estimation of an Adaptive System by
the reference model, which we will call RNAMCC, and which is described in the following.
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5.1. Identification Structure

Figure 3 shows the block diagram of the proposed adaptive system by reference model,
consisting of five subsystems:

• Reference Model: SoC predictor from the Coulomb Counting Method using the NASA
online repository database;

• Artificial Neural Networks: An adaptive system that allows the maximization of a given
cost function in order to minimize the estimation error;

• Parametric Estimation Mechanism: Implements Estimation of Neural Networks parame-
ters (Biases and Weights);

• Genetic Algorithm and Adaptive Strategies: Algorithm for optimizing kernel width and
learning coefficient;

• Delay: Allows saving of previous samples of the current value of the state of charge.

Figure 3. Diagram of the identification structure.

In the training algorithm for the state of charge, shown in Figure 3, the Reference Model
corresponds to SoC estimation by Coulomb Counting. Thus, an epoch is counted at each
presentation to the artificial neural network of all input-output pairs present in the training
set. Thus, epoch after epoch, the Parametric estimation algorithm performs the parameter
adjustment of the ANN with the goal of maximizing the correntropy.

As explained earlier, the successful use of correntropy depends on the proper tuning
of the kernel width and its learning coefficient. Thus, the new parameter plays a decisive
role in the performance of the training algorithm. The role of optimizing both parameters
in SoC usage scenarios is left to the Genetic Algorithm and Adaptive Strategies.

In order to facilitate the reader’s understanding of the next sections, the most important
symbols that will be used and their nomenclature have been gathered together, as follows:

• Parameters intrinsic to Correntropy: σ (kernel width) and η (learning coefficient);



Sensors 2022, 22, 1179 9 of 26

• Activation functions of the ANN: V[.] (sigmoid activation function of the intermediate
layer) and F[.] (linear activation function of the output layer);

• Parameters intrinsic to ANN: w (weights) and b (bias);
• Correntropy cost function: ε;
• Number of samples: N;
• Error per sample between the desired output and the estimated output: ek;
• Number of neurons of the output layer: d;
• Number of neurons of the hidden layer: j;
• Number of inputs: i.

5.2. Artificial Neural Network

The NARX network is applied as a tool in this work because it is a dynamic and
recurrent network with high performance. Its gradient descent learning tends to become
more effective due to its built-in memory, which provides a shorter path for propagating
the gradient information when the network is open, rather than backpropagating the error
signal, giving the network fast convergence and robust performance [38].

n1

n2

n5

I - Current

V - Voltage

T - Temperature

w11

w21

w31

w12
w15

w32

w22

w35

w25

...

p1

w11

w21

w51

w41
w42

w45

Artificial Neural Network - ANN

Input Layer
Hidden 
Layer
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b1

b2

b5

b1

SoC (k-1) 

F(.)

V(.)

V(.)

V(.)

SoC (k) 

z-1

Figure 4. Artificial Neural Network.

The ANN applied in this work, shown in Figure 4, has as its main characteristic
the feedback with values obtained at the network’s output, which are added to inputs
external to the network. In this way, the output is a function of k samples of current
inputs together with past outputs. In this figure, n represents the number of neurons
in the intermediate layer, p the number of neurons in the output layer, V[.] is the activation
function of the intermediate layer, and F[.] is the linear output activation function of
the output layer. Thus, the estimation of SoC(k) is written as a function of the parameters
described in Equation (4).

SoC(k) = f (SoC(k− 1), I(k), V(k), T(k)) (4)

where: I(K) represents the operating current, V(k) represents the discharge voltage, T(k)
is the temperature, and SoC(k− 1) is the state of charge at the previous sample.

To obtain the network with the highest performance, several tests were performed
with different parameters to test the performance of the recursive artificial neural network
and determine the choice of the best parameters empirically. The metrics of the identifi-
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cation system analyzed to achieve high performance are: Mean Squared Error (MSE) and
Mean Absolute Percentage Error (MAPE). The characteristics of the ANN, represented by
the Figure 4 are: (a) single hidden layer; (b) sigmoid activation function for the hidden
layer, represented by V(.); (c) linear activation function for output layer, represented by
F(.); (d) current inputs (Current, Voltage, and SoC) and past inputs (SoC from the previous
samples); and (e) five neurons in the hidden layer. Initially, to define the number of neurons
present in the layers, a weighting was carried out. The number of neurons should be large
enough to model complex data, but not too large, which could cause the net to specialize
too much in training data, losing its generalization power (overfitting).

5.3. Parametric Estimation Mechanism

ANNs training is applied to minimize an established cost function and consequently
approximate the estimated SoC response by the neural system to the SoC reference, based
on NASA’s available data set. Another way is to see that the parameters of an artificial
neural network are adjusted by means of a training algorithm that aims to minimize
a certain cost function.

According to [33], an identification model can be interpreted as an unknown function
f (X, θ), which for a set of N input samples X = x1, x2, ..., xN and a vector of n adjustable
parameters θm = [θ1, θ2, ..., θn]T , provides a set of N estimated outputs Ym = Y1, Y2, ..., YN .
These parameters θm, in the context of Artificial Neural Networks, can be defined as
the Weights and Bias of a typical ANN.

Therefore, this measure can be used, for example, to express how much the model
output, SoCm = f (X, θm), resembles the SoC output reference of the system. In this context,
the correntropy can be applied to evaluate the performance of models obtained by the
identification procedure. Under the mathematical definition of correntropy and its respec-
tive properties, it is concluded that the higher the value of the correntropy, the better is
the quality of the model found, and consequently, the lower are the estimation errors of
the SoC. From this point of view, the identification of the state of charge can be interpreted,
therefore, as a procedure that aims to adjust the training parameters of the adaptive systems
θm to maximize the correntropy or, in an analogous way, minimize the equation.

JMCC =
1
N

N

∑
k=1

(
1

σ
√

2π
− 1

σ
√

2π
exp−

e2
k

2σ2

)
(5)

where: ek is the estimation error for the k-th training example and N is the number of
samples collected from the system. The training algorithm will run in a sequential mode.
Equation (6) defines the instantaneous expression of JMCC that will be used to update
the weights and biases parameters after the presentation of each training pair.

εk =
1

σ
√

2π
(1− exp−

e2
k

2σ2 ) (6)

To perform the ANN learning procedure through the error backpropagation algorithm
during your training process, you must calculate the partial derivatives of the chosen cost
function in relation to the adjustable net parameters. These parameters can be updated
from the delta rule principle, using (7) to (10).

wij(k+1) = wij(k) − η
∂ε(k)

∂wij(k)
(7)

wjd(k+1) = wjd(k) − η
∂ε(k)

∂wjd(k)
(8)

bj(k+1) = bj(k) − η
∂ε(k)

∂bj(k)
(9)
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bd(k+1) = bd(k) − η
∂ε(k)

∂bd(k)
(10)

where:

1 ≤ i ≤ 4 (11)

1 ≤ j ≤ 5 (12)

d = 1 (13)

where: w and b represents the adjustable parameters of the network through the learning
procedure (weights and biases, respectively), η is the learning coefficient, i is the number
of neurons of the input layer, j is the number of neurons of the hidden layer and d is
the number of neurons of the output layer. Using this index notation, for example, the w13
neuron connects I(k) to the third neuron of the hidden layer. Thus, the partial derivatives
of ε(k) in relation to the adjustable parameters weights (wij e wjd) and biases (bj e bd) are
presented in Equations (14)–(17).

∂ε(k)
wij(k)

=
∂ε(k)
∂e(k)

.
∂e(k)

∂wij(k)
= − 1

σ3
√

2π
exp−

e2(k)
2σ2 .e(k).x(k).wij(k) (14)

∂ε(k)
bj(k)

=
∂ε(k)
∂e(k)

.
∂e(k)
∂bj(k)

= − 1
σ3
√

2π
exp−

e2(k)
2σ2 .e(k).wij(k) (15)

∂ε(k)
wjd(k)

=
∂ε(k)
∂e(k)

.
∂e(k)

∂wjd(k)
= − 1

σ3
√

2π
exp−

e2(k)
2σ2 .e(k).aj(k) (16)

∂ε(k)
bd(k)

=
∂ε(k)
∂e(k)

.
∂e(k)

∂bd(k)
= − 1

σ3
√

2π
exp−

e2(k)
2σ2 .e(k) (17)

where: x represents the matrix with the input variables of the system, they are: the operating
current, discharge voltage, and temperature, and σ represents the kernel width.

In a supervised training process, an epoch is counted at each presentation to the artifi-
cial neural network of all input-output pairs present in the training set. Thus, epoch after
epoch, from Equations (14) to (17) in (7) to (10), the algorithm performs the adjustment
of ANN parameters in order to maximize the correntropy through (5). It is important to
comment that special attention must be given to the initialization of the Weights and Bias
parameters. An inadequate initialization of these parameters can compromise the training,
and consequently, the quality of the final model obtained. Proper choice increases the speed
of training, resulting in rapid convergence.

6. Experimental Results

In this section, the performance of the adaptive control algorithm RNAMCC is evalu-
ated through simulation tests, whose objective is to identify the state of charge. To achieve
these objectives, two estimation scenarios were evaluated in this methodology, the first
in the absence of outliers and noise, and the second in the presence of these contaminated
samples. First, in both scenarios, three different kernel width values were analyzed: 1, 2, and
3. These values represent, respectively, low, medium, and high kernel widths for this case
study. The simulation was performed using Matlab/Simulink on a Inter Core i7-7500U 2.70
GHz computer with 16.00 GB RAM. The time to perform each training plus the estimation
time for the validation test lasted an average of 25 s.

Then, in order to evaluate the robustness of the proposed methodology over the clas-
sical methodology that uses an MSE-based cost function, a comparison between both
methodologies is performed.
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Before starting the presentation of results, some points need to be established. From
now on, the notation ANNMCC,AG will be adopted to denominate the model obtained
from the use of correntropia as a cost function of the error backpropagation algorithm and
genetic algorithm for optimization of parameters η and σ and the notation ANNMCC,ADAP
will be adopted to denote the estimation model obtained from the use of the adaptive kernel
strategy.

6.1. Model Reference Definitions

In the training algorithm for the state of charge, shown in Figure 3, the SoC predictor
corresponds to the estimation of the state of charge by Coulomb Counting, according to
the following expression:

SoC = SoC0 +
100
Cn
∗
∫ t0+τ

t0

Idt (18)

where: SoC0 represents the initial charge state equal to 1, Cn corresponds to the nominal
capacity of the battery equal to 6000 mAh, I represents the current flow in the battery, t0 is
the instant of time that the charge or discharge is initiated in the battery, and τ corresponds
to the time interval between the beginning and end of the cycle. In the SoC predictor,
only the I operating current and the relative time of the discharge cycle, coming from
the database, is used.

6.2. Outliers and Noise Definitions

For the implementation of state of charge, several weights and analyzes are required
regarding the battery model used. However, the model will still be subject to noise effects.
This noise may be due to several factors such as: poor contact; use of poor quality sensors;
A/D converters with low resolution; network noise that may propagate to the battery’s
power source; during operation. In most of the articles reviewed previously the mea-
surement noise is assumed to be Gaussian white noise. Thus, in one of the analyses of
the designed model, the state of charge is contaminated by samples with normal distribu-
tion, zero average, and power equal to 0.01 W or −20 dB.

In order to simulate discrepant measurements, certain values are randomly inserted
into the validation set, called as outliers. These outliers are formed by the followings ex-
pressions:

SoCnew,k = 1.2 · SoC(k) (19)

SoCnew,k = 0.8 · SoC(K) (20)

where SoC(k) is the original value of the SoC, without the presence of outliers or noises
and SoCnew,k is the outlier, calculated from an original SoC(k) sample. As you can see, there
are two possible choices for SoC and during the validation procedure, either of the two
Equations (19) and (20) can be used to form outliers.

6.3. Comparison of the Proposed Method for Different Kernel Widths and Optimization of
the Genetic Algorithm in a Scenario without Noise and Outliers—Constant Current Discharge

In [39], a driving scenario for an electric vehicle is identified. In this driving scenario,
the accelerator pedal signals are modeled. Also in [39], the charging and discharging
characteristics of various types of batteries are examined according to the driving scenario
presented. In this analysis, it can be seen that the behavior of the SoC is practically linear at
different ranges of the driving scenario. To this end, the simulations in this subsection are
done to identify a state of charge with a practically linear behavior.

In this subsection, estimation results will be presented in the context where the training
samples are uncontaminated by noise and outliers with the estimation algorithm based
on optimization of the parameters η and σ. In this estimation model based on genetic
algorithm optimization, the identification structure is observed according to Figure 3.
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For each combination of algorithm, kernel width and learning coefficient, 15 sim-
ulations of the training algorithm were performed. This was done in order to obtain
the best model for each combination and to allow the calculation of some evaluation met-
rics between the data estimated by ANN and the theoretical data provided by the data set
available in NASA’s online repository.

The implementation of the genetic algorithm for optimization of the ANN parameters
has the following characteristics.

1. Population Generation: Randomly generates a population of 250 individuals. Each
individual contains information of a respective kernel width σ and a learning coefficient
η. The individuals in the population are contained within the thresholds:

0.2 ≤ σ ≤ 30 (21)

0.2 ≤ η ≤ 15 (22)

These limits were defined empirically. An extremely high value (η � 15) in the learn-
ing rate for this case study tends to create oscillations between the optimal learning
point, so that the adjustment of the ANN weights does not converge to a satisfactory
error. A small value (η � 1) makes the model training very slow, but the model
converges to the optimal learning point. A weighting between model convergence
time and the error in regime was established to determine the operating range of
the learning rate η. Like the learning coefficient, the operating range of the kernel
width is set with the goal of including a diverse population of kernels while maintain-
ing population diversity [40]. This procedure prevents the algorithm from reaching
a premature convergence condition [41]. The premature convergence in a genetic
algorithm is when the algorithm reaches a minimum before it reaches the global
optimum solution.
After setting the thresholds of the population of individuals and randomly generating
250 individuals in binary form, each final individual contains information from both
the learning coefficient η and the kernel width σ, as shown in Figure 5. This number
of bits, as in Figure 5, does not represent the actual bit value used in this work. This
figure is intended solely to help the reader visualize how a single individual contains
information from two different quantities.

Figure 5. Individuals from the initial population.

The actual value of the number of bits for kernel width and learning coefficient,
considering four decimal places of precision for both magnitudes and the thresholds
exposed in Equations (21) and (22) is given by Equation:

Nbits = log
Limsup−Limin f ∗104+1
2 (23)

where: Limsup represents the upper threshold of the quantity being observed and
analogously, Limin f represents the lower threshold. Thus, the real value of bits for
the kernel width is 19, considering that each individual, when in decimal form, presents
4 decimal places and 18 for the learning coefficient, presenting the same number
of decimal places. Therefore, each final binary individual will have 37 bits in its
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representation, where the 19 most significant bits represent the width of the kernel
and the 18 less significant bits represent the learning coefficient.

2. Fitness: After producing 250 individuals in their binary form, it is necessary to analyze
the fitness of each individual, or analogously, to analyze the response the pair of
quantities η and σ have on the artificial neural network. To perform this analysis,
the width kernel and the learning coefficient σ are converted to decimal form and
applied to a training on the neural network, where the error is given by expression (24):

Error =
∑N

k=1 e(k)2

N
(24)

where N represents the number of training samples and e(k) the best error obtained
during the training process. Thus, the fitness of each individual is given by expres-
sion (25):

Fitness = 100− Error (25)

After passing the fitness function, the individuals are sorted according to their fitness
values. The best individual, that is, the one with the lowest error value, is chosen to
integrate a new population. One way to make the individual directly proportional to
its fitness value is to produce an expression according to the expression (25). In this
way, the better the individual, the greater its fitness. The value 100 in this expression(25)
was chosen so that the fitness value always presents positive values for this case study
and thus can be used by the roulette wheel method of population classification.
It is important to note that during the population training procedure, all individuals
are subject to the same operating conditions, i.e., the training algorithm is initialized
in the same way, with the same initial values of the adaptive parameters and with
the same stopping criteria. This is done in order to evaluate only the effects that
the learning coefficient and kernel width have on the estimation response, excluding
unwanted effects such as adaptive parameter initialization.

3. Crossover: The crossover probability between two individuals in the population
in the adopted strategy is 50%, where the information of the kernel width and learn-
ing coefficient, composing a single individual, were started in the genetic algorithm
in binary form;

4. Mutation: The mutation probability adopted in the proposed method is 15% in order
to maintain population diversity during the genetic convergence process.

Figure 6 illustrates the level of fitness of the population presented to the genetic
algorithm. In Figure 6, it is observed that the genetic algorithm tries to privilege individuals
with better aptitudes, thus trying to direct the search to regions of the search space where
the optimal points are likely. The region with the best individuals, in this case, represents
a search space limited by:

1 ≤ σ ≤ 4.5 (26)

1 ≤ η ≤ 15 (27)
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Figure 6. Population of individuals (a), Fitness of Generations (b). State of Charge—individuals of
the population for training without the presence of noise and outliers—350◦ generation.

Through the analysis of the evolution of the genetic algorithm, 330 generations was
defined as the stop criterion. This number was defined using the idea of stagnation,
that is, when no significant improvement of the population was observed after several
consecutive generations, that is, when the average aptitude or the best individual did not
improve anymore or when the aptitudes of the individuals in a population became very
similar. The best individual in the population after this optimization process contains
information from:

σbest = 2.4203 (28)

ηbest = 4.3807 (29)

When adjusting the parameters of the ANN models, with the exception of the
ANNMCC,AG, carried out by the error backpropagation algorithm, it was empirically veri-
fied that the best results were found when defining the learning coefficient η with the value
equal to 1. A low learning rate tends to increase the model’s convergence time, since
the adjustment of ANN parameters (Weights and Bias) is performed in a more subtle way.
Rather than increasing times for training, the model’s error for such learning rates tends to
decrease compared to high learning coefficients for the same operating conditions.

Although normally the learning curves practically stabilize around the 50th training
generation, some good results were found with the execution of approximately 330 gen-
eration. For this reason, this last value was defined as the maximum number of seasons
executed by the training algorithm.

In Figure 7, the model responses are compared to the desired system output without
the presence of noise and outliers. It is important to point out that during the training,
the data set provided contained contaminated data and, even under these conditions,
it is intended that, by using the cost function of the correntropy, it will be possible to
obtain models capable of satisfactorily representing the dynamics of the state of charge for
Lithium-ion 18650 batteries.

The best ANNMCC,AG model, whose answer is presented in the Figure 7, was obtained
from the optimization of the kernel parameters and learning coefficient by the genetic algo-
rithm.
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Figure 7. Validation of ANN models. State of Charge—training result without the presence of noise
and outliers.

Table 2 performs a performance comparison between the ANN models found when
the experimental data was used in the identification. For each model configuration, the av-
erage of the validation MSE, the best MSE as well as the average of the validation MAPE
are presented.

Table 2. Performance comparison of ANN models. State of Charge—Training result without the pres-
ence of noise or outliers.

Model and
Training

Kernel
Witdh

Average MSE
of Validation

Average MAPE
of Validation

Best MSE
of Validation

ANNMCC
Genetic

Algorithm 5.00×10−3 24.6×10−3 4.80×10−3

ANNMCC σ = 1 6.00 ×10−3 39.4 ×10−3 5.80×10−3

ANNMCC σ = 2 11.45 ×10−3 44.3 ×10−3 10.94×10−3

ANNMCC σ = 3 12.35 ×10−3 45.0 ×10−3 11.50×10−3

According to Table 2, the models obtained from the fixed kernel width equal to 3
did not perform well compared to the other models. When the width of kernel was fixed
in a value considered too small, σ ≤ 1 , the RNAMCC models did not present a satisfactory
result. The adjustment of the width of the kernel is directly related to the weights of
the statistical moments of the Density and Probability Function of the error measured by
this criterion. Thus, proposing small kernel width values means maximizing the amount of
information contained in this distribution that will be used to update the ANN parameters.
Setting a very small value for this parameter, however, creates, during training, a very
restricted window of observation of the error distribution, inhibiting certain parameter
adjustments that should be performed. When setting σ = 2 and σ = 3, there was a reduction
in the performance of the RNAMCC models found. The best performing model corresponds
to the RNAMCC,AG model with optimization of the η and σ parameters. This can be noted
by both its average validation MSE and best validation MSE.
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6.4. Comparison of the Proposed Method for Different Kernel Widths and Adaptive Strategy
in a Scenario with Noise and Outliers—Constant Current Discharge

This section presents the results obtained in identifying the state of charge in Lithium-
ion batteries, when the training and validation data used in the procedure are subject to
the presence of white Gaussian noise and outliers.

The methodology used to obtain the results presented here is identical to the one
used in the previous section. For each combination of algorithm, cost function and kernel
width, 15 runs of the training algorithm were performed. Three different values of width of
kernel (1, 2, and 3) were evaluated, as well as the adaptive adjustment of the kernel width.
The value assigned to the learning coefficient η of the error backpropagation algorithm
was equal to 1, and the number of training epochs was set to 500 epochs. The noise type
used in the training procedure is white Gaussian noise and it is present in all samples. On
the other hand, the outliers were inserted manually with discrepant values and are present
only in certain samples.

In this section, during the training of the networks, an adaptive strategy is adopted to
determine the kernel width. This strategy is based on Equation (30) [13].

σ(k) =
max|ei(k)|

2
√

2
(30)

where: σ(k) corresponds to the kernel width value determined by the k-th training epoch
and ei(k) corresponds to the estimation error generated by the i-th training example pre-
sented to the ANN.

The choice for an adaptive solution for the definition of the width of the kernel,
in scenarios contaminated by noise and outliers, is due to the fact that the choice of
a fixed value for this parameter that is efficient is usually not a simple task, especially
when correntropy is used in nonlinear problems and in the presence of some stochastic
characteristics, such as the identification of nonlinear systems and the supervised neural
network training procedure.

The kernel width of the correntropy is initialized with a unitary value, presenting
an increase in its value during the first epochs of the training algorithm. Then the value
of this parameter starts oscillating, but with a tendency to decrease, until it stabilizes at
a value close to 1.33, as show in Figure 8.

Figure 8. Kernel width variation during training.

When adjusting the parameters of the ANN model, using the error back-propagation
algorithm, it was empirically verified that the best results were obtained when setting
the learning coefficient η to a value equal to 1. Although normally, the learning curves prac-
tically stabilize around the hundredth training epoch, some good results were found when
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running approximately 500 epochs. For this reason, this value was kept as the maximum
number of epochs executed by the training algorithm. Thus:

σbest = 1.33 (31)

ηbest = 1.00 (32)

The best model ANNMCC, whose response is presented in Figure 9, was obtained from
the use of the adaptive kernel strategy. Analyzing this figure, it can be seen that this model
presents the best performance among the models with various widths of kernel.

Figure 9. Validation of ANN models. State of Charge—training result with the presence of noise
and outliers.

Table 3 presents a performance comparison between the ANNMCC models found
when the experimental data applied to the SoC identification is subject to the presence of
noise and outliers. Again, presented for each model configuration are the mean validation
MSE, the variance of the validation MSE, and the best MSE found over 15 runs of the error
backpropagation algorithm.

According to Table 3, the models obtained from the fixed width of the kernel equal to 1
did not present good performance when compared to the other models. The ANNMCC,ADAP
model with adaptive kernel width showed the best result among the models with cost
function in correntropy and presented more robustness in the presence of outliers, ignoring
these discrepant measures in its identification process.

Table 3. Performance comparison of ANN models. State of Charge—training result with the presence
of noise or outliers.

Model and
Training

Kernel
Witdh

Average MSE
of Validation

Average MAPE
of Validation

Best MSE
of Validation

ANNMCC Adaptative 2.5·10−3 6.25 ×10−3 2.4×10−3

ANNMCC σ = 1 7.4 ×10−3 51.5×10−3 7.1×10−3

ANNMCC σ = 2 6.9×10−3 49.4×10−3 6.7×10−3

ANNMCC σ = 3 5.0 ×10−3 25.1×10−3 4.8×10−3
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The quantifications of the statistical moments of the histogram of Figure 10 are il-
lustrated in Table 4, where the average is close to zero, as well as the standard deviation.
The kurtosis parameter indicates how the tails of a distribution differ from the normal dis-
tribution. A distribution with a negative kurtosis value indicates that the distribution has
lighter tails than the normal distribution, indicating a more “rounded” distribution, which
is the case for all cases. The Skewness parameter indicates the asymmetry of the problem:
as the data becomes more symmetric, its value tends to zero. For all kernel width variations,
the Skewness value is close to zero.

Figure 10. Histogram of the system estimation error. State of Charge—training result with the pres-
ence of noise and outliers.

Table 4. Statistical measures of the estimation error when the system is subjected to the presence of
noise and outliers.

Erro de Estimação
σ = Adaptative

Tracking Error
σ = 1

Tracking Error
σ = 2

Tracking Error
σ = 3

Average 0.4805 0.4842 0.4793 0.4844
Standard Deviation 0.2972 0.3000 0.2902 0.2845

Skewness −0.0710 0.0113 −0.1272 −0.0863
Kurtosis 1.7386 1.7667 1.7385 1.7746

6.5. Performance Comparison between MCC and MSE Criterion—Constant Current Discharge

This section presents the results obtained from the comparison between the mod-
els built from the classical MSE cost function and the correntropy based cost function,
in a scenario contaminated with noise and outliers.

In Figure 11, the responses of the ANNMSE and ANNMCC,ADAP models are compared
with the desired output of the system with the presence of noise and outliers. It is important
to point out that contaminated data was used during training and, even under these
conditions, it is intended that, by using the correntropy cost function, it is possible to
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obtain models capable of satisfactorily representing the dynamics of the load state when
it is under normal operating conditions. Comparing the ANNMSE and ANNMCC,ADAP
models, it is observed that the second one presented a better performance. Although there
was a percentage of outliers in the training and validation data sets, this did not provide
a significant detrimental effect for the ANNMCC,ADAP model. This model was found by
the error backpropagation algorithm, using adaptive kernel width and with a cost function
defined by maximizing the correntropy.

Table 5. Performance comparison of ANN models. State of Charge—training result with the presence
of noise or outliers—Constant Current Discharge.

Model and
Training

Kernel
Witdh

Average MSE
of Validation

Average MAPE
of Validation

Best MSE
of Validation

ANNMSE - 4.2 ×10−3 20.2 ×10−3 4.1×10−3

ANNMCC Adaptative 2.5×10−3 6.25 ×10−3 2.4×10−3

Figure 11. Validation of ANN models. State of Charge—training result with the presence of noise
and outliers—Constant Current. Discharge.

Table 5 performs a performance comparison between the ANNMSE and ANNMCC,ADAP
models found when the experimental data used for state of charge identification are subject
to the presence of noise and outliers. Presented for each model configuration are the aver-
age validation MSE, the variance of the validation MSE, and the best MSE found over 15
runs of the training algorithm.

According to Figure 11 and Table 5, the correntropy is more robust than ANNMSE
to the undesirable effects of large error values arising from outliers. This is because
the MSE amplifies the contribution of points that are far from the average value of the error
distribution, so if the error distributions contain outliers, are asymmetric or have a zero
average, the criterion is not sufficiently robust.

The ANNMCC model with adaptive kernel width showed the best result among
the models with cost function in correntropy and showed higher robustness and perfor-
mance in the presence of outliers, ignoring these discrepant measures from its identification
process, unlike the ANNMSE model. In nonlinear problems with high noise, in the presence
of outliers, and non-Gaussian error distribution, the use of ANNMSE has limitations. This
is due to the fact that MSE does not have any robustness to noise and is based only on
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the minimization of the error variance, not taking into account information of higher order
statistical moments.

6.6. Performance Comparison between MCC and MSE Criterion—The Dynamic Stress Test

The DST test [42] is a widely used dynamic driving profile to evaluate the performance
of the vehicle, and is also used to validate model accuracy or algorithm efficiency [43,44].
In the test, the battery goes through several DST cycles with the SoC operational range
from 100% to 0%. The current and voltage profiles of the DST test are shown in Figure 12.
To verify the robustness of the algorithms, the initials SoC are adjusted to 100%. This section
is similar to the previous section, except that the validation test in this case is a test related
to dynamic stresses of the battery. In this test, we used a dataset for Lí-ion batteries present
in [42]. The shared dataset describes the behavior the Lí-ion (10 Ah) under the DST profile
at room temperature in August 2016.

Figure 12. Validation of ANN models. State of Charge—training result without the presence of noise
and outliers—Dynamic Stress Test: (a) current; (b) voltage for the DST cycle and (c) state of charge
(SoC) estimation.

In Figure 12, the responses of the ANNMSE and ANNADAP models are compared with
the desired output of the system with the presence of noise and outliers. This validation
test was constructed of extreme lithium-ion battery operating conditions (high temperature,
relatively deteriorated battery capacity, pulsed current, and so on). The estimated model
was built from the methodology based on an adaptive kernel-width strategy.

Table 6 shows a performance comparison between the ANNMSE and ANNADAP
models found when the experimental data used for state of charge identification are subject
to the presence of noise and outliers. Presented for each model configuration are the average
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validation MSE, the variance of the validation MSE, and the best MSE found over 15 runs
of the training algorithm.

Analyzing Figure 12 and Table 6, the model built with the correntropy-based cost
function is more robust than the mean squared error-based model with respect to high
error values. It can be seen that too large errors raise the value of the JMCC metric, which
results in the error backpropagation algorithm changing the parameters (weights and bias)
in order to reduce JMCC. The way the backpropagation algorithm changes these parameters,
either “intensely” or “smoothly” depends on the exact kernel width.

Table 6. Performance comparison of ANN models. State of Charge—Training result without the pres-
ence of noise or outliers—Dynamic Stress Test.

Model and
Training

Kernel
Width

Average MSE
of Validation

Average MAPE
of Validation

Best MSE
of Validation

ANNMSE - 2.5082 ×10−2 12,4 ×10−3 2.15×10−2

ANNMCC Adaptive 2.2476×10−2 9,6 ×10−3 1.99×10−2

Another important point to comment on is that despite the training data being re-
stricted to certain operational conditions, both in voltage levels as well as current and
temperature levels, the model was able to estimate the state of charge quite satisfactorily.
This response validates the model and demonstrates the robustness and adaptability of
the neural network, even when subjected to operational conditions that are not present
in the training data.

6.7. Performance Comparison between MCC and MSE Criterion—The Urban Dynamometer
Driving Schedule

The UDDS test [45] is another typical dynamic driving cycle to validate the usefulness
of models and algorithms [43,46]. Similar to the DST, the battery goes through several UDDS
cycles, and the SoC operational range is from 100% to 0%. The current and the voltage
profiles on the test are shown in Figure 13, as well as the estimation of the SoC by both
estimation methodologies.

It can be concluded from Figure 13 that ANNMCC,ADAP has the best performance
in SoC estimation. To quantify the superiority of the proposed method, the statistical
results are summarized in Table 7. For the model accuracy, the average mean square
error between the estimated SoC by correntropy and the reference SoC model are 3.0349%.
The model proposed by the classical methodology of the MSE has an average error of
4.0976%. Thus, the proposed methodology had a reduction of about 25% in relation to
the classical methodology.

Table 7. Performance comparison of ANN models. State of Charge—training result without the pres-
ence of noise or outliers—The Urban Dynamometer Schedule.

Model and
Training

Kernel
Width

Average MSE
of Validation

Average MAPE
of Validation

Best MSE
of Validation

ANNMSE - 4.0976 ×10−2 12.4 ×10−3 3.8467×10−2

ANNMCC Adaptive 3.0349×10−2 5.7 ×10−3 3.0016×10−2
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Figure 13. Validation of ANN models. State of Charge—training result without the presence of noise
and outliers—The Urban Dynamometer Driving Schedule: (a) current; (b) voltage for the UDDS cycle
and (c) state of charge (SoC) estimation.

7. Conclusions

In this paper, an auto-regressive artificial neural network has been proposed to estimate
the state of charge of Lithium-ion batteries. The methodology was developed following
the concepts of Information Theory—more specifically, the definitions associated with
Correntropy Maximization.

The main advantages of using the proposed identification method are listed:

• The use of the training algorithm based on the Correntropy Maximization Criterion
allows outliers to be eliminated or ignored in the identification procedure;

• MCC allows higher order statistical moments to be taken into account during the pa-
rameter tuning procedure of the Artificial Neural Network.

In this paper, after writing in detail the architecture of the ANN used in this work,
the modified equations of the error backpropagation algorithm resulting from the use of
the correntropy as the basis of its cost function were presented, and it can be noted that two
more adjustable parameters were included to the training algorithm: the width of the kernel
of the correntropy and the learning coefficient.

In training the networks and consequently when obtaining ANN models, different
fixed values for the width of the correntropy kernel were assigned and noise and different
percentage values of outliers were inserted in the training and validation sets. Thus, it
could be noted the importance of the proper adjustment of the kernel so that the modified
algorithm can play its role satisfactorily.

In quantitative terms, the following results can be concluded:
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• In a scenario without noise and outliers, the model based on correntropy with evo-
lutionary strategy for kernel width optimization, presented the best result among
several fixed kernel widths proposed in the methodology, containing a best error of
4.8× 10−3 (see Figure 7). This implies that the proper choice of kernel width directly
influences the estimation;

• In a scenario with noise and outliers, the model based on correntropy with adaptive
strategy for kernel width optimization presented the best result among the several
fixed kernel widths and in comparison with the classical method with cost function
based on MSE. This model presented the best error of 2.5× 10−3 (see Figure 9), and
also showed more robustness to the presence of outliers in the reference signal;

• In both tests that simulate the actual behavior of a battery, either the DST test or
the UDDS test, the correntropy-based methodology was able to satisfactorily approx-
imate the reference SoC, keeping the performance metrics at values on the order of
10−2.

Therefore, the application of the correntropy measure in ANN training, when ap-
plied to the identification of nonlinear dynamic systems, can be considered an interesting
alternative for estimation.
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