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Abstract: This paper presents the findings of detailed and comprehensive technical literature aimed
at identifying the current and future research challenges of tactical autonomy. It discusses in great
detail the current state-of-the-art powerful artificial intelligence (AI), machine learning (ML), and
robot technologies, and their potential for developing safe and robust autonomous systems in the
context of future military and defense applications. Additionally, we discuss some of the technical
and operational critical challenges that arise when attempting to practically build fully autonomous
systems for advanced military and defense applications. Our paper provides the state-of-the-art
advanced AI methods available for tactical autonomy. To the best of our knowledge, this is the first
work that addresses the important current trends, strategies, critical challenges, tactical complexities,
and future research directions of tactical autonomy. We believe this work will greatly interest
researchers and scientists from academia and the industry working in the field of robotics and
the autonomous systems community. We hope this work encourages researchers across multiple
disciplines of AI to explore the broader tactical autonomy domain. We also hope that our work serves
as an essential step toward designing advanced AI and ML models with practical implications for
real-world military and defense settings.

Keywords: tactical autonomy; autonomous systems; artificial intelligence; military; defense applications;
aerospace; machine ethics; cybersecurity; trustworthiness; explainability

1. Introduction

Emerging technologies, such as robotics and autonomous systems, are providing
opportunities for potentially revolutionizing society [1]. Advanced autonomous systems are
paving the way for scientific breakthroughs and disruptive technological innovations across
several domains of science [2]. Autonomous systems are a network of intelligent systems
capable of independently performing complex tasks, making intelligent decisions without
explicit human intervention, and other operations management and control systems [3,4].
The most recent developments in modern autonomous systems are becoming increasingly
crucial for a wide variety of potential military and defense applications, including air
surveillance systems, privacy, cybersecurity, missile defense, the aerospace industry, etc.

Context and motivation. Research scientists from the civilian, defense, and military
communities are working through the complexities to determine the best ways of imple-
menting advanced AI and autonomous systems for industry and real-world applications.
Leveraging AI, ML, and other related advanced technology domains for autonomous
systems is a tactically game-changing strategy for modern autonomous systems.

Modern and cutting-edge AI and ML techniques have been increasingly used in the
military and defense domain for a variety of successful applications, including cybersecu-
rity [5], maritime security [6,7], critical infrastructure protection [8,9], and other domains of
significant societal and technological importance. The potential of advanced AI systems can
be used in ways that positively impact military and defense technologies. AI can be used
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in the military setting to evaluate the collected data and provide operational planning and
strategic support, accelerating decision-making processes. In addition to this, AI systems
can be designed and deployed to be used in strategic, political, operational, and tactical
levels of warfare.

In the context of political and strategic levels, AI systems can be used to dynamically
destabilize hidden enemies and defend against various forms of adversarial attacks in
real time. At the tactical level, however, AI can provide faster and improved situational
awareness for unmanned systems to reduce their vulnerability to attacks. It can also
efficiently automate threat detection by identifying suspicious patterns and potentially
dangerous activities. However, despite the autonomy advances across a broad range of
areas over the past few decades, several technical and practical challenges continue to
significantly limit the deployment and wide adoption of modern autonomous systems.
Some of the critical challenges that need to be tackled are addressed in Sections 4–6.
Therefore, it is essential to develop modern tactical autonomous systems with minimum
supervision or involvement from humans that substantially improve the state-of-the-art
and reduce cognitive workloads and increase functions, improve, and maintain multi-
domain situational awareness, enhance overall maneuverability and mobility, effectively
enable force protection, support proactive cyber defense, etc.

Motivated by the increasing interest and popularity of autonomy, this paper presents
a comprehensive and technical survey of the fundamental concepts and principles of
tactical autonomy, with a focus on cutting-edge AI and ML approaches that have not been
adequately addressed in previous research works. To the best of our knowledge, this is the
first work that addresses the important current trends, strategies, fundamental challenges,
tactical complexities, and future research directions on tactical autonomy.

Contribution. The major contributions of our paper are summarized as follows.

• We introduce the fundamental concepts of tactical autonomy and its potential across a
broad range of applications.

• We capture an understanding of the notion of tactical autonomy in the context of
military and defense settings.

• To the best of our knowledge, we are the first to provide the important current trends,
strategies, fundamental challenges, tactical complexities, and future research directions
on tactical autonomy.

• We present a work that can serve as an important step towards designing advanced
and innovative AI and ML models with practical implications for real-world military
and defense applications.

• We present the fundamental and long-standing challenges of tactical autonomy.

Outline. The rest of this paper is organized as follows. Section 2 provides a brief
history, major milestones, ethical aspects, and levels of tactical autonomy. The different
AI techniques that can be used to advance tactical autonomy capabilities are presented
in Section 3. The need for trusted AI and mission autonomy is described in Section 4.
The broad collaborations between platforms and the associated technical challenges
are briefly described in Section 5. Section 6 presents the state-of-the-art methods for
human–machine teaming and the challenges associated with the current approaches. Sec-
tion 7 briefly describes cybersecurity for tactical autonomy and its fundamental challenges.
An overview of the risks and inherent challenges of tactical autonomous systems is dis-
cussed in detail in Section 8. Finally, in Section 9, we conclude the paper and discuss
potential future works. The abbreviations section lists the abbreviations used in this paper.

2. Background

The literature on autonomous systems has been broadly studied in many research
works. The notion of autonomy has different contexts, and it has evolved significantly
over the past few years. For example, the concept of autonomy in [10] is about a delegated
task. The various aspects and dimensions of the delegation are explained in detail in [10].
Generally, autonomy in the context of intelligent systems focuses on developing intelligent
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decision-making systems that can physically operate autonomously in complex tactical
environments with some degree of self-governance [11]. In this section, we only provide
background on the works related explicitly to the history, ethical aspects, properties of
autonomy, regulation, and levels of tactical autonomy.

2.1. Brief History and Major Milestones of Tactical Autonomy

According to the Air Force Research Laboratory (AFRL), tactical autonomy is a term
associated with modern autonomous systems acting with delegated and bounded authority
of humans in support of tactical, short-term actions related to a longer-term strategic vision.
In recent years, considerable interdisciplinary research has arisen on tactical autonomy for
a broad range of applications. The military has long been interested in advancing the capa-
bilities of robotics and autonomous operations. The Department of Air Force (DAF) and
the Department of Defense (DoD) are pushing to conduct innovative autonomy research
focused on tactical autonomy that will help transition research into practical applications.
In addition, the United States AFRL is strongly prioritizing ongoing research efforts of
digitally transforming tactical autonomy, particularly in the military domain, to better
enable the warfighter against American adversaries. The brief history and significant
milestones of tactical autonomy are depicted in Figure 1.

1950s

• The birth of Artificial Neural Networks and AI
• The term AI was coined in 1956 to describe the science and engineering of making intelligent machines

1960-1970s
• Expert Systems and decision-making

1980-1990s

• Advancements in Algorithms and modern Neural Networks
• Distributed AI 

2000-2020s

• Intelligent and Autonomous Systems
• AI took flight aboard a military aircraft for the first time (2020)
• Trusted AI and Mission Autonomy

2020-

• Autonomy on a bigger scale 

Figure 1. Brief history and milestones of tactical autonomy.

Tactical Decision-Making. Decision-making systems employ advanced models that
make predictions about complex environments. Since many of these models are data-driven,
autonomous systems should be able to acquire more data about the complex environments
in which they operate and accordingly adapt their underlying behavior in real-time. The de-
mand for robust and effective tactical decision-making of intelligent autonomous systems
in noisy, dynamic, and realistic environments is rising rapidly. However, one of the most
critical challenges is designing tactical decision-making models and supporting frame-
works for autonomous systems. For example, the complexity and dynamic interaction with
other road users, the complex diversity of environments, and the uncertainty in the sensor
information make tactical decision-making for autonomous driving extremely difficult [12].
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A general framework that combines planning and deep reinforcement learning (DRL),
which can be used for tactical decision-making agents for autonomous driving systems,
is described in detail in [12]. The framework’s performance is evaluated on two concep-
tually different scenarios of highway driving [12]. Tactical decision-making algorithms
are designed to handle unforeseen environmental situations and unpredicted adversarial
attacks. Processes for tactical decision-making systems can be modeled either as probabilis-
tic (i.e., when uncertainties are included) or fully deterministic (i.e., when uncertainties
are not included). Planning and decision-making in uncertainty are critical in robotics
and autonomous systems. Therefore, when designing automated decision-making models
and algorithms, it is important to take the various sources of uncertainty into account [13].
partially observable Markov decision process (POMDP) is a general mathematical frame-
work employed to model decision-making tasks under uncertainty [13]. However, design-
ing efficient approaches capable of formulating uncertainty-aware tactical decision-making
tasks, such as POMDP, as well as solving its computational complexity, were not ade-
quately addressed in previous works. Hence, as explained in Section 3, different strategies
based on advanced AI/ML approaches are required to enhance the process of tactical
decision-making tasks in complex and realistic environments.

2.2. Ethical Aspects of Autonomy

The ethical aspects of autonomy are complex challenges for AI researchers. The devel-
opment and applications of modern AI-based systems are proliferating in both academia
and industry. As a result, motivated by the vast improvement of speed and efficiency in
the decision process, decision-making in various aspects of our daily lives is being fully
delegated to AI/ML-driven algorithms. However, many important questions about the re-
lationship between autonomy and ethics, social impact, regulations, autonomy governance,
ethical implications, and capabilities of such autonomous technologies and activities have
not been adequately addressed in previous studies. Therefore, exploring the safety and
ethical dimensions of AI-based fully autonomous technologies enables us to acknowledge
the ethical ramifications of current and future potential developments in advanced machine
autonomy. Furthermore, an accurate and efficient investigation of machine intelligence’s
ethics could facilitate identifying potential problems with existing ethical theories and their
role in real-world environments in general. A detailed discussion of the significance of
machine ethics, the study of ethical theory, and the ethical ramifications of autonomous
intelligent machines are found in [14]. The research work on [14] also suggests that modern
algorithms can be designed to mimic human ethical decision-making.

Machine ethics. As AI-driven decision-making becomes more prevalent across a wide
range of fields, new and significant issues about its applicability [15], ethical dimensions,
and the consideration of fundamental aspects in the design of decision-making algorithms
have emerged [16]. The ultimate aim of machine ethics is to effectively investigate how
to design intelligent machines to reason morally and ethically. It is concerned with how
intelligent machines behave towards humans and other autonomous machines. The main
goal of machine ethics is to develop an intelligent machine that makes decisions about
potential courses of action under the guidance of an acceptable ethical dimension. It is
important to distinguish between an implicit and explicit ethical machine [17]. An implicit
ethical machine means constraining the intelligent machine’s actions to avoid unethical
outcomes. One practical technique for achieving this is by developing a software system’s
internal functionalities and features to implicitly support and promote ethical behavior [14].
On the other hand, explicit ethical machines can explain ethical information by using
explicit representations of ethical principles [14,18]. Explicit ethical machines can handle
new situations and reasonably make explicit ethical judgments [14,18].

The ML research community has begun to explore the application of modern ML
capabilities to machine ethics. Various ML approaches to ethical reasoning have previ-
ously been introduced. For example, the work in [19] explores a neural network model
that classifies specific ethical judgments and case-based moral reasoning. A case-based



Sensors 2022, 22, 9916 5 of 22

reasoning approach to developing systems that can guide reasoning about ethical problems
and dilemmas is briefly described in the work in [20]. One of the main questions raised
in [20] is how machines can assist or potentially take humans’ place in ethical reasoning.

A different approach to computing ethics that adopts an action-based approach to
ethical theory is presented in [21]. The authors developed an efficient decision procedure for
an ethical theory that has multiple computing duties [21]. In addition to the ML capabilities,
there are other approaches to this problem, for example, using deontic logic (the field of
philosophical logic is concerned with the notion of obligation, permission, and related
concepts). For example, the authors in [22] described how deontic logic can be used
to incorporate a particular set of ethical principles into the decision-making process of
autonomous systems. On the other hand, the work in [23] evaluates the viability of applying
deontic logic approaches to implement the fundamental principles of Immanuel Kant on
categorical imperative and moral obligation. As a general approach of Immanuel Kant
on machine ethics, a decision procedure exists for generating categorical imperatives from
which rules of action are derived. According to the results of the approach presented in [23],
the deontic categories are formulated as forbidden, permissible, or obligatory actions.

2.3. Properties of Autonomy

The literature indicates multiple approaches to defining the notion of autonomy and
autonomous systems in the context of distributed AI. Autonomy can be defined as the
ability of an intelligent agent to act independently without direct external intervention and
make decisions with minimal human supervision. The definition of autonomous systems
concepts also varies in terms of their autonomy properties. Its external and internal states
determine the properties of autonomy. A system can be considered autonomous when it
acts non-deterministically. Non-deterministic systems may exhibit different behaviors even
for the same environmental inputs of an identical situation or may even fail completely.
On the other hand, an autonomous system may also be deterministic if the internal state
of the system is taken into account. A deterministic system is a system whose models
consistently yield the same result from a given environmental initial state or situation.
In this context, pro-activity, interaction, and emergence are the three properties that best
describe autonomy and its relevant underlying characteristics [24–26]. A summary of the
properties of autonomy is shown in Table 1.

Pro-activity. Intelligent autonomous systems must safely adapt to unanticipated
situations in a dynamic and unpredictable environment to be used across a variety of
domains [27]. When the autonomous system activates goals or initiates actions without
explicit external events, this property of autonomy is referred to as pro-activity [24–26].

Interaction. This property refers to the interaction of an intelligent agent with the
environment. An autonomous system can dynamically interact and respond to a complex
and unpredictable environment. In addition, intelligent autonomous systems can also
adapt to changes in the dynamic environment. This property is important in real-time
applications [24–26].

Emergence. Complex multi-agent systems are made up of multiple interacting sub-
systems. The interaction and pro-activity nature of intelligent agents produce emerging
autonomous properties that are not explicitly modeled in advance. Emergence in the con-
text of large-scale multi-agent systems is characterized by an unexpected system behavior
caused by nonlinear interactions with the environment over time. This property impacts
system reliability and predictability, and it is used as a criterion to evaluate autonomous
software systems [24–26,28].
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Table 1. Summary of properties of autonomy.

Properties Description

Pro-activity A property of autonomy where the autonomous system activates goals
or initiates actions without explicit external events [24–26].

Interaction An important property in real-time applications that refers to the
interaction of an intelligent agent with the environment [24–26].

Emergence
A property of autonomy produced by the interaction and pro-activity
nature of intelligent agents. It is used as a criterion to evaluate
autonomous software systems [24–26,28].

2.4. Regulation and Levels of Autonomy

Regulated Autonomy. As the current advancements in AI research and the impact
of modern autonomous systems are becoming pervasive, it is very important to establish
policies, regulations, and guidelines to ensure that AI-driven intelligent systems remain
trustworthy, ethical, and human-centric. For example, the privacy regulations adopted by
the European Union’s general data protection regulation (GDPR) [29,30] and the United
States’ Fair Credit Reporting Act (FCRA) [31] give directions on how personal internet data
should be processed and grant individuals the right to access their personal information and
receive reasonable explanations about decisions made by intelligent automated systems.
Adopting a set of regulations such as these enables us to assess the legal and ethical concerns
around AI-driven autonomous systems and the way they operate.

Levels of Autonomy. According to previous research works, the levels of autonomy
are classified into strong regulation, operational autonomy, tactical autonomy, and strategic
autonomy. The mappings of levels of autonomy to the properties of the underlying dynamic
environment are described in [26]. The properties of the environment include observable,
deterministic, episodic, static, and agents. An observable environment has full or partial
access to all the required states of the system at all times. A deterministic environment is
one in which the next state of the underlying environment is completely determined by the
current state and the actions selected by the agents [32]. The agent’s experience is divided
into multiple independent episodes in an episodic environment. Each episode in the
environment consists of the agent perceiving and then acting. In other words, an episodic
setting is where the previous action does not affect the next observation [32]. However,
if the subsequent action depends on the previous action, the environment is referred to
as sequential. If an environment does not change over the passage of time, it is referred
to as static. An environment is called dynamic if it changes while processes are operating
on it. A single-agent system means only one agent acting and interacting in a specific
environment. However, if multiple interacting intelligent agents interact with one another
and their environment, it is referred to as a multi-agent system.

Strong regulation represents systems with no autonomous capabilities. Such reg-
ulations are effective in environments with limited complexity. Operational autonomy
represents the operational level of decision-making. Intelligent software systems imple-
menting operational autonomy are practically effective in environments that are partially
observable, deterministic, episodic, and static [26]. Tactical autonomy extends operational
autonomy in the context of tactical decision-making of autonomous systems.

3. AI Techniques for Tactical Autonomy Capabilities

Autonomy is an active area of research in both academia and industry sectors. With the
proliferation of modern distributed autonomous systems and smart technologies, AI and
ML approaches have significantly advanced the state-of-the-art for various research domain
problems. AI approaches have a critical role in drastically improving the performance
and safety of autonomous systems. Fully autonomous and other complex networked
systems are configured and programmed to operate continuously. These sophisticated
systems constantly collect complex information from the surrounding environment. Hence,
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operating and understanding the dynamics and kinematics of fully autonomous systems
and processing the enormous flow of information in real time is extremely challenging
and beyond human capability. This is when AI-based technologies and their underlying
ML capabilities are overwhelmingly helpful. AI and ML systems have proved to be more
powerful and efficient than humans in several domains [33–36]. In addition to this, AI
and ML systems often guide human understanding and autonomous decision-making
processes in complex situations [37,38].

Advanced AI and autonomous system technologies have already changed our lives
and will continue to change in the future. The potential for this unprecedented success
of the AI-enabled technological revolution is the rapidly increasing applicability of AI
systems across various emerging technologies. For example, over the last decades, AI
techniques have created potential real-world impacts in the robotics and autonomous
systems community. In addition to the potential benefits of AI, there are also concerns
about the longer-term implications of robust AI systems [39–41]. Recent advances in
powerful AI and ML techniques for tactical autonomy have revolutionized a wide range of
areas, including autonomous driving [42–44], the aviation and aerospace industries [45],
unmanned aerial vehicles (UAV) navigation [46], maritime defense [47,48], etc. Most recent
approaches for autonomous systems are based on different techniques of AI. A summary
of the state-of-the-art AI techniques for tactical autonomy is presented in Table 2. Some of
the main classes of approaches in detail include the following.

Deep Learning (DL). This is an effective and powerful algorithm for AI applications,
such as computer vision, natural language processing (NLP), robotics, AI-enabled games,
and other applications. Since their inception, deep learning (DL) approaches have proven
to be effective at discovering and learning the complex structures of high-dimensional
training data [49]. Due to the tremendously promising performance brought by deep neural
models in complex environments, DL techniques have recently been used to solve several
real-world applications, such as autonomous driving [50–52], computer vision [53], image
classification [49], video prediction [54], etc. The authors in [55] demonstrated how a deep
Q-network (DQN) agent could learn to make a general-purpose tactical decision model for
autonomous driving. DL approaches also help predict the behavior and performance of an
autonomous vehicle in complex driving settings based on the current and past observations
of the surrounding environment [56,57]. Furthermore, an approach that estimates end-to-
end lane positions using a deep neural network is presented in [58].

Reinforcement learning (RL). To realize the full impact and potential of AI techniques
requires intelligent autonomous systems’ ability to learn and automatically make indepen-
dent decisions on their own dynamically. A fundamentally different approach to tactical
decision-making tasks relevant to autonomous systems is to utilize an AI/ML technique
that does not require the input training data to be labeled. One powerful ML paradigm for
accomplishing such tasks is applying reinforcement learning (RL) techniques [59]. RL is
a framework that provides an efficient solution to experience-driven sequential decision-
making problems [59]. It is concerned with how intelligent AI agents should make suitable
decisions in a complex and noisy environment to maximize the cumulative reward of
a particular executable action. RL is based on a sequence of dynamic interactions be-
tween a self-learning AI agent and its complex environment. Through its self-learning
capabilities in AI agents, RL is enabling exciting advancements in various domains of
science such as autonomous robotics [60], autonomous driving [61,62], NLP [63,64], game
playing [65,66], and many other applications. RL techniques can be utilized to create a
general tactical decision-making agent for autonomous systems. For example, Bayesian
RL techniques based on an ensemble of neural networks are employed for effective tacti-
cal decision-making agents for autonomous driving [67]. Moreover, some recent works
have also extended deep RL-based techniques for autonomous navigation tasks in mobile
robotics [68,69].

Federated learning (FL). In traditional ML and DL applications, training data from
different clients are typically aggregated in a central server or a cloud platform to train
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the model to effectively perform a given task [70]. This is a common data privacy issue,
and it is the fundamental limitation of classical ML and DL methods, mainly when the
training data contains highly sensitive and classified information (e.g., national secrets
and military-related information, hospitals, etc.) that can raise broad security and privacy
as well as legal and ethical issues. Maintaining the security and privacy of intelligent
systems remains an open challenge. This is the situation when federated learning (FL)
technology is helpful. FL is an emerging and promising decentralized ML paradigm
that offers a solution by employing distributed computation to address data security and
privacy concerns [71]. It enables many resource-limited distributed clients in a network
to collaboratively train ML models without communicating their local data with the main
aim of protecting the privacy and security of users [72–74]. By leveraging interdisciplinary
techniques and technologies, robotics and autonomous systems are becoming increasingly
ubiquitous. Given the distinctive advantages such as privacy preservation, decentralized
learning, parallel training, and onboard processing, FL has the potential to be a secure
and efficient AI framework for distributed autonomous systems [75]. In [76], for example,
the authors have presented an FL framework that enables collaborative learning of the
autonomous controller model across a group of connected and autonomous vehicles. Other
authors in [77] have demonstrated that FL models can be utilized to detect and identify
different types of UAVs from a larger pool of devices by exploiting radio frequency signals
transmitted by individual UAVs.

Table 2. Summary of AI techniques for tactical autonomy capabilities.

References Key Ideas Category

Ref. [55]
Demonstrated how a DQN agent could learn to make a
general-purpose tactical decision model for
autonomous driving.

DL for tactical
autonomy.

Ref. [59] An advanced approach to tactical decision-making
utilizing RL techniques.

RL for tactical
autonomy.

Ref. [60] Advancements of autonomous robotics using RL-based
techniques.

RL for tactical
autonomy.

Refs. [61,62] RL-based techniques for autonomous driving. RL for tactical
autonomy.

Refs. [63,64] Solving different problems of NLP using RL. RL for tactical
autonomy.

Ref. [75] Secure and efficient AI framework for distributed
autonomous systems.

FL for tactical
autonomy.

Ref. [76]
FL framework that enables collaborative learning of the
autonomous controller model across a group of connected
and autonomous vehicles.

FL for tactical
autonomy.

Ref. [77]

Demonstrates that FL models can be utilized to detect and
classify different types of UAVs from a pool of devices by
exploiting radio frequency signals transmitted by
individual UAVs.

FL for tactical
autonomy.

4. Trusted AI and Mission Autonomy

State-of-the-art AI and ML techniques are being increasingly employed in a wide array
of time-critical and safety-critical systems that require improved operational assurance,
such as military, defense, aerospace, autonomous driving [78], medicine [79], science [80]
etc. To enhance and ensure their end-to-end effectiveness and resilient operations, these
modern autonomous systems with AI capabilities must be continuously validated, verified,
and monitored. Furthermore, a continuous system performance evaluation that recognizes
unforeseen risks, anomalies, and potential adversarial threats is required for autonomous
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systems to maintain a robust operation. Moreover, there are also AI-enabled military
concerns regarding autonomous weapons beyond human control [81].

Explainable AI. Recent advances in ML techniques have led to growing interest in the
explainability of AI systems to help humans gain a deeper insight into the decision-making
process of ML algorithms. The widespread deployment of advanced AI systems across
various complex applications over the last few years has been coupled with a rise in ethical,
legal, and societal demands for these systems in providing human-understandable model
explanations and interpretations for their outputs. As a result of these demands, several
recent works on a regulation requiring explanations and interpretations of the decisions
made by AI-based automated systems have been introduced [82–84]. This has also led to a
growing research community with a strong focus on explainable ML techniques. As shown
in Figure 2, providing users with understandable explanations and interpretations allows
them to gain deeper insight into the system’s automated decision-making perspective,
which is the key element in establishing trust in the underlying AI and ML systems [85–87].
Hence, building explainability and interpretability into AI models and techniques of critical
systems also create impacts on safety [88], ethics [89–91], law [92–94], and transferabil-
ity [95]. However, the inner workings of AI and ML systems are difficult to understand by
human beings and are considered black-box methods where only inputs and outputs are
visible to users [96]. This lack of algorithmic transparency in AI and ML systems, lack of
understanding of real-world user needs, and our inability to adequately explain how and
why these systems reach particular AI-driven automated decisions make it fundamentally
difficult to understand, even by experts in the field [96,97]. For humans to fully trust and
build confidence in AI-powered systems, the explanations of the underlying system must
be consistent with human expectations and perceptions. Recently, an increasing variety of
open-source explanation tools and platforms that produce different explanations for the
exploration and interpretation of the underlying black-box ML models are being accessible
to users [98–101]. However, despite recent efforts, most of the current state-of-the-art
techniques of explanation and interpretation need to be more trustworthy.

Training Data Machine 
Learning Process

Explainable 
Model

Explanation 
Interface

User
O
ut
pu
ts

Tasks

Figure 2. Explainable AI. As presented in Section 8, developing advanced ML techniques to produce
explainable models is one direction of our future work. In addition to this, integrating state-of-the-art
explanation interfaces that produce efficient explanations of the underlying models is a challenge we
plan to explore in our future work.

Trustworthy AI. Advanced AI and ML models enable accelerating data-driven au-
tomated decision-making processes in complex systems. However, as explained earlier,
despite the recent widespread adoption of AI and ML systems in science and technology,
their system models remain largely black-box methods. Having a clear and full under-
standing of how these complex systems fully operate is useful in establishing trust and
transparency. In addition, understanding the inner workings of AI and ML systems gives
users a better insight into the underlying model, which can then be utilized to trans-
form a model from untrustworthy to trustworthy. Determining the trustworthiness of
AI and ML models is a fundamental problem when the model is utilized for automated
decision-making systems. As explained in Section 6, the collaboration between humans and
intelligent machines has enabled the rapid advance and wide use of modern autonomous
systems. The effective use of such complex systems in the military and national intelligence
agencies and other critical domains depends on the trust established between humans
and machines. Therefore, given the rapidly expanding applicability of AI-driven tech-
nologies in numerous autonomous systems, it is more important than ever to make these
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systems reliable and trustworthy [102]. Building a safe and trustworthy AI ecosystem is
crucial for ensuring human safety and adopting advanced AI-enabled technologies across
various applications [103]. Trustworthy AI is a technical term that describes the safety,
legality, robustness, and ethical principles of AI, including fundamental concerns with
security [104], privacy [105], transparency and fairness of AI-powered systems [106,107].
The requirements and elements that make AI systems trustworthy are shown in Figure 3.
The fundamental concept of trustworthy AI is based on the notion that AI reaches its full
potential when trust is established. Trustworthiness gives AI-enabled systems explainabil-
ity techniques that make it easier for humans to understand and trust the characteristics
and reasons behind the results and outputs produced by the ubiquitous AI algorithms.

Human 
Oversight

Technical 
Robustness 
and Safety

Privacy and 
Data 

Governance

Transparency
Diversity 

and 
Fairness

Sustainability

Accountability

Tr
us
tw
or
th
y

AI

Figure 3. Requirements and elements of a trustworthy AI [108].

Mission autonomy. It is a technical term mostly used in the defense and aerospace
technology industries and other next-generation autonomous and intelligent systems.
Mission autonomy is the ability of an autonomous system to independently execute a
variety of fundamentally complex tasks, e.g., deep space exploration missions, based on
the knowledge and understanding of the underlying system using modern data-driven
AI/ML techniques [109]. For the development and implementation of advanced mission
autonomy systems to be tactically useful, it is important to address the potential security
and risk issues associated with autonomy and AI systems described above.

5. Collaboration between Platforms

The proliferation of advanced algorithmic decision-making systems has enabled the
collaboration of different platforms. However, enabling and determining direct collabora-
tion between humans, intelligent machines, and autonomous agents is challenging. Some of
the main technical challenges that need to be addressed are interoperability, composability,
and adaptability.

Interoperability. In the context of autonomy, interoperability enables different kinds
of large-scale autonomous systems to communicate independently through the underlying
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platforms. Interoperability issues occur at different levels when designing interacting
autonomous agent systems with a strong notion of autonomy. As described in detail
in [110], interoperability layers can be classified as connection, communication, ontological,
and service layers.

Composability. In the world of software systems development, composability is nec-
essary for creating a robust, flexible, and interoperable system where different interacting
autonomous components communicate seamlessly [111]. It enables combining indepen-
dent functionalities of a component-based system to accomplish a given global task that
could not have been accomplished independently. Composability gives system designs
the ability to increase agility by reusing existing system components and adapting to new
changes [111]. A composable architecture allows the assembly of several system compo-
nents. An approach such as this has important benefits, including reusability, flexibility,
and improved modularity. Autonomy, modularity, and discoverability are the main ele-
ments of composable components. Each component in a composable system is expected
to autonomously and independently perform a given task without the assistance of other
components. Modularity, on the other hand, refers to the property of a system when each
component in a composable system is designed to solve a specific task independently. This
makes it possible for system designers to assemble modular components into one system.
In addition to this, the frameworks of the composable system must be discoverable by
other users in order for individual components to be reused.

Adaptability. An interactive autonomous system needs to be aware of its internal state
and the complex environment where it robustly operates. Advanced autonomous systems
have the ability to autonomously and interactively monitor and adapt to any unexpected
changes in a complex environment. The degree to which a complex system efficiently
deals with a dynamic functionality change in operating environments is referred to as
adaptability [112,113]. An adaptable, robust, and resilient system tolerates sudden changes
and dynamic situations in an environment without relying on external intervention [112].

6. Human–Machine Teaming

The concept of human–machine teaming and its capabilities are at the core of many
current advances in AI research. Human–machine teaming is a paradigm in which humans
and intelligent machines with different capabilities integrate and closely work together to
accomplish a common goal that requires collective action [114,115]. It is concerned with the
deep understanding and evaluation of intelligent machines intended for human use [116].
Given the recent exponential growth and the predictive capabilities of AI technologies, cre-
ating a successful collaboration in the operating environment between intelligent systems
and humans to solve complex problems is crucial. However, one of the main challenges to
the widespread adoption of AI systems is the ability to seamlessly integrate humans and
distributed intelligent systems to achieve a common goal.

The effective exploitation of human–machine teaming enables humans to gain a deeper
insight into the automated decision-making of intelligent machines. However, as explained
in Section 4, this highly depends on the trust between the AI-enabled automated decision-
making systems and humans. This is because when humans place more trust in AI-powered
decisions, it raises questions about trust issues. The effectiveness of human–machine team-
ing mainly depends on the transparency of the machine and the level of user confidence
that AI systems will behave as expected, securely, safely, and understandably [117]. Broad
collaboration across multiple disciplines, autonomous systems powered by modern AI
techniques, and domain experts is very compelling for establishing the explainability of
AI/ML models, creating a trustworthy AI ecosystem, and unlocking the potential of AI to
solve more significant problems.

AI has the potential to improve human capabilities, automate organizational decision-
making, and fundamentally transform the way businesses operate [118,119]. The explain-
ability of AI/ML systems is a potential approach for human–machine teaming since au-
tomation with the capability to explain and interpret results enables humans to understand
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the underlying behavior of intelligent machines better. One of the main benefits of using
an autonomous system is the ability to process more data in real-time much more quickly
than a human can. To ensure security, safety, and effective mission-critical operations,
autonomous systems across various domains, such as defense, healthcare [120], aerospace,
manufacturing, autonomous driving, etc., are evaluated to operate collaboratively with
humans. Therefore, exploring cutting-edge techniques for better human–machine teaming
has the capability to enhance productivity, usability, reliability, operational performance,
communication interface, cost of designing and operating platforms, share knowledge
between humans and the intelligent machines, and ensure safety and the ability for existing
systems to adapt to new environments and new tasks [121,122]. A human–machine teaming
framework that guides AI development teams to create broadly adopted ethical AI systems
that are usable, secure, and trustworthy is presented in [123]. In addition to this, major
players, such as IBM [124], DeepMind [125], Google [126], and other academic institutions
recently initiated a research effort to enhance human–machine collaboration [127–129].

6.1. Ad Hoc Human–Machine Teaming

Significant advances in autonomous systems are increasingly enhancing the quality
of our daily lives. Given these technological advances over the past few years, different
forms of human–machine teaming have emerged. Ad hoc teaming is the process through
which humans and intelligent machines with varying knowledge and capabilities collec-
tively collaborate to achieve a common goal [130]. Ad hoc human–machine teaming is a
challenging scenario where an intelligent agent collaborates with unknown heterogeneous
teammates without prior knowledge of coordination. An effective ad hoc team player is
an agent skilled at evaluating other agents’ capabilities in comparison to its own capabili-
ties. Effectively and robustly collaborating with heterogeneous teams on the fly without
any pre-condition is important in the military, industrial, and other autonomous settings.
Collaboration without any prior coordination is a known challenge in human–machine
research [131]. As an approach to address this problem, an online planning algorithm
for ad hoc team settings designed for situations where agents collaborate without any
pre-coordination is presented in [132].

6.2. Challenges Associated with Current Human–Machine Teaming Approaches

The following are some of the main challenges that limit our ability to effectively
integrate humans and intelligent machines in a dynamic operating environment.

Heterogeneity. In human–machine teaming, it is difficult for the intelligent machine
to predict and adapt to human actions in the face of dynamic operating environments due
to the significant heterogeneity in human decision-making tasks. Therefore, it is important
to develop state-of-the-art models and techniques that can be used to address the issue of
heterogeneity in a human–machine teaming setting.

Communication. The success of human–machine teaming depends on effective com-
munication between humans and intelligent machines. Humans have limited communica-
tion capabilities and can only process a finite amount of information. Therefore, by simply
exchanging essential information, humans and machines can effectively communicate
information that supports human–machine teaming. However, this creates trust problems
between humans and machines. A key component of effective team communication is
the trust established between intelligent systems and humans [133]. In human–machine
teaming, trust is defined as the user’s confidence in the reliability of the intelligent system’s
conclusions and its ability to accomplish a defined goal [134,135]. The concept of trans-
parency is a key aspect of information exchange since humans and intelligent machines
require shared knowledge and a common understanding of intent, the reasoning and
decision-making process, performance, and future plans [136,137].

Communication may help establish trust when humans and machines work together
as teams. Additionally, it can be used to establish guidelines for the efficient design of the
information that promotes overall performance and trust of human–machine teaming [138].
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However, machines must first be able to roughly mimic how humans process informa-
tion for the machines to exchange information in a way that humans can understand it.
A human–machine teaming relationship has three most important components: the human,
the intelligent machine, and the interactions between humans and intelligent machines
(or alternatives). Hence, as discussed above, establishing trust through developing an
explainable and trustworthy AI is crucial to the success of human–machine collaborations.
However, AI systems’ growing complexities and vulnerabilities and their ability to learn
and adapt to dynamically changing operating environments also raise new challenges in
establishing trust in human–machine teams.

Coordination. To fully maximize the potential of a heterogeneous team, humans and
intelligent machines should collaborate in an efficient and coordinated manner. As ex-
plained above, communication in the context of human–machine teaming refers to exchang-
ing information between humans and intelligent machines or alternatively. Coordination,
on the other hand, refers to the organization and management of team members and their
associated behavior to achieve a specific common goal [139,140]. According to [141], effec-
tive human–machine coordination involves three basic requirements. These requirements
are common ground, interpredictability, and directability. In order to communicate accurately
and effectively as a team, participants must first identify the appropriate common ground,
i.e., knowledge, mutual beliefs and assumptions, shared goals, etc. Common ground refers
to information that is mutually believed by all participants involved in a conversation [141].
Whereas the ability of the coordinating team members to reasonably predict each other’s
actions and behaviors is referred to as interpredictability [141]. Directability, on the other
hand, refers to the ability of the team members to redirect, help, or influence each other’s
behaviors when circumstances and priorities suddenly change [142]. Hence, developing an
advanced model that supports implicit coordination based on these three requirements is
important. Implicit coordination is defined as the process of synchronizing the actions and
behaviors of team members based on assumptions and intent without using behavioral
communication [143,144]. This means communication is not necessarily mandatory for
implicit coordination. Implicit coordination helps increase team effectiveness because it
makes it possible for team members to work together by avoiding distraction and commu-
nicating effectively even when direct communication is not available [145]. This, in turn,
significantly reduces communication overhead [146].

Adaptability. The ability to effectively change a course of action in reaction to un-
expected changing, complex conditions by adjusting strategies and behaviors is called
adaptability [113]. Adaptability can be divided into two categories: human-assisted adapt-
ability, and machine-assisted adaptability [147]. Intelligent machines should be able to
recognize the knowledge and behaviors of human teammates. In addition, machines should
also be able to predict and respond to new knowledge and behaviors of humans. However,
this requires the development of modern adaptive (i.e., machine-controlled adaptation)
and adaptable (i.e., human-controlled adaptation) systems.

7. Cybersecurity for Tactical Autonomy

Autonomous systems have attracted a great deal of attention in recent years from
the academia and industry sectors. However, the widespread and effective adoption of
autonomous systems across a wide variety of domains also poses a significant increase in
security attacks that needs to be addressed. Because cyber attackers aim to target large-
scale autonomous systems such as modern autonomous vehicles (AV), crewed spacecraft,
space traffic management systems, ships, mobile robots, operations of complex nuclear
plants, aircraft, critical infrastructures of smart cities, etc. to compromise the safety of the
system and cause disruptive damage to their operations. Therefore, it is crucial to design
AI-based approaches that proactively respond to potentially disruptive attacks that attempt
to compromise and gain access to autonomous systems and their command components,
for example, by targeting the underlying autonomous decision-making capability of the
systems. Automatically detecting and responding to overwhelming volumes of security
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threats, handling vast amounts of data, and discovering new patterns of unknown attacks
are some of the benefits of AI systems for cybersecurity [148].

Challenges of AI in Cybersecurity. AI can introduce unforeseen legal, ethical, and so-
cietal risks and challenges that, if not effectively addressed, may significantly reduce its
potential. As discussed above, AI and its advanced ML techniques have evolved into an
enabling technology for a wide range of innovative and dynamic domains. AI has both
tactical and strategic potential benefits. However, it is also perceived to have some critical
constraints and limitations in the context of trust and ethical considerations associated
with using AI systems. For example, the authors in [149] addressed that AI itself may
pose a threat to cybersecurity and legal and ethical concerns. They argue that the lack
of interpretability and explainability in AI systems can be leveraged to hide security at-
tacks [149]. Another work in [150] has also demonstrated that AI has both positive and
negative consequences regarding cybersecurity threats. Moreover, in light of the rise of
AI-driven cyberbullying, the authors have also argued that cybersecurity experts should be
allowed to continue doing their job and conduct network testing when human intelligence
is necessary.

7.1. Intrusion Detection

Intrusion detection systems are designed to detect intrusions or security attacks in a
network that unavoidably occur despite precautions [151]. There are various approaches
to intrusion detection systems. Some methods employ a signature-based technique in
which events are detected and compared against a predefined database of signatures of
known security attacks and intrusions [152,153]. Other systems employ anomaly detection
techniques where the systems find potentially harmful patterns in data that do not comply
with expected notions of normal behaviors [154–156]. In modern autonomous technologies,
it is equally important to monitor and identify anomalies, detect illicit and malicious
activities, and take remedial actions to ensure sustained operations of real-time autonomous
decision-making systems, especially in tactical environments. A prototypical distributed
intrusion detection architecture implemented that uses autonomous agents tailored for
tactical environments is proposed in [157]. An AI-based approach for identifying and
detecting intrusions in UAVs is proposed in [158].

7.2. Anti-Autonomy

Anti-autonomy technologies are increasingly gaining popularity and various ap-
proaches have previously been proposed to address this problem. When an autonomous
system’s underlying confidentiality and functionality are compromised, it makes itself
more vulnerable to future security attacks and poses a potential threat to other autonomous
systems. Therefore, it is critically important to proactively detect and identify potential
cyberattacks that aim to target autonomous systems under continually changing condi-
tions. In [159], the authors investigate the security and privacy challenges that need to
be addressed to increase the resilience of cyber-physical systems. An intrusion detection
system for self-driving cars is presented in [160]. The work in [160] addresses that an
autonomous vehicle, if compromised, could also pose a risk to passengers and pedestrians
on the roadway. In addition, their paper discusses how interconnected self-driving car
vulnerabilities go beyond just endangering drivers, passengers, and pedestrians on the
roadway. The authors argue that the coordination of interconnected autonomous vehicles
could potentially be used to launch a wide-scale attack that affects a large-scale vehicular
ad hoc network (VANET) [160].

UAV systems have immense potential to revolutionize research and innovation across
a broad range of next-generation technological applications. Such systems could potentially
be vulnerable to sophisticated attacks aiming to compromise their complex operations
and autonomous decision-making capabilities. These attacks could be employed for both
offensive and defensive cyber operations. Therefore, it is necessary to develop flexible and
proactive strategies that effectively provide a potential defense mechanism against attacks
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that aim to exploit vulnerabilities in safety-critical autonomous systems in real time under
minimal human control.

8. Some Challenges Related to Tactical Autonomy

Tactical autonomy offers a good solution for many defense and military applications
with limited human involvement. ML and AI systems have created unprecedented oppor-
tunities for achieving autonomy for civilian and military applications. However, to develop
long-term, trustworthy, robust, and safe autonomous systems, fundamental challenges
need to be addressed. A practical understanding of the complex techniques and technolo-
gies used in intelligent systems is a critical part of many AI and ML systems that are core
components of tactical autonomy.

Although there are many open research problems to tackle, some of the most long-
standing and significant challenges that need to be addressed to realize the full penitential
of tactical autonomy for defense and other applications include the following.

• Trustworthy AI for tactical autonomy. Developing trusted, robust, and resilient AI
and ML frameworks for critical defense missions requires an understanding of the
theoretical and practical techniques and methodologies related to trusted AI and
mission autonomy, the collaboration between platforms, and human–machine teaming
enabled by addressing the critical technical challenges discussed in Sections 4–6,
respectively. To enhance confidence in AI systems, we need to conduct more research
to address these issues and make AI systems trustworthy.

• Verification of AI-based models. Making sure that AI-based solutions are working as
expected is critically important. However, designing state-of-the-art methods for
verifying AI-based systems is challenging and takes a lot of work.

• Collaboration between platforms. Improving the real-time collaboration between humans
and fully autonomous systems (e.g., pilots and autonomous co-pilots) is challenging.
Hence, developing an effective and efficient collaborative autonomous solution is a
critical challenge that needs to be overcome.

• Joint human–machine teaming. It is very important to deeply understanding how
machines learn from humans, how humans learn from machines, and how machines
and humans work together. How can we design advanced autonomous systems that
collaboratively work with humans in military and defense settings?

• Improving safety. How do we design and deploy an end-to-end approach that integrates
the safety concerns of modern safety-critical autonomous systems?

9. Conclusions

The military and defense industry hopes to utilize the capabilities of AI and ML to
advance and improve its performance in tactical environments. In this paper, we presented
a comprehensive and technical overview of the concepts, techniques, and technologies
underlying tactical autonomy. Additionally, our paper highlights some of the critical and
operational challenges that arise when attempting to practically build fully autonomous
systems for advanced real-world military and defense applications. We, therefore, hope
this paper encourages AI and ML researchers to explore further developing architectures
and methodologies in the domain of tactical autonomy.

It is significantly challenging to design advanced AI and ML models with practical im-
plications for real-world military and defense applications. Investigating this further with
a focus on cutting-edge AI and ML approaches that haven’t been adequately addressed
in previous research works is an interesting direction for future work. Further, demon-
strating a range of practical applications and state-of-the-art approaches for addressing
and gaining insight into some of the long-standing challenges of interest discussed in
this paper is another topic for future research directions in the practical applications of
tactical autonomy.
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