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Abstract: The prevalent convolutional neural network (CNN)-based image denoising methods extract
features of images to restore the clean ground truth, achieving high denoising accuracy. However,
these methods may ignore the underlying distribution of clean images, inducing distortions or
artifacts in denoising results. This paper proposes a new perspective to treat image denoising as a
distribution learning and disentangling task. Since the noisy image distribution can be viewed as a
joint distribution of clean images and noise, the denoised images can be obtained via manipulating
the latent representations to the clean counterpart. This paper also provides a distribution-learning-
based denoising framework. Following this framework, we present an invertible denoising network,
FDN, without any assumptions on either clean or noise distributions, as well as a distribution
disentanglement method. FDN learns the distribution of noisy images, which is different from the
previous CNN-based discriminative mapping. Experimental results demonstrate FDN’s capacity
to remove synthetic additive white Gaussian noise (AWGN) on both category-specific and remote
sensing images. Furthermore, the performance of FDN surpasses that of previously published
methods in real image denoising with fewer parameters and faster speed.

Keywords: image denoising; invertible network; normalizing flow

1. Introduction

Despite decades of research, image denoising [1,2] is still an ongoing low-level image
processing task in computer vision. The long-standing interest in image denoising has
provided roots for a vast array of downstream applications, such as segmentation [3] and
deblurring [4]. Nearly all images need to be denoised before further processing, especially
those obtained in dark environments.

The purpose of image denoising is to reconstruct clean images from corrupted noisy
observations. Traditional denoising methods rely on certain assumptions on noise distri-
butions [5,6] or priors on ground truth clean images [7,8] to build optimization models.
However, these assumptions and priors may differ from the real case, which can compro-
mise the denoising accuracy. Deep learning denoising approaches proposed in recent years
use convolutional neural networks (CNNs) to learn the models from a large number of
noise-free and noisy image pairs and have achieved superior denoising performance [9,10].
These methods employ CNNs to learn the mapping functions between noisy images and
clean ones. However, they usually overemphasize the pixel similarity between the de-
noised image and the clean ground truth while omitting the underlying distribution of
clean images. Thus, although some deep methods can obtain high quantitative results,
over-smoothed regions and artifacts are often brought into the restored images, resulting in
degraded visual results.
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This paper reconsiders image denoising from the perspective of distribution disen-
tanglement. The distribution of noisy images can be treated as a joint distribution of
clean images and noise. Thus, it is intuitive to consider conducting image denoising
via disentangling these two distributions. Following this line of thought, the process of
distribution-learning-based image denoising can be divided into three stages: the first is to
learn the distribution of noisy images by transforming the noisy images into latent repre-
sentations; the second is to disentangle the representation of clean images from the noisy
ones; and the last is to restore clean images from the disentangled clean representation.

There are two challenges for us to overcome: determining which kind of network
is suitable for learning the distributions and restoring images, and how to disentangle
the two distributions. For the first problem, we resort to generative models to learn the
distributions. We require the generative model to generate a denoised image given a
disentangled latent code. The denoised image should follow a clean image distribution and
be visually similar to the corresponding noisy image. Therefore, the candidate generative
model should have a one-to-one mapping between the noisy image space and the latent
space. Further, a subspace of the latent space, i.e., the space of the disentangled latent code
for clean images, can also be one-to-one mapped to the clean image space. A variational
autoencoder (VAE) [11] cannot guarantee the one-to-one mapping between the latent
representations and images. On the other hand, although generative adversarial network
(GAN) can ensure the one-to-one mapping [12], learning two different distributions, i.e.,
the distributions of noisy and clean images, requires two discriminative networks, making
the design sub-optimal. In this paper, we adopt normalizing flows [13,14], an invertible
generative model, to learn the distributions and design the denoising algorithm.

The advantages of normalizing flows are reflected in three aspects. First, their invert-
ibility ensures one-to-one mapping between images and their latent representations [15],
ensuring that the manipulation on the latent representation corresponds to modifying the
original input image. Second, they are capable of transforming complex distributions to
isotropic distributions without losing information [15]. Thus, we can obtain the accurate
noisy distribution and also restore the clean images more precisely (see Figure 1). Last, it
lets the encoder and the decoder share weights, making the model size much smaller and
the training more efficient.

Ground-truth Noisy BM3D [7] DnCNN [9] IRCNN [4] FDN (Ours)

Figure 1. Visual comparison on CUB-200 [16] with σ = 50 AWGN. Our method restores finer
feathers, clearer eyes, and a sharper beak. Zooming in on a high-resolution display will allow better
observation of the differences.

For the second challenge, we take advantage of the characteristics of the latent vari-
ables, which follow a distribution of N(0, I); thus, the dimensions are independent to each
other. We assume that these dimensions can be disentangled into two groups, i.e., some
of the dimensions encode clean images while the others correspond to noise. If we set the
noise dimensions to constants, such as 0, the joint distribution of the clean representations
and new noise codes will be the same as the marginal distribution of the clean images. The
denoised images can be obtained by passing the new latent representations to the reverse
pass of the network.

The contributions of our work are listed below.

• We rethink the image denoising task and present a distribution-learning-based denois-
ing framework.
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• We propose a Flow-Based Image Denoising Neural Network (FDN). Unlike the widely
used feature-learning-based CNNs in this area, FDN learns the distribution of noisy
images instead of low-level features.

• We present a disentanglement method to obtain the distribution of clean ground truth
from the noisy distribution, without making any assumptions on noise or employing
the priors of images.

• We achieve competitive performance in removing synthetic noise from category-
specific images and remote sensing images. For real noise, we also verify our denoising
capacity by achieving a new state-of-the-art result on the real-world SIDD dataset.

2. Related Work
2.1. Recent Trends of Image Denoising

Traditional Methods. Traditional denoising methods usually construct an optimiza-
tion scheme, modeling the distributions of noise or the priors of natural images as penalties
or constraints. The widely used natural image priors include sparsity [17], total varia-
tion [18,19], non-local similarity [20,21], and external statistical prior [22,23]. NLM [20]
computes a weighted average of non-local similar patches to denoise images. The weights
are calculated by the Euclidean distance between pixels. BM3D [7] employs the structure
similarity of patches in a transform domain, achieving excellent accuracy on denoising
additive white Gaussian noise (AWGN).

However, most traditional methods are designed to tackle generic natural images. Very
few works study category-specific image denoising and consider the class-specific priors
while designing algorithms. CSID [24] was the first to adopt external similar clean patches to
facilitate denoising category-specific object images. The authors formulated an optimization
problem using the priors in the transform domain. The objective consists of a Gaussian
fidelity term that incorporates the category-specific information and a low-rank term that
fortifies the similarity between noisy and external similar clean patches. They achieve
superior denoising accuracy in removing noise from category-specific images. Nonetheless,
a common problem that lies in most of these traditional model-driven methods is that they
require noise levels as input. These methods usually implement various hard thresholds to
deal with different noise levels. However, the noise level is usually unavailable, and we
can only perform blind denoising in practice, limiting the application of these methods.

Deep Learning Methods. Deep learning denoising methods learn models from a
large number of clean and noisy image pairs with CNNs, without providing image priors
manually. The rapid progress of these methods has been seen in recent years, promoting
the denoising effect significantly. The notable DnCNN [9] achieves good results on AWGN
removal. After that, RIDNet [1] brings attention to denoising models, boosting the denois-
ing performance further. VDN [25] makes assumptions on the distribution of clean images
and noise, deriving a new form of evidence lower bound observation (ELBO) under the
variational inference framework as the training objective. These CNN-based denoising
methods learn low-level features in the network to restore the details of clean images.

There have also been a few attempts in designing category-specific denoising networks
recently, for example, [26] proposes a class-aware CNN-based denoising method. The
authors use a classifier to classify the noisy image into the supported classes first and
then exploit the pre-trained class-specific denoising models for denoising. For each of
the supported classes, the denoising model is pre-trained on the images from the same
classes of ImageNet [27]. The denoising architecture they proposed is a feature-learning-
based CNN. However, for category-specific images, the feature-learning-based denoising
methods usually enforce the pixels of denoised images to be close to the clean ones but
ignore the underlying distribution of the specific category. Thus, over-smoothed regions
and artifacts are seen in restored images, degrading the visual effects of denoising. As far
as we know, we are the first to conduct image denoising with distribution learning and
disentanglement.
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2.2. Flow-Based Invertible Networks

We employ normalizing flows based invertible neural networks to learn the distribu-
tions. Normalizing flows [28] are models for computing complex distributions accurately.
By applying a sequence of invertible transformations to transform a simple prior distri-
bution into a complex distribution, the complex distribution’s exact log-likelihood can
be computed.

The key design concept of normalizing flows is invertibility, ensuring that the mapping
between an input and its output is one-to-one. Therefore, to estimate the probability density
of image y, we can alternatively achieve the same purpose by measuring the probability
density of the counterpart latent variable z ∼ N (0, I). Estimating the probability density of
y through using the probabilities of z requires taking the variations of metric spaces into
consideration. Consequently, we have

p(y) = p(z)
∣∣det(

∂ f−1(z)
∂z

)
∣∣ = p(z)

∣∣det(
∂ f (z)

∂z
)
∣∣−1, (1)

where z = f (y) and y = f−1(z); f is the invertible function learned by normalizing flows.
To reduce the complexity of computing the determinants of Jacobian matrices, special

designs are proposed in NICE [28] and Real NVP [13] to make each flow module have a
triangular Jacobian matrix. Glow [14] extends the channel permutation methods in these
two models and proposes invertible 1× 1 convolutional layers. These models are usually
used in image generation, demonstrating superior generation quality of natural images.

So far, few studies have applied invertible networks to image denoising. Noise
Flow [29] employs Glow [14] to learn the distribution of real-world noise and generate
real noisy images for data augmentation. Extra information, such as raw images, ISO, and
camera-specific parameters, is required during noisy image generation. Different from
these studies, we are the first to exploit normalizing flows to learn the distribution of noisy
images and disentangle the clean representations to restore images.

3. Our Method

In this section, we explain the design concept of FDN. Then, we introduce the detailed
components of the network architecture. The objective function, as well as some training
details, are also presented.

3.1. Concept of Design

We rethink the image denoising task from the perspective of distribution learning and
disentanglement. Suppose the noisy image is y and the corresponding clean ground truth
is x. The noise n = y− x. We have p(y) = p(x, n) = p(x)p(n|x)—that is, the distribution
of the noisy images p(y) is a joint distribution of clean images and noise. The clean repre-
sentation can be achieved if we can disentangle the clean and noise representations from
p(y). Then, the clean images can be restored with the disentangled clean representation.

A framework of this scheme is presented in Figure 2, which contains three steps:
(i) learn the distribution of noisy images by encoding y to a noisy latent representation
z, (ii) disentangle the clean representation zC from z, and (iii) restore the clean image by
decoding zC to the clean image space. To ensure the denoising effect, the mappings between
y and z, zC and x should be one-to-one.
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Noisy Images Clean Images

noisy latent space clean latent space

𝑧 𝑧! 	

one-to-one mapping

𝑦 𝑥

(1) encode
(3) decode

(2) disentanglement

Figure 2. Framework of distribution learning and disentanglement-based image denoising.

An invertible normalizing flow-based network is employed to learn the distribution of
noisy images p(y), transforming y to latent variables z following a simple prior distribution
N (0, I). Thus,

p(y) = p(x)p(n|x) = p(z)
∣∣det(

∂ f (z)
∂z

)
∣∣−1, (2)

where f (·) is the model learned by the network. The dimensions of z are independent of
each other.

We assume that z can be disentangled; some of the dimensions of z encode the
distribution of clean images (denoted as zC) and the remaining embed noise (denoted as
zN). The clean image x can be restored through the following transformation:

p(x) = p(zC)
∣∣det(

∂ f (z)
∂zC

)
∣∣−1. (3)

However, how to obtain zC with z is not so obvious. We propose a way of disentangle-
ment by setting zN = 0—that is,

ẑ = m� z, (4)

where m is a mask that is 1 in the dimensions for clean variables and 0 in those for noise. ẑ is
a new latent code that only contains the clean representations. � denotes the element-wise
product. Thus, we have p(zN = 0) = 1, and the distribution of ẑ becomes

p(ẑ) = p(zC)p(zN) = p(zC). (5)

Then, the clean image can be obtained via Equation (3).

3.2. Network Architecture

The details of our FDN architecture are presented in this section. FDN is composed of
several invertible DownScale Flow Blocks, as shown in Figure 3. Each block consists of a
Squeeze layer to downscale the latent representations followed by several Step-Of-Flow
Blocks to perform distribution transformation. The details of each layer are described below.
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Figure 3. Our FDN Network Architecture. FDN consists of several invertible DownScale Flow Blocks.
Module DB is the Dense Block proposed in [30]. The forward pass encodes the corrupted image
to latent variables z, which follow a Gaussian distribution, i.e., z = (zN , zC) ∼ N (0, I). The latent
representations of noise zN are set to 0, combined with the clean latent variables zC as a new latent
representation ẑ. The backward pass decodes ẑ to the denoised image.

Squeeze. The Squeeze layers take every other element of the intermediate latent
variables, resulting in new downscaled latent representations with quadruple channels, as
illustrated in Figure 4.

Squeeze
4 Channels

Figure 4. The Squeeze operation downscales latent representations according to a checkerboard
pattern.

Actnorm. The Actnorm layers apply the affine transformation on latent variables, as
illustrated in Equation (7).

hi+1 = s1 � hi + b1, (6)

where hi and hi+1 are the intermediate latent representations during transformation. The
output of the forward pass z can be treated as the final layer of the latent representations. s1
and b1 are the scale and translation parameters, respectively. � is the Hadamard product
of tensors. The reverse operation of the Actnorm layer is

hi = (hi+1 − b1)/s1, (7)

s1 and b1 are initialized to make each channel of the representations have zero mean
and unit variance, such as the normalization operation. However, during training, this
operation is different from the widely used normalization methods. Specifically, s1 and
b1 are updated through back-propagation, without any further constraints on the mean
and variance of the latent variables. Employing the Actnorm layers is able to improve the
training stability and performance.

Invertible 1× 1 Convolutional Layers. Different from ordinary convolutional layers,
we use the invertible 1× 1 convolutional layers, which are designed for normalizing flows
to support invertibility. The operation in these layers can be represented as

hi+1 = Whi, (8)

where W is a square matrix that is initialized randomly. Its reverse function is

hi = W−1hi+1. (9)
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These layers are used to permute different channels of latent representations.
Affine Coupling Layers. The Affine Coupling layers capture the correlations among

spatial dimensions [13,28]. The forward operations include

ha
i , hb

i = Split(hi),

ha
i+1 = ha

i + g1(h
b
i ),

hb
i+1 = g2(h

a
i+1)� hb

i + g3(h
a
i+1),

hi+1 = Concat(ha
i+1, hb

i+1),

where Split(·) and Concat(·) operate along channel dimensions. Split(·) splits hi into two
tensors ha

i and hb
i . Concat(·) concatenates two tensors ha

i+1, hb
i+1 channel-wise to obtain

hi+1. gi(·) (i = 1, 2, 3) is the neural network. The reverse operations are

ha
i+1, hb

i+1 = Split(hi+1),

hb
i = (hb

i+1 − g3(h
a
i+1))/g2(h

a
i+1),

ha
i = ha

i+1 − g1(h
b
i ),

hi = Concat(ha
i , hb

i ).

The operations in the second and third row turn + into − and � into /. gi(·) (i = 1,
2, 3) can be any neural network. Following [31,32], we employ Dense Block (DB) in our
network as gi(·).

3.3. Objective Function

Our objective function consists of two components: the distribution learning loss to
encode the input noisy image y into latent code z, and the reconstruction loss to restore
the corresponding clean image x with clean code zC. The details of these two losses are
as below.

Distribution Learning Loss.

Ldis = − log p(y) = −
(

log pz(z) +
L

∑
i=1

log(det | ∂ fi
∂hi
|)
)

, (10)

where L is the number of invertible layers in FDN and fi is the function learned by each
layer. pz(z) ∼ N (0, I) and z = (zC, zN). To reconstruct the clean image, we set zN = 0 and
achieve a new latent representation ẑ = (zC, 0), which lies in a subspace of z.

Reconstruction Loss. ẑ is passed through the reverse network to restore the clean
ground truth.

Lrec = || f−1(ẑ)− x||1 . (11)

Total Loss. The total objective function we use during training is

L = λ1Ldis + λ2Lrec , (12)

where λ1 and λ2 are the weights for the two loss components.

3.4. Data Preprocessing

Since FDN is the first distribution-learning-based denoising network, we explore
different data preprocessing techniques to demonstrate how to make the best use of it.

Random vs. Center Crop and resize. The widely used training strategy in feature-
learning-based CNN denoising networks is to randomly crop patches from the training
dataset to learn features. However, it is not obvious whether the random crop strategy is
also superior in distribution-learning-based networks. Take face image denoising as an
example; if we center crop the face region and resize it into an appropriate size, we will
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obtain a downscaled face image, following a similar distribution as the face image test set.
Intuitively, the center crop with the resizing method will facilitate the network to learn the
distribution better and achieve superior denoising results.

Thus, we compare training with random crop and center crop with resizing, illustrating
the curves of the validation results in Figure 5a. Contrary to our intuition, cropping training
patches randomly outperforms the center crop with resizing consistently and significantly.
Therefore, we apply random crops while training the FDN.

(a) Crop Method (b) Data Augmentation
Figure 5. Training with different processing strategies. (a) Illustrates the difference between ran-
dom and center crop accompanied with resizing. (b) The validation curves using different data
augmentation methods. All the models are trained on CelebA [33] with σ = 50.

Data Augmentation vs. No Data Augmentation. Feature-learning-based networks
usually employ horizontal and vertical flip and rotation with 90, 180, and 270 degrees for
data augmentation. However, these methods will bring in unrealistic patches, compromis-
ing the learning of distributions. For example, if we rotate a patch of a face image, we may
obtain patches with the eyes under the mouth or on the mouth’s left side, which is impossi-
ble in real face images. Although data augmentation can lead to better generalizability for
discriminative models, it may bring noise when learning the distributions.

We train three models for comparison: one with flip and rotation as data augmentation,
one with only flip as data augmentation, and the other is trained without any augmentation.
The validation results are shown in Figure 5b. The results verify our concern that inap-
propriate data augmentation such as rotation introduces noise to the distribution model,
resulting in the lower denoising accuracy shown by the blue curve. Training with only
flip as data augmentation achieves almost the same results as without data augmentation;
however, the latter is more stable during training. The potential reason might be that the
horizontal flip also generates realistic images for face images, while the vertical flip creates
impossible face images, making the training unstable. Thus, to avoid unrealistic samples,
we train our distribution-learning-based networks without data augmentation when the
training set is large enough to learn the distribution. If the training set is small, we only
conduct data augmentation that will not generate unrealistic patches.

4. Experiment

We perform thorough experiments to demonstrate the effectiveness of our method. We
first apply FDN to denoise category-specific images. Since category-specific images usually
have similar patterns in all the images, such as similar facial contours and features in human
faces, their distribution is easier to learn than random nature images. The experiment is
then extended to denoising more difficult remote sensing images, which contain diverse
terrain patterns, such as mountains or forests, following intricate distributions. Finally, we
investigate our capacity to remove noise, which follows complicated distribution in the
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real noise dataset. Further details are provided about the datasets, training strategies, and
qualitative and quantitative results.

4.1. Experimental Settings
4.1.1. Training Details

FDN with two DownScale Flow blocks and eight SoF blocks in each Flow block is
exploited in our experiment, where ADAM [34] is applied as an optimizer. The learning
rate is initialized as 2× 10−4 and halved after every 50K iterations. To evaluate the methods,
we employ Peak Signal-to-Noise Ratio (PSNR) as the evaluation metric.

4.1.2. Datasets

Next, we provide information about the category-specific, remote sensing, and real-
world datasets.

Category-Specific Datasets: We investigate the capacity of FDN in removing AWGN
on three category-specific datasets: faces, flowers, and birds.

• CelebA [33] is a large human face dataset containing 202,599 face images. We use
the 162,770 training images for training and 19,867 validation images for testing. The
training images are cropped into 64× 64 patches randomly as the network’s input at
the training stage. Since the training set is large enough, we do not apply any data
augmentation during training.

• The Flower Dataset [35] contains 102 categories of flowers, including 1020 training
images, 1020 validation images, and 6149 test images. To better learn the distribution
of flowers, we change the dataset’s partition and use the 6149 images as the training
set and the remaining 2040 images as the test set. The training images are randomly
cropped into patches with a size of 128× 128. Flipping and rotation are employed as
data augmentation.

• The CUB-200 Dataset [16] includes 11,788 bird images, covering 200 categories of birds.
We use 5989 images as the training set and 5790 images as the test set. The training
images are cropped into 128× 128 patches with random flipping as data augmentation
during training.

Remote Sensing Datasets: We attempt to denoise two remote sensing datasets (RICE1
and RICE2 [36]) with AWGN added to explore our capability when the distribution of
ground truth images becomes complex. The datasets contain 500 and 450 pairs of images,
respectively, each with a size of 512× 512. We randomly crop patches of size 64× 64
from the images for training and add AWGN with σ = 30, 50, and 70 to obtain noise-free
and noisy pairs, respectively. Random flipping, as well as rotation, are utilized for data
augmentation.

Real Noisy Datasets: Finally, we verify FDN’s effectiveness in removing real noise,
which follows a complex distribution. Real image noise can result from photon shot noise,
fixed pattern noise, dark current, readout noise, quantization noise, etc. during the imaging
process [37]. We conduct real noise removal on the dataset SIDD [38], which is taken by
five smartphone cameras with small apertures and sensor sizes. The medium SIDD dataset
contains 320 clean and noisy pairs. Patches with a size of 144× 144 are randomly cropped
for training. Flipping and rotation are adopted for augmentation.

4.2. Category-Specific Image Denoising

Quantitative Results. In Table 1, we report numeric values for the three category-
specific datasets with added AWGN with the levels of σ = 15, 25, and 50. Compared with
other competitive methods in synthetic noise removal, FDN achieves the highest PSNR on
all the datasets and noise levels.
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Table 1. Quantitative comparison of removing synthetic noise on three category-specific datasets. Our
FDN outperforms the other competitive methods on all of the three datasets for various noise levels.

Dataset σ BM3D [7] EPLL [39] IRCNN [4] REDNet [40] DnCNN [9] FFDNet [10] FDN (Ours)

15 35.46 33.29 35.20 35.23 35.04 35.14 35.74
25 32.80 30.81 32.62 32.68 32.63 32.40 32.95
50 29.46 27.65 29.24 29.56 29.57 29.44 30.29CelebA [33]

Blind – – 31.92 33.16 32.17 32.20 33.52

15 37.20 35.41 36.83 36.93 36.73 36.49 37.38
25 34.73 32.92 34.47 34.75 34.17 33.89 34.82
50 31.38 29.58 30.8 31.34 30.38 30.74 31.71Flower [35]

Blind – – 34.91 34.57 34.55 34.61 35.18

15 35.08 33.31 35.14 35.16 35.21 34.86 35.30
25 32.59 30.83 32.71 32.80 32.45 32.33 32.94
50 29.32 27.61 29.28 29.72 28.87 28.61 29.79CUB-200 [16]

Blind – – 32.49 33.18 32.89 33.07 33.20

We also employ the same FDN for blind denoising with noise levels between [0, 55],
as shown in Table 1. The distribution of blind noise is a Gaussian Mixture Model, which is
much more complicated than the Gaussian distribution with a certain noise level. Although
traditional methods such as BM3D [7] and EPLL [39] are good at removing Gaussian noise,
their capacity in blind denoising is unavailable due to the requirement of the noise level
as input. Comparing with other feature-learning-based CNN methods, FDN outperforms
others to a large extent, exhibiting its superiority in category-specific image denoising.

Qualitative Results. The visual results are shown in Figures 6–8. For CelebA, we
observe that, although the other competitive methods can restore the facial contour, they
lose many detailed facial features. Thus, the denoised images of these methods are blurred
with artifacts. In contrast, our denoising results are much clearer and closer to the ground
truth images. For the Flower and CUB-200 datasets, the foreground and background are
more diverse and complicated than CelebA. Our results are clean with sharp edges (in
close-up versions), while other methods have artifacts near and at the edges. This illustrates
that FDN can handle category-specific image denoising very well.

GT Noisy BM3D DnCNN EPLL IRCNN FDN (Ours)
Figure 6. Image denoising results of FDN on CelebA dataset with σ = 50 against competitive
methods. Our network produces results close to the ground-truth without any kind of deformation
or artifact. The effects are best viewed zoomed-in.



Sensors 2022, 22, 9844 11 of 16

GT Noisy BM3D DnCNN EPLL IRCNN FDN (Ours)
Figure 7. Comparison of denoising results on CUB-200 dataset having σ = 50. Our method removes
artifacts and noise, providing clean edges and textures.

GT Noisy BM3D DnCNN EPLL IRCNN FDN (Ours)
Figure 8. Visual comparison on the Flower dataset for σ = 50 against state-of-the-art methods.

4.3. Remote Sensing Image Denoising

Quantitative Results. The results of denoising the RICE1 and RICE2 [36] datasets
with σ = 30, 50, and 70 are reported in Table 2. FDN improves by 1.13 dB–1.74 dB on
RICE1 with different noise levels compared with the highest results from other competitive
methods. On RICE2, FDN outperforms other methods when the noise levels are large,
i.e., achieving increases of 0.97 dB and 1.55 dB for σ = 50 and 70, respectively. These results
demonstrate that FDN is also capable of restoring images following complex distributions.
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Table 2. Performance comparison on the two remote sensing datasets.

Dataset σ EPLL [39] MemNet [41] IRCNN [4] REDNet [40] DnCNN [9] FFDNet [10] FDN (Ours)

30 31.95 31.82 31.12 29.98 30.69 22.68 33.08
50 29.65 27.71 27.50 28.82 26.99 24.17 31.14RICE1 [36]
70 28.29 27.12 26.53 26.56 25.04 23.51 30.03

30 36.05 36.49 35.83 33.12 34.68 34.02 35.93
50 33.22 33.62 33.74 30.40 29.57 30.26 34.71RICE2 [36]
70 31.63 31.73 32.43 27.55 30.81 28.51 33.98

Qualitative Results. The visual results are illustrated in Figure 9 (Although in RGB
images, blacker pixels represent smaller values, we change every pixel in the right regions
by using 255 minus the value; thus, the whiter regions are smaller.). The remote sensing
datasets are mainly composed of images with two types of regions: the texture regions
such as mountains, and the smooth regions, such as deserts. An example of the smooth
region from RICE1 with σ = 70 is taken. Our FDN outperforms other methods significantly
from the right regions of Figure 9b–f. Thus, our distribution learning and disentanglement
based denoising method, i.e., FDN, has proven to be effective not only for category-specific
data but also for images following more complex distributions.

(a) Noisy (b) DnCNN (c) EPLL (d) IRCNN (e) MemNet (f) FDN (Ours)
Figure 9. Visual results on RICE1 with σ = 70. For (a), the left part is the clean image and the right part
is the noise. For (b–f), the left part is the denoised image and the right region reflects the difference
between the denoised and GT images. Whiter pixels represent better denoising performance. The
denoised image restored by FDN is closer to the ground truth.

4.4. Real Image Denoising

Quantitative Results. The performance comparison on the test set of the real noise
dataset SIDD [38] is listed in Table 3. We achieve a new state-of-the-art denoising accuracy
comparing with other methods. In addition, our model size (4.38 M) is much smaller than
the competitive AINDNet [42] (13.76 M) and VDN [25] (7.81 M), illustrating that FDN
is suitable to be deployed on small edge devices. We also report the inference time (in
GigaFlops) of one 256× 256 image for each method. FDN is much faster than VDN [25].

Table 3. Quantitative comparison on the real noisy SIDD dataset trained on SIDD medium dataset.

Method DnCNN [9] TNRD [43] BM3D [7] CBDNet [44] GradNet [2] AINDNet [42] VDN [25] FDN (Ours)

PSNR (dB) 23.66 24.73 25.65 33.28 38.34 39.08 39.26 39.31
SSIM 0.583 0.643 0.685 0.868 0.953 0.955 0.955 0.955

Param (M) 0.56 – – 4.34 1.60 13.76 7.81 4.38
Inference time

(GFlops) 73.32 – – 80.76 213.06 – 99.00 76.80

Qualitative Results. To further present the effectiveness of FDN against other state-of-
the-art methods, we show the visual results of denoised images in Figure 10. FDN restores
accurate textures and well-shaped edges, while other methods blur details and introduce
artifacts. This indicates that FDN is also superior in removing real-world noise.
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Noisy CBDNet GradNet VDN FDN (Ours)
Figure 10. The visual comparison on the SIDD dataset against state-of-the-art methods. In the first
row, FDN reconstructs the white dot patterns clearly in a dark environment without smoothing and
artifacts. In the second row, FDN preserves more crisp edges.

4.5. Ablation Study and Discussion

Number of Flow and SoF Blocks. We study the denoising effects of employing
different numbers of Flow and SoF blocks in FDN. We train models on CelebA [33] with
σ = 50 AWGN added. The results of the 50Kth iteration on the validation set are reported
in Table 4. In general, given the same number of Flow blocks, the more SoF blocks in each
of the Flow blocks, the higher the denoising accuracy. However, the improvement is not
significant when we have three Flow blocks. On the other hand, with the same number of
SoF blocks in each Flow block, increasing Flow block numbers from one to two improves
the performance. Nevertheless, further increments result in similar accuracy when SoF = 4
and even slightly decrease when SoF = 8. Thus, we adopt two Flow blocks with eight SoF
blocks contained in our experiment.

Table 4. Comparisons on the denoising accuracy of different numbers of DownScale Blocks and
Invertible Blocks.

PSNR
SoF Blocks

Num = 4 Num = 8

Flow Blocks

num = 1 29.59 29.86

num = 2 29.87 30.00

num = 3 29.89 29.90

The split of zC and zN . We also study the effects of different dimension numbers of
zC (i.e., dim(zC)). Models are trained with dim(zC) = 1/8, 1/4, 1/2, 3/4, and 7/8 dim(z)
separately, and the validation results of the 50Kth iteration are reported in Table 5. In
general, the denoising accuracy improves with the increase of the proportion of dim(zC).
On the other hand, the results are almost the same when dim(zC) = 3/4 and 7/8 dim(z),
illustrating that extending the dimensions of zC will not boost the denoising performance
further. Thus, we use dim(zC) = 3/4 dim(z) in our experiment.

Table 5. Comparisons on different proportions of the dimensions of zC in z.

dim(zC) 1/8 1/4 1/2 3/4 7/8

PSNR 29.81 30.00 30.00 30.19 30.18
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5. Conclusions

The widely used image denoising CNNs are discriminative models, learning the map-
ping between noisy images and their clean counterparts via learning features of images.
However, these methods may overlook the underlying distribution of the clean ground
truth, resulting in downgraded visual results with blurry regions or artifacts. This paper
provides a new perspective to understand image denoising as a distribution disentan-
gling task. Since the distribution of noisy images can be treated as a joint distribution of
clean images and noise, the denoised images can be obtained via the clean images’ latent
representations. A distribution-learning-based denoising framework is proposed in this
paper. We also present a novel denoising network, FDN, based on normalizing flows
without adding any assumptions on clean images and noise distributions. FDN learns
the distribution instead of features from noisy images, which is different from previous
feature-learning-based networks. A distribution disentanglement method for denoising is
introduced as well. Experimental results verify the effectiveness of FDN on both category-
specific and remote sensing images denoising with synthetic AWGN. Moreover, FDN shows
its superiority in real image denoising with fewer parameters and a lower running time.
In conclusion, this paper presents a new potential direction to optimize image denoising
methods in the future.
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