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Abstract: Healthcare systems in recent times have witnessed timely diagnoses with a high level
of accuracy. Internet of Medical Things (IoMT)-enabled deep learning (DL) models have been
used to support medical diagnostics in real time, thus resolving the issue of late-stage diagnosis of
various diseases and increasing performance accuracy. The current approach for the diagnosis of
leukemia uses traditional procedures, and in most cases, fails in the initial period. Hence, several
patients suffering from cancer have died prematurely due to the late discovery of cancerous cells in
blood tissue. Therefore, this study proposes an IoMT-enabled convolutional neural network (CNN)
model to detect malignant and benign cancer cells in the patient’s blood tissue. In particular, the
hyper-parameter optimization through radial basis function and dynamic coordinate search (HORD)
optimization algorithm was used to search for optimal values of CNN hyper-parameters. Utilizing
the HORD algorithm significantly increased the effectiveness of finding the best solution for the
CNN model by searching multidimensional hyper-parameters. This implies that the HORD method
successfully found the values of hyper-parameters for precise leukemia features. Additionally, the
HORD method increased the performance of the model by optimizing and searching for the best set of
hyper-parameters for the CNN model. Leukemia datasets were used to evaluate the performance of
the proposed model using standard performance indicators. The proposed model revealed significant
classification accuracy compared to other state-of-the-art models.

Keywords: Internet of Medical of Things; convolutional neural network; deep learning; machine
learning; diagnosis; leukemia dataset; prostate cancer dataset; hyper-parameters

1. Introduction

Due to internal and structural changes in organs, both with and without cause, the
medical industry is currently dealing with several issues [1]. Healthcare specialists deter-
mine the cause of alterations in tissue, organs, and functionalities of the patient at the initial
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stage [2]. Using standard diagnosis procedures for several diseases, including high blood
pressure and temperature changes, various types of cancer, heart attack, genetic disease,
chronic disease, and hereditary disease, among others, are becoming difficult to diagnose
and predict [3]. Although some sicknesses are difficult to predict early due to a lack of
symptoms, it is still possible to track slight alterations in a person’s body [4,5]. The internal
alterations of the human body must then be continuously observed to detect sickness in
the early stages. The Internet of Medical Things (IoMT) is a network of devices used to
gather data by attaching small devices to the bodies of patients to obtain information [6–8].
According to research carried out in 2017, there are now 8.4 billion IoT devices in use, and
by 2020, there will be 30 billion [9,10]. IoMT devices have been successfully used in the
medical industry to record the patient’s activity because of their effectiveness in capturing
patient physiological signs [11]. An IoMT healthcare device is a tiny chip inserted into
a watch, clothing, or similar item that is attached to a transmission device and gathers
data based on the sensor [12]. In this study, IoMT devices were been used to gather data
on cancer, including changes in breast, skin, lung, and dental tissues, along with other
abnormalities [13]. Due to issues that arise from the illness, the worst ailments increase
the incidence and mortality of cancer [14]. Wearable medical IoT devices efficiently track
individual changes in the human body without causing rashes or allergies [15].

For instance, the wearable iTbra IoT gadget caught 50% of tissues linked to breast
cancer that were previously used to forecast the disease and also predicted 17.3% of
dense tissue without failing [16]. By using machine learning (ML) algorithms, 70 biopsies
have been identified from the generated iTbra IoT data [17]. Dental tissue changes are
captured by a small sensor chip in addition to the ITbra IoT device and can forecast
cancer based on the patient’s everyday routines, habits, oral health, cavities, and other
data [18]. Additionally, a skin-implantable, non-invasive, skin cancer diagnosis device
that was created utilizing a field-programmable gate array application process [19] can
capture rashes, skin tissue alterations, and skin changes, and it uses machine learning
approaches to potentially diagnose skin cancer [20,21]. Figure 1 illustrates a few IoMT
medical interventions in light of the explanation above. The mortality rate around the
world is significantly impacted by various cancers, which are all lethal diseases.
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Figure 1. IoMT-based interventions in a smart healthcare system.

1.1. Motivation

The abnormal proliferation of cancerous cells in the patient’s body causes cancer
to spread quickly. Early cancer identification can enhance patient overall survival and
medical interventions. For the accurate diagnosis and treatment of cancer, several screen-
ing techniques using computer-aided diagnosis and prediction techniques have been
proposed. The DL-based model is used to extract features from datasets related to cancer,
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since DL approaches can extract features faster and more correctly than other methods
currently in use. DL-based models effectively support currently used techniques, such
as biopsy and mammography screening, when assessing and identifying breast cancer.
In this study, a cloud-based methodology used for autonomous breast cancer stage
diagnosis enabled by the Internet of Medical Things (IoMT) is proposed. An ML method
can be implemented to assess IoMT medical data and anticipate pathological effects on
the human body due to the difficulty of making decisions for a certain disease [22,23].
The standard ML-based method can be used to properly evaluate the IoMT-based cap-
tured features. However, it is challenging to accurately predict anomalous patterns, and
including attributes adds complexity [24].

Therefore, this study introduces the convolutional neural network (CNN) with opti-
mized features using hyper-parameter optimization for the diagnosis and prediction of
cancer and support of disease-related psychological choices. IoMT-based data analysis
includes examining the features of the collected data using particle swarm optimization
(PSO) feature selection, which uses linked data to choose the optimum features both locally
and globally. The dimension of the feature set is efficiently reduced through this PSO
feature selection method. Intellectual aberrant patterns are categorized from the chosen
features; therefore, the offered strategies efficiently handle disease-related decisions by
utilizing the aforementioned described classifiers.

The main intention of this research work was to create a diagnostic model based on
IoMT that can properly diagnose patients with cancer and healthy individuals. To classify
patients with malignant and benign cancer, an optimized hyper-parameter CNN model
was applied. The PSO approach was used to select features that improved the model’s
performance. The PSO’s global search capability, resistance to control parameters, and
computational effectiveness made it an appropriate choice for this study. By overcoming
some feature selection biases to distinguish between the two kinds of cancer cells, benign
and malignant, the proposed method varies from other studies. PSO was used to select the
appropriate features in this process. The classification was performed using collected data
from patients using IoMT-based sensors and devices. The IoMT-based diagnostic system
based on the DL-based model was proposed to improve the classification accuracy of the
IoMT-based platform. According to the literature review, current research has focused on
hyper-parameter optimization rather than utilizing classification classifiers alone [24].

1.2. Contribution

The proposed model was developed using Python programming language with the
collected information. One of the top programming languages for AI, ML, and DL-based
models is Python. High-level data structures, dynamic typing, dynamic binding, and a
host of other features make it ideal for developing sophisticated applications. Its simplicity,
scalability, and advanced security features make it the most suitable programming lan-
guage for this study, in addition to the presence of a comprehensive library. Subsequently,
the effectiveness of the proposed model was evaluated using precision, recall accuracy,
F-measure, and mean absolute error rate performance measures. Compared to current
approaches, this study’s proposed strategies and approaches are more efficient, since they
enhance and optimize the selection of relevant parameters that help the DL model diagnose
cancer in its early stages.

The following achievements and contributions are made by this study:

• the utilization of PSO for feature selection to be able to remove irrelevant parameters
from the datasets used.

• a brand new framework for hyper-parameter optimization of the CNN model to
produce the best classification outcomes.

• the proposed model is simple to implement and can be used to accurately diagnose
cancer in the IoMT-based healthcare environment.

• an experimental comparison of the proposed model with state-of-the-art classifiers
that have been trained and evaluated using the same dataset.
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1.3. Organization

The remaining paper is organized as follows: Section 2 presents the related work
on cancer prediction. Section 3 presents the proposed IoMT-based framework model for
leukemia diagnostics and classification; the hyper-parameter optimization for the CNN
model is explained in detail, as is the CNN model and the PSO feature selection algorithm,
along with the performance evaluation used for the testing and comparison of the proposed
model. Section 4 presents the results analysis of the proposed model with comparison of the
proposed model to other state-of-the-art classifiers using the same dataset for experimental
analysis. Section 5 discusses the key findings and implications of the results. Finally,
Section 6 presents the conclusion with recommendations for future research.

2. Related Work

IoMT is one of the networks that is presently advancing the quickest and is responsible
for acquiring and using sensors in a medical setting to communicate enormous amounts of
data [25]. In the healthcare field, IoT, also known as IoMT or medical IoT, is regarded as an
expert application [26,27]. The term “IoMT” describes a networked architecture of medical
software, hardware, platforms, processes, protocols, and communications. Using clever
portable devices, sensor nodes on the patient’s body collect data to assess the patient’s
physical characteristics [28]. IoMT enables secure internet connections for remote and
wireless devices, while the application of AI algorithms provides speedy and flexible
analysis and diagnosis of medical data. IoT devices manage a variety of unclear variables
when transporting data via the cloud, including network architecture, energy transmission,
and processing power [29]. Patients and caregivers alike have satisfactorily acclimated to
remote monitoring of patients, and diseases can be detected and effectively treated using
telehealth services. The shift to Industry 4.0 in healthcare is made possible by all of these
applications and platforms [30].

The DL-based model is an ML algorithm endeavor that can be applied to automat-
ically train and select models using datasets that include features of various cancer [31].
Many studies have made use of leukemia [32–34], prostate cancer [35–37], and other non-
cancerous datasets for the prediction and classification of patients living with cancer, and
ML-based models have been used for the diagnosis, prediction, and classification of these
diseases, including Naïve Bayes (NB), logistic regression (LR), decision tree (DT), random
forest (RF), and support vector machine (SVM) classifiers, among others. Various feature
selection techniques have been used to improve the prediction accuracy of several clas-
sifiers through the application of best features during classification, such as bio-inspired
algorithms, embedding, filter, and wrapper models [38].

The suggested CNN intervention for breast cancer classification (CNNI-BCC) model
has helped medical professionals detect breast cancer, according to a study conducted by
authors in ref. [39]. The suggested method categorizes different forms of breast cancer
using supervised deep-learning neural networks. Data from 221 actual patients showed
90.50% accuracy in the results. Without any background experience, this model intelli-
gently classified and detected breast cancer tumors, demonstrating an improvement over
earlier techniques. Examination of the model showed that it was capable of analyzing the
circumstances of impacted patients during the detection procedure.

According to the authors in ref. [40], CAD is diagnosed by addressing a variety of
tissue irregularities. To automatically detect breast cancer, the researchers developed a
CAD model based on a deep belief network (DBN) and divided breast regions into those
that were healthy, benign, and cancerous. In light of the relevant fields of interest, two
methods were introduced, with the initial approach designed for a small, predicted target.
When the entire bulk was being targeted, the second strategy was used. The suggested
model was trained and tested using a total of 347 images. The accuracy of the proposed
CAD model for the two methods was 92.86% and 90.84%, respectively. When compared to
other CAD systems currently in use, the results demonstrated increased efficiency.
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ML research by the authors in ref. [41] has been shown to be quite useful in the field of
healthcare. Handling the large data influx is complicated, and efficient management tools
are needed. Deep learning techniques need a lot of data, which can be used in a variety
of ways to achieve reliable results, and are crucial for applications in medicine. Medical
datasets have various problems, including insufficient data, little sampling, inefficiencies in
sampling, and challenges with large-scale applications. Ahmed et al.’s research utilized sev-
eral learning approaches, a sizable dataset of medical images, and transfer learning, which
were developed using a small dataset. The study’s classification of breast cancer, division
of malignant regions, and pattern extraction from mammograms served as its foundation.
For the suggested model, mammography images were subjected to preprocessing, such as
noise removal, and feature extraction removed superfluous data items. The dataset from
breast ultrasounds was classified and segmented using CAD. Using a pre-trained classifier
and the transfer learning approach, image classification was carried out, after which each
image was classified as either malignant or not. Finally, the tumor region in the afflicted
photos was located using the R-CNN technique.

The existing research has some significant flaws, including poor classification pinpoint
accuracy for advanced-level cancer and disregard for binary classes. More effective network
models are still required for precise cancer region localization to aid in the early identifi-
cation of various cancer [35–39]. To create an effective classifier for cancer classification,
increasingly advanced cutting-edge networks and other CNN pre-trained models should
be investigated [41–53]. The comparison of numerous hyper-parameter tuning techniques
makes this study significant, and most crucially, the diagnosis of cancer is achieved, which
is a classification problem. Numerous research models have addressed the leukemia clas-
sification issue using ML or DL techniques [38–41]. However, to our knowledge, none of
these models have employed algorithms for hyper-parameter optimization to identify the
best hyper-parameters, which result in the DL algorithm utilized in this study having the
best classification performance. Nevertheless, depending on the classification issue, the
optimized set of hyper-parameters is not universal.

3. Materials and Methods

Figure 2 displays the proposed framework for the IoMT-based cancer diagnostics
architectural design using the proposed hyper-parameter-optimized CNN classifier.
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3.1. Pre-Processing

The incoming data was first organized to create a dataset and analytical format. The
gathered data can include values that are incorrect or missing, and additional details were
whittled down via the normalization procedure to effectively remove noise from the dataset.
An algorithm for numerical scaling normalization was used to process the collected data,
which effectively deleted the data from the dataset. This technique analyzed any quantity
of data in the datasets (data in small, medium, and big volumes) and effectively scaled the
dataset from 0 to 1. The normalization procedure proceeded as follows (1):

ND =
(
|X| −

(
10n−1) × (|F|)

)
10n−1 (1)

In Equation (1), ND is expressed as data that has noise eliminated and has been scaled
to a certain input value. Input value X is indicated, n is the number of integers in the specific
input X, and the element’s first digit, F, is used to symbolize it. For every integer value
found in the captured IoMT-based cancer data, this technique was continually performed.

3.2. Feature Selection Using Particle Swarm Optimization

The use of feature selection is crucial since it can increase the classification accuracy,
accelerate prediction, and decrease overfitting [43,44]. PSO-selected feature sets were used
in the two-stage classification to distinguish whether a patient had cancer or not. The PSO
approach was employed since it was likely that using the optimizer would improve the
performance of the suggested method. Because it would be extremely expensive to test
every possible scenario in a complete factorial fashion, the PSO was used to optimize the
hyper-parameters. PSO is an algorithm for problem-solving that makes use of a population
of potential solutions, known as particles. Based on their position and velocity, individual
particles are distributed using a simple mathematical process around the search region. The
local best-known location of each particle affects its motion, yet it is also directed toward
the most well-known positions in the search area, which are upgraded when other particles
find better locations. This will drive the swarm to move toward the best options [45].

The multidimensional search space contains a collection of m particles. The i–th particle’s
position and velocity in the t–th iteration is Xi,t and Vi,t, respectively. The particle modifies
its position and speed by regulating two perfect solutions. The first is the desired result that
the particle itself wants to achieve, specifically, the most intimate best pbesti. The group is
currently pursuing the alternative as the best course of action, perhaps the global gbestt. Two
mathematical equations are used in PSO to update the positions of each mass partner in the
global search space, as indicated in Equations (2) and (3). In Equation (2), the coefficients
c1 and c2 and random integers r1 and r2 are used, each possessing a location in the searching
space of xi on Rn and a velocity of vi on Rn.

vk+1
i = vk

i + c1r1

(
pbestk

i − xk
i

)
+ c2r2

(
gbest− xk

i

)
(2)

xk+1
i = xk

i + vk+1
i (3)

Compared to mathematical algorithms and other heuristic optimization techniques,
the PSO algorithm has the following primary benefits: a straightforward concept, straight-
forward implementation, robustness to control parameters, and computational efficiency.
Similar to other heuristic optimization approaches, PSO is a derivative-free method. In
comparison to more traditional mathematical methodologies and other heuristic techniques,
PSO is less sensitive to the characteristics of the objective function [54,55]. Compared to
other competing heuristic optimization methods, PSO contains fewer parameters, including
only the inertia weight factor and two acceleration coefficients. Additionally, compared
to other heuristic algorithms, the impact of the parameters on the answers is thought to
be less sensitive [56]. In comparison to other stochastic approaches, PSO techniques can
produce high-quality solutions with stable convergence characteristics in less time [57]. In
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comparison to other evolutionary methods, PSO appears to be somewhat less dependent
on a set of initial points, suggesting that the convergence algorithm is reliable.

3.3. Hyper-Parameter Optimization

Different hyper-parameters utilized to control the structure and learning process of the
network are dependent on neural networks, which can be categorized as computational and
structural hyper-parameters [46]. The network’s architecture and structure are indicated
based on the number of network layers, transfer function, degree of connectivity, neurons
in each layer, and other structural hyper-parameters. Because they alter the structure of the
network, the hyper-parameters affect its effectiveness and computational complexity, the
learning approach, training dataset size, and other algorithmic parameters govern learning,
velocity, rate of learning, etc. Hyper-parameters, which are not included in the model, have
no impact on how well the neural network model performs. However, they have an impact
on the training stage’s performance and pace.

For DL models, hyper-parameter settings are a collection of predetermined choices
that directly affect the learning process and output of the prediction, which demonstrates
how effectively the model learns and trains. The model is trained to search for patterns in a
dataset and these patterns are used to train the model to predict the outcomes of incoming
data. The selection of hyper-parameters is directly impacted by model design, which
highlights the complexity of the model, and the time required to create and evaluate the
model. Due to the uncertainty surrounding the ideal selection of parameters and the fact
that they determine how well a model works, the setting has been a crucial and challenging
subject in the use of DL algorithms.

Hyper-parameters are significant for DL-based models because they have a direct
impact on controlling the behavior of the training model, hence contributing to the model’s
high performance. Based on the scientist’s awareness, a manual search determines the
hyper-parameter value and can be used if the researcher has a firm grasp of neural network
topology and learning data. However, the standards for choosing hyper-parameters are
ambiguous, calling for several experiments. In this study, the hyper-parameter optimization
through radial basis function and dynamic coordinate search (HORD) algorithm was used
on each hyper-parameter, and several values were computed and combined to arrive
at the hyper-parameters used. HORD is very effective and simple when it comes to
finding the best hyper-parameters for the CNN classifier. With HORD, all combinations
of hyper-parameter values were investigated using the top and lower boundaries of each
hyper-parameter to determine the ideal values and a predetermined step size for the
variable range of each hyper-parameters was established.

HORD was introduced as a more effective method because it uses a deterministic
model [54], unlike other optimization approaches. By using certain starting sample points
and the radial basis function (RBF) approximation, the deterministic model employed in
this method was produced as follows (4):

St(h) =
t

∑
d=1

i(d)(|| h− h(d) ||)
3
+ p(h) (4)

where ||. || denotes the interpolation parameters and ip is the Euclidean norm [54]. Upon
creation of the model, the perturbation δd is used to produce candidates h(1:c)

cand based on
the top-performing observation htest that adheres to a particular normal distribution. The
following is the definition of the probability of perturbation ϕt (5):

ϕt = ϕ0

[
1− ln(t− t0 + 1)

ln(Nmax − t0)

]
, t0 ≤ t < Nmax (5)

where t is the algorithm’s iterations, t0 is the number of initial observations used to fit the
model, and Nmax is the algorithm’s maximum number of iterations. D is the total number
of dimensions for the hyper-parameters and the value of ϕ0 is set to min (20/D, 1).
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Subsequently, using the candidates generated, the following formula is used to deter-
mine the final weighted score (6):

W(hcand) = εWcv(hcand) + (1− e)Wdm(hcand) (6)

The two criteria are added together to determine the final weighted score, where
Wcv is the measure used to determine how well the surrogate models are estimated in
Equation (7), the distance metric represented by Wdm is calculated in Equation (8), and each
criterion’s weight is indicated by ε.

Wcv(hcand) =

{
Smax − S(hcand)

Smax − Smin
, i f Smax 6= Smin

1, otherwise
(7)

where Smax = max{S(hcand)}, Smin = min{S(hcand)}.

Wdm(hcand) =

{
∆max − ∆(hcand)

∆max − ∆min
, i f ∆max 6= ∆min

1, otherwise
(8)

where ∆(hcand) denotes the separation between previously assessed positions h1:t derived
from ∆(hcand) = mn‖hcand − h1:t‖ = minhcand-h1:t. Then,

∆max = max{∆(hcand)}, ∆min = min{∆(hcand)}.

Finally, the hyper-parameter set for the following step h∗ is discovered using the final
weighted score, and the surrogate model St(h) is continuously updated since the genuine
neural network model evaluates h∗. Algorithm 1 shows the HORD hyper-parameters used
to select the optimal parameters for the CNN model.

Algorithm 1: HORD Algorithm.

1: Generate a little insight At0 =
{

h(d), G
(

h(d)
)}t0

d=1
measuring with Latin hypercubes;

2: while t < Nmax do
3: Fit or revise the St(h) RBF interpolation model from (4) using At.
4: Fix htest = argmax{G(h)} in At ;
5: Create c candidates using h(1:c)

cand based on htest and δd samples were taken from a normal distribution
with a certain probability ϕt in (5).;
6: Calculate Wcv

t h(1:c)
cand by (7), Wdm

t h(1:c)
cand by (8), as well as the final weighted score Wth

(1:c)
cand by (6).

7: Set h∗ = argmin
{

Wth
(1:c)
cand

}
.

8: Estimate G(h∗) .
9: Update At+1 = {At ∪ (h∗, G(h∗))}
10: end while
11: Find htest = argmax{G(h)} in ANmax .
12: Return htest.

The ideal hyper-parameter values for ML algorithms are chosen using designs of
experiment (DOE) methods [47]. DOE evaluates the effects of numerous experimental
components simultaneously, with each experiment comprising several runs with various
hyper-parameter settings that should be evaluated collectively. After the trials are finished,
the experimental results are statistically examined to ascertain how the hyper-parameters
affect the performance of the classifiers. To put it differently, a model is created that
empirically connects classification performance, such as incorrect predictions (as a reaction
parameter), to hyper-parameters (as indicators of classifier effectiveness). Table 1 lists the
hyper-parameters adjusted for the proposed CNN model.
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Table 1. The CNN model hyper-parameter settings and their ranges.

Hyper-Parameter Explanation Range

Neuron Count The number of neurons in the top Convolutional layers 8, 16, 32
Layer Depth The total number of layers in the network 1, 2, 3
Kernel Size Size of the convolutional layer’s kernel 1, 2, 3
Stride The quantity of shifting kernel pixels during convolution 1, 2, 3
Activation Function The process of activating neurons Sigmoid, ReLU, SeLU
Batch Size Number of training data divisions per group 8, 16, 32
Kernel Count Number of convolutional layer kernels 8, 16, 32
Epoch Numerous iterations of learning 20, 50, 100
Learning Rate Updated weight during learning 0.01, 0.001, 0.0001
Loss Function A method for calculating error L2 loss, Binary cross-entropy

3.4. Convolutional Neural Networks (CNNs)

CNN is a well-liked deep-learning technique for image analysis. Convolution is a
type of computation where two functions are combined to create a third function, which
is defined as the product of two functions after a variable has been shifted and inverted.
In CNN, an array of weights known as filters is created when the input is subjected to a
convolution, which results in the creation of an object map. At each time step, the filter
passes across the input while multiplying the matrix. Each entity (input parameter) is
given this treatment, and the outcomes are blended to provide a new collection of chosen
features. Dilating causal convolutions are frequently employed in the context of series or
time series. Causality suggests that the filter’s output is independent of incoming time
steps in the event. By stacking dilated convolutions, the network can retain input scale
while looking back in time with fewer layers (i.e., how many time steps there are in the
sequence) and computing effectiveness. As the network depth increases, each additional
layer exponentially raises the dilation factor. The neural network’s epoch number indicates
how many times it has gone through the training dataset. The network learns to make
predictions more accurately as it is exposed to more data. On the other hand, excessive
exposure can lead to overfitting. In this case, the training error is minor, but the error keeps
on increasing as fresh data are presented. This increasing error can be stopped during
data training any time the validation error is minimized and stops decreasing. During
optimization, early blocks are used to hasten network learning.

The CNN design includes dropout layers, batch normalization, and one-dimensional
convolution. A dense, completely linked layer utilized for categorization makes up the
top layer, and the network weights are altered upon each batch. The completion of the
training period occurs when all batches have traversed the network once. The loss function
is used to assess how well the network matches the data, which is reduced throughout
training by selecting the appropriate weights for the neurons. HORD is an optimization
algorithm that is used to explain how the weights of neurons change as learning progresses.
The learning rate is the maximum permitted variation in each stage of the training process
in terms of the number of neurons. Excessive weight updates might result from a high
learning rate, causing the network performance to vary during training epochs. A sluggish
learning algorithm has the risk of failing to converge or becoming stuck in a poor outcome.
The learning rate should therefore be calibrated. The quantity of data the neural network
processes in a single phase is referred to as the batch size. As the batch size grows, more
RAM may be required during the training phase.

3.5. The Description of the Leukemia Dataset

A wide variety of various malignancies are attracted to blood cancer, including lym-
phatic system and bone marrow malignancies. Bone marrow becomes more active in
leukemia, which may impact its capacity to generate platelets and healthy white blood
cells. These hematopoietic stem cell tumors are dangerous. Data on leukemia and can-
cer were obtained from the UCI repository. A total of 7129 genes were encountered and
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72 samples were analyzed, all of which were collected from patients with acute leukemia,
either acute myelogenous leukemia (AML) or acute lymphoblastic leukemia (ALL). In actu-
ality, there were 25 cases of AML and 47 cases of ALL. The remaining data in the dataset con-
tained cases of chronic myelogenous leukemia (CML), and chronic lymphocytic leukemia
(CLL). The dataset had already undergone some normalization. Ratios were used to divide
the dataset into training and testing sets. The dataset was divided into 70% to 30% and
80% to 20% partitions for the training and testing (validation) sets, and at random, in the
proposed technique. The dataset was divided into two different sets to determine how
well the model worked for the two partitions. Table 2 gives a detailed description of the
leukemia datasets, divided into partitioned training and testing (validation) sets and at
random in the proposed technique.

Table 2. Detail description of the leukemia datasets.

Dataset Number of Genes Samples Classes

AML-ALL 7129 72 2
AML-ALL-CML 7129 72 3
AML-ALL-CML-CLL 7129 72 4

In the bone marrow or lymphatic system, lymphoid cells can become cancerous and
progress into leukemia. This most frequently affects white blood cells, which makes it
more challenging for the immune system to combat illness. Leukemia may be discovered
accidentally during a physical examination or as a consequence of normal blood tests
because many kinds of the disease do not manifest any evident symptoms early on. A
doctor should consider leukemia if a patient has pale skin, enlarged lymph nodes, swollen
gums, an enlarged liver or spleen, severe bleeding, bruises, fever, ongoing infections,
exhaustion, or a small pinpoint rash. An abnormal white cell count on a blood test may
point to the diagnosis. A needle biopsy and aspiration of bone marrow from a pelvic bone
is required to confirm the diagnosis and determine the precise kind of leukemia. The bone
marrow will be examined for leukemic cells, DNA markers, and chromosome abnormalities.
Age, leukemia type, and chromosomal abnormalities discovered in leukemia cells and
bone marrow are all significant factors in leukemia. From the leukemia dataset, 2323 genes
among 7129 genes (31.59% of the genes) were chosen for the proposed model classification.

3.6. The Performance Evaluation Metrics Used to Evaluate the Proposed Model

To assess the effectiveness of the model, six assessment metrics were used. True
positive (TP) indicated that a person had the disease; true negative (TN) denoted a healthy
individual; false positive (FP) denoted the diagnosis of leukemia in a healthy individual;
and false negative (FN) referred to the classification of a breast cancer patient as benign.
Equations (9)–(13) explain the performance metrics used in the proposed framework.

The performance of the classification system is shown by classification accuracy (CA)
given in Equation (9):

CA =
TN + TP

The total number o f test items
(9)

Recall is defined as the ratio of accurately predicted positive occurrences to all actual
positive occurrences in the class, given in Equation (10):

Recall =
TP

TP + FN
∗ 100% (10)

Specificity demonstrates that a forecast is incorrect and that the subject is in good
health, as defined in Equation (11):

Speci f icity =
TN

TN + FP
∗ 100% (11)
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The harmonic mean of recall and precision is known as the F1-Score, given in Equation (12):

F1− Score =
precision ∗ recall
precision + recall

∗ 100% (12)

Precision is the accuracy by which a condition is correctly identified by the model,
given by Equation (13):

Precision =
TP

TP + FP
∗ 100% (13)

4. Experimental Results

Several evaluation criteria, including accuracy, sensitivity, specificity, recall, preci-
sion, and ROC, were utilized to assess the performance of the model. All implementation
results are also shown in tables and graphs for easier interpretation. An HP Core i5 with
8 GB RAM and a 2.0 GHz processor running on Windows 10 Operating System was used
for all experiments.

The model was developed using Python 3.9.10 with the Keras 2.9.0 library and Tensor
Flow 1.15 as the back end. On average, 25 s were needed to finish each period. Pylearn2 is
an open-source ML-based library with an emphasis on DL techniques. It also promotes the
use of GPUs, which can considerably speed up the execution of DL-based models. When
there is sufficient data, DL-based NNs operate at their best.

Table 1 lists the hyper-parameters for the CNN design (number of layers, maximum
pooling size for each layer, and kernel). Radial basis function and dynamic coordinate
search were employed in the proposed model to optimize the hyper-parameters for the
dataset. The hyper-parameters were used for which the model performed best on the
leukemia dataset. Here, the CNN layer achieved leukemia classification while the objective
dataset was updated to include each DL network’s taught and visually different charac-
teristics by distributing an equal number of neurons between the two groups, since these
fine-tuned parameters were not self-trained. It was essential to modify the optimal pa-
rameters following the outcomes of the training genes for performance enhancement. The
results of an experiment comparing the tuned CNN architectures on the baseline sample
dataset are shown in Table 3.

Table 3. the performance comparison results in the leukemia dataset.

Feature
Selection

Classifier
Technique Experiment Accuracy (%) Recall (%) Specificity

(%)
Precision

(%)
F-Score

(%)

None CNN

(70-30) 95.2 95.1 94.8 95.3 95.4
(80-20) 95.8 95.5 95.2 94.9 96.1

Random 96.5 96.3 95.7 96.1 95.9
Mean 95.8 95.6 95.2 95.4 98.8

PSO CNN

(70-30) 97.0 97.1 98.0 97.9 95.2
(80-20) 97.3 97.5 98.0 98.3 98.1

Random 98.5 98.2 98.0 98.9 98.7
Mean 97.6 976 98.0 98.4 97.3

PSO + Hyper-
parameter CNN

(70-30) 98.8 98.9 99.7 99.9 99.7
(80-20) 99.9 99.9 99.7 99.9 99.7

Random 100 99.9 99.8 100 99.9
Mean 99.6 99.6 99.7 99.9 99.8

4.1. Performance Results of the Proposed Model Using the Two Partitions of the Dataset

According to Table 3, the model’s performance was superior to that of classifiers
using CNN and PSO + CNN on the dataset. The accuracies of the CNN and PSO + CNN
classifiers were 95.8% and 97.6%, respectively. However, after feature selection using a
hyper-parameter to create a hybrid approach with 36 attributes, the accuracy was 99.6%
due to a 3.8% increase compared to the CNN classifier and 2.0% increase compared to the
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PSO + CNN classifier. Multiple tests were run to improve feature reduction and eliminate
unnecessary properties from the dataset. The experiments were carried out three times
to test the performance of the proposed model against CNN and PSO + CNN using the
70% to 30% and 80% to 20% partitions and at random.

The effectiveness of the proposed model with the PSO feature selection method was
evaluated. The performance evaluation revealed that, when compared to outcomes without
PSO, the proposed model with feature selection from PSO produced results with higher
levels of accuracy. PSO + the proposed model outperformed the proposed model without
the feature selection for the diagnosis of leukemia, according to a comparison of the two
outcomes. Although the performance of the proposed model with and without PSO was
very good, the feature selection algorithm greatly increased the accuracy of leukemia
diagnosis, with 99.9% accuracy versus 96.0% accuracy for the proposed model without the
feature selection.

Table 4 displays the proposed model’s prediction performance for ALL and healthy
cases, revealing the accuracy to be 99.9% and 100%, respectively. The precision, recall, and
F1 score were also 100% or 1.0. The prediction accuracy for CLL was 99.8%, the recall
was 98.8%, the specificity was 100%, the F1-score was 99.8%, and the precision was 100%,
respectively. The prediction accuracy rate for AML was 99.9%, and the precision, recall,
and F1 score were 100%. The dataset was divided into 80% for training and 20% for testing
(validation), respectively.

Table 4. The effectiveness of the suggested model for identifying leukemia subtypes.

Measures Accuracy (%) Recall Specificity F1-Score Precision

ALL 99.9 1.0 1.0 1.0 1.0
AML 99.9 1.0 1.0 1.0 1.0
CML 100 1.0 1.0 1.0 1.0
CLL 99.8 0.98 1.0 0.99 1.0

Healthy 100 1.0 1.0 1.0 1.0

Figures 3 and 4 display the model accuracy and ROC for the proposed model. Figure 3
shows that the proposed model greatly enhanced the performance of leukemia diagnosis.
The proposed model had an AUC of 1.00, as shown in Figure 4.
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4.2. Comparison of the Proposed Model with Other State-of-the-Art Models

The outcomes of other studies using the same datasets are shown in Table 4, which
can be used for objective comparison. Compared to other existing models in the literature,
the results showed that the proposed model achieved greater accuracy in the microarray
datasets utilized for the performance measures. In general, the proposed model outper-
formed recently used deep learning methods, as well as traditional and hybrid machine
learning methods. The outcomes showed that the proposed method may be used to select
and categorize cancer-related genes from sparse datasets with accuracy and efficiency. The
results further demonstrated the applicability of the proposed methodology for precise
cancer subtype detection and diagnosis. Table 5 shows the comparison of the accuracy of
the proposed study to that of some existing models using the same dataset.

Table 5. The comparison of the accuracy of the proposed model on microarray datasets.

Methods Authors Dataset Size of Dataset Accuracy (%)

SVM-RFE + BDF Medjahed et al. (2017) [48] Leukemia 5147 95.8
AEN-CMI Wang et al. (2019) [49] Leukemia 7129 91.1
GSP Alanni et al. (2019) [50] Leukemia 5327 98.6
IG-SGA Salem et al. (2017) [51] Leukemia 7129 97.0
SEEIDCNN Liu et al. (2017) [52] Leukemia 12,600 57.9
Random Forest Ram et al. (2017) [53] Leukemia 22,283 95.2
PSO + Optimized CNN Proposed Model Leukemia 7129 99.9

Support Vector Machines Recursive Feature Elimination (SVM-RFE); Binary Dragonfly (BDF); Adaptive Elastic
Net with Conditional Mutual Information (AEN-CMI); Gene Selection Programming (GSP); Information Gain
(IG) and Standard Genetic Algorithm (SGA); Sample Expansion 1-dimensional Convolutional Neural Network
(SE1DCNN).

These results showed that the suggested CNN model can accurately predict leukemia.
Convolutional neural networks are therefore a great alternative to time-consuming standard
ML models. Findings from the hyper-parameter tuning revealed that some combinations
of parameters had a greater impact on the model’s performance than others. The proposed
framework revealed that the effectiveness of prediction was significantly improved and
impacted by the number of layers and filter width. The outcomes further proved that high
performance was possible at all filter widths. Additionally, using multiple layers produced
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somewhat better performance than using just one layer, since it permitted the model to be
more complicated; however, this also resulted in a longer training period. Training time
was directly influenced by the filter’s breadth and the number of layers, but had no impact
on classification performance. Therefore, a high filter width required less training time than
a smaller filter width if the number of layers was fixed, even though both options have the
same forecasted results.

5. Discussion

Cancer is generally considered to be a high-risk disease globally, especially leukemia.
Hematologists must recognize the presence of leukemia and its specific type to minimize
medical risks and choose the best leukemia therapy. The detection of leukemia with an optical
blood smear examination under a specialist’s supervision is an important and time-consuming
procedure. To address such issues, various ML and DL techniques have been proposed for
the diagnosis, prediction, and classification of peripheral blood mononuclear cells. However,
these methods need to be improved in terms of the learning process, effectiveness, consistency,
and classification accuracy. Therefore, to overcome some of these challenges and keeping
the real-time vitality of healthcare in mind, this study proposed an IoMT-based framework
for automatic diagnosis and classification of leukemia subtypes. In the proposed model,
IoMT-enabled devices and sensors were used to capture various signs and symptoms from
patients to the leukemia cloud. PSO feature selection was used to select relevant features that
improved the classification performance, and hyper-parameter-optimized CNN was used for
the diagnosis and classification of leukemia according to its types.

The proposed model had an AUC of 1.00, according to the receiver operating char-
acteristics. After diagnosis and classification of cancer using the proposed model, the
information is transferred to the physician’s device (computer or smartphone), where the
physician uses the IoMT infrastructure to continue providing medical care based on the
test results. The proposed system had better accuracy when compared with some state-of-
the-art classifiers using the same dataset for performance evaluation. Authors in ref. [50]
reported the second-best accuracy of 98.6% using the GSP model, authors in ref. [51] came
third with an accuracy of 97.0% using the IG-SGA classifier, and the authors in ref. [52]
has the lowest accuracy of 57.9% using the SEEIDCNN model. The proposed model also
performed better across other performance metrics.

In a handful of ML scenarios, deep networks have already surpassed simplistic tech-
niques, but this is not usually the case. A deficiency of a parameter match could be one
such problem. The small size of the data could be another factor. To be adequately con-
structed, deep networks need considerably bigger training datasets because they are very
highly dependent on the size of the training set. The findings of the proposed framework
demonstrate that no particular set of hyper-parameters substantially surpassed the others.
Due to adjustments to weight and bias initialization, it is not always the case that retraining
a classifier with the same hyper-parameters will yield the same classification performance.
As a result, it is essential to run training many times before selecting the best network.
However, deeper networks with more layers often take longer to train.

Optimization of the hyper-parameter values remains the major benefit of the pro-
posed model, as well as PSO to remove irrelevant features from the leukemia dataset.
A crucial component of controlling the behavior of both ML- and DL-based models is
hyper-parameter tuning. If the hyper-parameters are not properly set, the predicted model
parameters produce inferior results, given that they do not reduce the gradient descent.
Many hyper-parameters are frequently used in contemporary ML techniques (one to a
thousand) and they are essential for transferability of the model. Professional expertise
and understanding are required for this task. Furthermore, it takes a lot of time to conduct
searches over fully developed hyper-parameter domains. Typically, the excitable search
only trains a small number of potential setups over a short time, and usually the highest
qualified candidates receive comprehensive training. It remains unclear how to create a
brand new hyper-parameter optimization approach that combines all of the benefits of
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both automation and professional understanding. Therefore, future work will employ
more refined and automated neural architecture search techniques to improve the proposed
model and create a strong CNN classifier.

6. Conclusions

This study presents a hyper-parameter optimization of a CNN model for the early
diagnosis and classification of leukemia. The hyper-parameter-optimized CNN model was
used to diagnose and classify leukemia subtypes in the IoMT-based healthcare system,
which collects data using various sensors and devices. The collected data that formed the
dataset were initially analyzed through pre-processing techniques to replace missing values
using the min-max method and relevant features were selected using the PSO technique.
To identify differences in leukemia patterns, several variables connected to leukemia
were extracted from the noise-free data and supplied to the classifier. The results of the
proposed system revealed that the hyper-parameter-optimized CNN model enabled with
PSO outperformed other state-of-the-art classifiers in the literature. The results revealed
that the proposed model provided an accuracy of 99.9% and 100% across all of the tested
performance metrics. Overall, the findings of the study indicate that the IoMT-based system
enabled with PSO and hyper-parameter-optimized CNN was effective and valid for the
successful real-time and smart diagnosis and classification of leukemia. However, the
security and privacy of IoMT-based environments are paramount to being able to protect
patient data and leukemia diagnosis results from an unauthorized user. Hence, future
studies will consider the security and privacy of the proposed system to provide open
network computing systems and communication in a secure environment.
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