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Abstract: In the automotive field, the introduction of keyless access systems is revolutionizing car
entry techniques currently dominated by a physical key. In this context, this paper investigates the
possible use of smartphones to create a PEPS (Passive Entry Passive Start) system using the BLE
(Bluetooth Low-Energy) Fingerprinting technique that allows, along with a connection to a low-cost
BLE micro-controllers network, determining the driver’s position, either inside or outside the vehicle.
Several issues have been taken into account to assure the reliability of the proposal; in particular,
(i) spatial orientation of each microcontroller-based BLE node which ensures the best performance
at 180° and 90° referred to as the BLE scanner and the advertiser, respectively; (ii) data filtering
techniques based on Kalman Filter; and (iii) definition of new network topology, resulting from the
merger of two standard network topologies. Particular attention has been paid to the selection of
the appropriate measurement method capable of assuring the most reliable positioning results by
means of the adoption of only six embedded BLE devices. This way, the global accuracy of the system
reaches 98.5%, while minimum and maximum accuracy values relative to the individual zones equal,
respectively, to 97.3% and 99.4% have been observed, thus confirming the capability of the proposed
method of recognizing whether the driver is inside or outside the vehicle.

Keywords: PEPS; BLE; Kalman Filter; k-Nearest Neighbor

1. Introduction

Location tracking is one of the most valuable tools and /or goals for both industrial
and academic fields. The leakage of GPS (Global Positioning System) signal in indoor
or harsh environments as well as its poor location performance has led to research into
and development of a series of technologies capable of overcoming such limitations and
conceiving of new applications. Among them, BLE is a medium-range wireless commu-
nication technology, proposed to satisfy the need to reduce possible energy consumption,
costs, bandwidth and power dissipation. Thanks to the considered features, this technology
is taking over in IoT (Internet of Things) applications; a typical case of interest concerns
human-to-machine interaction.

In the literature, there are several works using the BLE protocol to implement the
indoor localization method; for example, in [1], the authors use a Fingerprint-based indoor
localization method to locate a target device whose location is unknown where the authors
propose a solution based on Principle Component Analysis (PCA) or Autoenconder (AE)
to extract several Fingerprint feature. In [2], the BLE transmitter’s position was estimated
through a Deep Neural Network-based indoor localization by the signal received from
several Anchor Points. To train and test the proposed Convolutional Neural Network
(CNN) a large dataset was obtained by means of a simulated environment. In [3], the
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authors present a method for simultaneous indoor pedestrian localization and house
mapping through combined data from an Inertial Measurement Unit with proximity and
activity data from Bluetooth Low-Energy beacons placed indoors deployed in the indoor
environment. In [4], a system that locates and guides a user inside a building in real-time is
presented. This smartphone application captures the Bluetooth Low-Energy signal from
the beacons and displays the location of the user’s smartphone on a map that is obtained
from Building Information Modeling (BIM), guiding the user to the desired destination.
In [5], BLE protocol is used to define the position of a user and multi-users in indoor
environments; as the first scenario, the authors propose a localization server, client and
user application based on a trilateration and Center of Gravity (COG) calculation; a second
research element was an algorithm to improve the localization performance by means
of a range-average algorithm exploiting the inertial sensors. Concerning the automotive
field, human-to-machine interaction is important to define the driver’s position with
respect to the vehicle through the definition of a PEPS system. Typically, PEPS systems
use the localization algorithm called RF ranging. Based on the assumption that radio
waves propagate according to the inverse-square law [6], the distance can be estimated
as a function of the transmitted and received signal strength, provided that there are no
other sources of error falsifying the result. When applying localization algorithms in
indoor environments, the signal strength is extremely noisy due to reflection or absorption
phenomena with the structure [7]. In [8], the advantages of the BLE adoption compared
to Wi-Fi are highlighted in an indoor application where the relation between the RSSI
measurements and distance represent a crucial aspect to evaluate the node position; in fact,
the transmission and reception node distance affect the RSSI signal power. Various radio
frequency-based positioning algorithms can be applied to reduce this problem, including:

e Time of Arrival (ToA): The distance between the emitter and the receiving node is
calculated considering the time elapsed between the emission and reception of the
signal. Knowing the speed of propagation of the signal in the medium and the time
it takes to arrive from one point to the other (ToF or Time of Flight), it is possible to
calculate the traveled distance.

*  Time Difference of Arrival (TDoA): This is based on the same principles as ToA.
Differently from ToA, TDoA exploits the difference in time of flight between the
emission and reception of the signal to calculate the distance between the reference
node, whose coordinates are already known.

*  Angle of Arrival (AoA): This determines the position of a mobile device through the
angle at which the signal reaches two sensors of known coordinates. Then, applying
the triangulation technique, it is possible to obtain the coordinates of the transmitter,
which will be located at the intersection of the two directions.

Another localization algorithm is based on RF Fingerprinting [9]; this technique allows
the exploitation of pre-existing access points within an environment in order to return the
position of a device.

In [10], the authors introduced the BLE to realize a PEPS system. In particular, their
interest was to reduce BLE’s power dissipation and they did not focus on localization
accuracy. In [11], the authors propose an adaptive surrounding BLE-based PEPS system
by adopting six BLE beacons for localization and an additional nine BLE scanners for
environment prediction, where the data obtained are collected by a smartphone that acts as
a concentrator.

In general, other techniques for indoor localization are based on Ultra-WideBand
(UWB) technology; typically, these are used for localization in complex multi-stance envi-
ronments. This technology involves the utilization of higher frequencies than BLE, which
correspond to higher power consumption. As described in [12], the authors achieve a 95%
accuracy level of room identification; however, they adopt a total of sixteen anchors and
distances to the set of predefined landmarks distributed in the indoor environment as the
input parameter for the neural network.
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In this paper, we focus attention on improving the accuracy of a driver’s localization
with respect to the vehicle; in particular, Bluetooth Low-Energy is used to create a connec-
tion between man (through the smartphone) and machine by creating a PEPS system. This
connection occurs thanks to the use of six ESP32s, 32-bit micro-controllers with integrated
antennae, mounted inside the passengers’ compartment. In the proposed architecture,
the ESP32s act as BLE scanners and are mounted according to a network topology, called
Y network, suitably designed and tested for this research activity to improve the overall
performance of the method; in contrast, the driver’s smartphone acts as BLE advertiser [13].
One of the six ESP32s has the task of classifying the smartphone’s location using the k-NN
(k- Nearest Neighbour) classifier [14]. The BLE Fingerprinting positioning technique was
based on RSSI (Received Signal Strength Indicator) [14] acquisition, successively filtered by
means of a proper Kalman Filter to further improve Fingerprinting and classifier perfor-
mance [15]. Finally, particular attention has been paid to the spatial orientation of each BLE
scanner in order to grant the highest value of RSSL

The article is organized as follows; the implementation of the PEPS system is described
in Section 2, while in Section 3 hardware set-up and obtained results are presented before
drawing the conclusions in Section 4.

2. Proposed Method

This section will describe the solution adopted for the implementation of the PEPS
system (Figure 1). Hardware characteristics of the adopted microcontroller will be first
described, followed by methodologies and techniques exploited to overcome the problems
highlighted in the literature. Since GPS has localization limitations in scenarios involving
closed environments or structures, possible choices lead to the use of Wi-Fi or BLE. Previous
work suggests that the main limitation for Wi-Fi is router dependency, the inability to install
it in many environments and the attenuation related to the distance from it, while for the
BLE the established connection depends exclusively on the distance between the reference
point and user in all environments.

User Positioning Network topology

m |:> @ Kalman Filter @ K-NN Classificator

Figure 1. Proposed architecture for the implementation of a PEPS system.

2.1. Positioning Algorithm

Several problems arise in indoor positioning related to the complexity of the context,
such as the multipath effect [16], the attenuation and dispersion of the signal due to
the density of obstacles, the problem of Non-Line of Sight (NLoS) transmission of the
signal of interest. Different ranging methods are used to determine the position of an
emitter given a series of reference points of known coordinates. The methods differ in
accuracy, hardware and operating logic. To obtain the coordinates of the emitter, the
time elapsed between emission and reception and the direction from which the signal
comes can be exploited. The technique used to determine distance information is Received
Signal Strength Indicator (RSSI), which is based on the received signal strength and the
relationship between the attenuation of the signal and the traveled distance. To obtain a
good localization, a preventive analysis of the environment is required in order to store
some information, with which the data obtained during the detection of the position will
be compared or by applying the Fingerprinting technique.

Once distance information has been obtained with ranging methods, it is necessary to
process this data in order to transform distances, times and signal strength into coordinates
and, consequently, the position. The technique used to determine the position is the
Fingerprinting technique, usually applied on measured values of RSSI. It consists of detecting
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the BLE signals present in a given area in order to obtain a “Fingerprint” available to one or
more devices for their localization; the position will be calculated using a cluster-matching
algorithm, i.e., by finding, among all the previously saved detections, the one that best
approximates the detection made at the run-time by the device. The adopted Fingerprinting
algorithm [14] consists of two successive phases (Figure 2):

e  Offline phase, where the environment is analyzed using a grid of points with respect
to which groups of RSSI values will be associated with the position;

*  Online phase, the groups of RSSI values acquired in the offline phase and those
acquired in real-time will provide the most reliable position of the object.

RSSIA_1| RSSIB_1

— RSSIA_2 | RSSIB_2

% j RSSIA_N| RSSIB_N Y
= = Online
i RSSIA_1| RSSIB_1 i

RSSIA_2 | RSSIB_2

K-NN — Position
Classifier

RSSIA_N| RSSIB_N

N Offline

Figure 2. Localization system using BLE Fingerprinting.

Although it requires a longer implementation time and a high computational cost, it
has proven to provide excellent results.

2.2. Filtering Algorithms

Due to the effects described above, the RSSI values exhibit random and unstable
behavior, generating noise, also when both reference and target remain stationary in space.
In order to reduce as much as possible the uncertainty sources, different filtering algorithms
were taken into account, in both pre-processing and post-processing stages:

*  Moving average filter (MA) [17], based on the collection of n RSSI samples and
calculating the average of the values to obtain a smoothed value;

¢  Median filter, based on the calculation of the median of n RSSI samples, dividing
the ordered sequence of values into two sequences of an equal number of terms, one
having a lower value and the other having a higher value than the median itself; the
filter proves to be an optimal solution to remove outliers in the measured data;

e  Kalman Filter (KF), operating according to a prediction and correction approach. In
the prediction stage, the Kalman Filter provides an a priori estimate of the state vector
starting from that obtained in the previous step. The estimate is then improved in the
update stage thanks to the availability of some measures, thus achieving the so-called
a posteriori estimate, exploited as input in the successive cycle.

The best performance was achieved by means of the Kalman Filter; from an operative
point of view, the Kalman Filter’s operating steps are described by means of the following
expressions:

Prediction:
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. Prediction of the current state:
Xp=A XX @

e  Prediction of the covariance of the error:
P=AxDPq1xAT+Q 2)

Update:

¢ Calculation of the gain of Kalman:
K=P.xH' x (Hx P, x H +R)"! (3)
e  Calculation of the new state:
X = Xp_1 + K x (Zg — H" x x,_1) (4)
e  (Calculation of the new covariance of the error:
Py = P 1 — (K x H % Py) ©)

where:

e  x;: Estimate of the current state.

e  A:State transition matrix.

* P Average error estimate for the current state.

*  (: Estimated covariance of process errors.

e  K:Kalman gain.

e  H:Observation matrix.

e  R:Estimated covariance of the measurement error.
° Zi: Measurement vector for the current state.

As for the considered application, the identity matrix was chosen for both matrices H
and A while Z; corresponds to the k-th sample of the measured RSSI signal. The considered
settings were chosen due to the reduced dynamic of the considered parameter.

2.3. Classification: K-NN

The k-Nearest Neighbor algorithm classifies an unknown sample considering the class
of the k closest samples of the training set. To create a k-NN type classifier, it is necessary
to calculate the distances between the sample to be classified and all the training samples,
identifying the k-closest training samples and the respective label. Finally, the algorithm
compares the label of these k points that are the closest to our sample. The destination
label with the highest frequency among these k-points is assigned as the destination class
to the new sample. This classifier lends itself well to the BLE Fingerprinting technique, as
the samples obtained from the online phase are compared by likelihood with the training
samples, represented by the radio map of the points obtained from the offline phase.
The main advantages of this method are that it does not require learning or building a
model, it can adapt its decision boundaries arbitrarily, producing a more flexible model
representation and also guaranteeing the possibility of increasing the training set.

2.4. Network Topology

The study of network topologies allows the definition of the position of all the nodes
that are part of the network and their connections, both physical and logical. Using
graph theory, the most important parameters such as the number of nodes, the number
of transmission channels and redundancy are taken into account, keeping fault tolerance
under control [18]. In order to correctly locate the position of the smartphone with respect
to different vehicle zones, different network topologies were tested. In particular, attention
has been focused on star and tree networks; the results obtained by these analyses were
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absolutely unreliable and with them it was not possible able to distinguish most of the
different vehicle zones. To achieve better performance, it was decided to adopt a “hybrid”
network called the ¥ network (Figure 3), which has the same layout as the tree network but
functions in the same way as the star network where the top central node represents the
star center, responsible for receiving, acquiring and processing data. The adoption of this
hybrid network allows the recognition of the smartphone’s position related to the different
vehicle zone with a high degree of reliability.

Figure 3. ¥ network topology.

3. Result and Discussion

As stated above, the Kalman Filter was used as the filter algorithm to improve RSSI
estimates, while Fingerprinting was exploited as the technique to determine the driver’s
position. The implementation and assessment of the proposed method passed through five
main steps:

1. Orientation in the space of the ESP32, in order to establish the one that best discrimi-
nates the position in which the smartphone is located [19].

2. Implementation of the complete system, consisting of six ESP32s which are interested
in the external and internal position of the smartphone, in order to create and store
the radio map of the points.

3.  Real-time acquisition and classification of the smartphone position.

4. Processing of the data acquired in phase III through statistical analysis, such as
ANOVA (Analysis of Variance) and Siegel-Tukey Test.

5. Evaluation of the classifier’s accuracy using the Classification Learner app in the Mat-
lab environment, carrying out training, validation and testing on the acquired data.

3.1. ESP32 Microcontroller

ESP32 microcontroller by Espressif Systems [20] has a built-in antenna supporting
both Wi-Fi and Bluetooth 2.4 GHz equipped with 48 GPIO pins, belonging to the low-cost
device range. It implements different types of protocols such as TCP/IP, MAC WLAN,
Wi-Fi and Bluetooth; moreover, it provides UART, SPI, 12C, I2S and Capacitive Touch
interface. Its high performance, robustness and versatility make it ideal for a wide range
of applications, such as wearables and IoT. The dynamic scaling of the power, due to
the low duty cycle, allows for minimization of the dissipated energy as long as there
is a suitable trade-off between communication range and data transfer speed. State-of-
the-art performance through digital calibration provides +20.5 dBm of average power.
The proposed hardware system, consisting of six ESP32s, overcomes the intrinsic limit of
beacons, which can only be used in Advertiser mode and cannot perform other actions,
such as low energy consumption and data processing.

3.2. ESP32 Orientations

The first step aims at determining the optimal orientation of the ESP32. To this aim,
two measurement campaigns were carried out to evaluate which configuration, either
ESP32 as a scanner and smartphone as an advertiser or vice versa, should be preferable for
the purpose.

Moreover, by rotating the ESP32 with respect to its z- and y-axis (Figure 4), both
campaigns were carried out in sub-configurations:
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ESP32 located inside the vehicle at the driver’s side and smartphone positioned either
externally in four positions, i.e., driver side or left (LoS), passenger side or right
(NLoS), front side (NLoS) and backside (NLoS) or internally in two positions (both
NLoS), i.e., driver’s seat and passenger’s seat (Figure 5a).

ESP32 located inside the vehicle at the driver’s side and smartphone positioned inter-
nally in two positions (both NLoS), i.e., driver’s seat and passenger’s seat (Figure 5b).

0o
v o) 270
90° -

180° I8

Figure 4. ESP32 orientation: (a) Rotation with respect to the z-axis. (b) Rotation with respect to the
y-axis.

LEFT
ZONE

FRONT ZONE FRONT ZONE

RIGHT
ZONE

RIGHT LEFT
ZONE ZONE

BACK ZONE BACK ZONE

= b.

Figure 5. LoS and NLoS for different zones: (a) Configuration 1. (b) Configuration 2.

In both cases, measured values of RSSI were processed and filtered by means of a

Kalman Filter that ensures the reduction of the RSSI measurement noise sources. In order
to choose the best orientation of ESP32, a loss function was evaluated that could relate
the average and standard deviation of the distributions of RSSI values and that could
search for the maximum distance between the centers of the distributions that have a small
standard deviation:

Fross = HsX —HUDX — HMANT — HPOS ®)

2, 2 2 >
\/st +0px + TanT T Tpos
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Fioss = _MDRV — MPASS )

2 2
\/ 9Drv t Tpass

*  Usx, UDX, MANT, HPOS, HDRV, Hpass (dB): average of the different zones calculated
from the respective arrays of RSSI values;

®*  0sx, DX, OANT, OPOS, ODRV, 0pass (dB): standard deviations of the different zones
calculated from the respective arrays of RSSI values.

where:

The best results were associated with configuration 1 and, in particular, with the
orientation 180°-90°, which presents a significant value of loss function as well as bet-
ter management, in terms of software and realization of the complete system. As can
be appreciated from Table 1, the loss function values are somewhere greater than those
associated with the chosen orientation; unfortunately, those orientations were charac-
terized by unsuitable features as a non-Gaussian data distribution, overlapping of the
averages of the different zones and a high standard deviation that does not comply with
the selection criteria.

Table 1. Loss function results for ESP32 orientation referring to the two different configurations
evaluated as scanner and smartphone as advertiser.

Configuration 1 Configuration 2
Orientation Raw Values Smoothed Values = Raw Values Smoothed Values
0°-0° 13.0633 26.1039 1.0604 2.9444
0°-90° 12.5879 23.8130 0.0562 —0.1474
0°-180° 12.4053 22.6049 1.1373 1.2806
0°-270° 11.7701 17.4743 —0.2721 —2.1425
90°-0° 8.9414 16.4160 0.2833 0.2847
90°-90° 10.4545 17.5767 0.6223 1.5775
90°-180° 13.5501 23.3651 —0.8943 —1.0363
90°-270° 10.7310 19.9310 0.5055 3.4045
180°-0° 11.7475 32.4822 0.8637 1.3109
180°-90° 12.2626 27.5023 0.1383 0.2263
180°-180° 14.7112 27.5250 1.2878 4.2162
180°-270° 13.8268 25.4591 0.7454 2.3117
270°-0° 9.6949 18.2563 —0.0980 —0.3246
270°-90° 12.6398 22.4502 0.5281 0.7525
270°-180° 12.5429 20.6201 —0.2232 —1.7390
270°-270° 11.9059 19.7627 0.2115 1.8816

3.3. System and Radio Map Realization

Once the orientation of the ESP32 was defined, the localization performance of the
PEPS-BLE system was assessed, using a Suzuki Swift as a test vehicle and a Huawei P10
Lite smartphone representing the smart key. The size of the test environment, including the
vehicle, is 4.0 m by 6.0 m. For the offline phase of the BLE-Fingerprinting model, a radio
map was created consisting of 90 reference points, each of which is spaced 50 cm for the
external areas and 15 cm for the internal areas. The coordinates of the test environment
were divided into six different areas (1—left area; 2—front area; 3—right area; 4—rear area;
5—driver’s area; 6—passenger’s area), each consisting of fifteen points represented by the
intersection of the sides of the rectangles, as in Figure 6.
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FRONT ZONE

LEFT ZONE RIGHT ZONE

BACK ZONE

Figure 6. Radio Map.

Once the radio map was defined, the complete system was assembled following the
layout defined by the chosen network topology (Figure 7). During the offline phase, RSSI
values measured by each ESP32 were transmitted according to the Universal Asynchronous
Receiver-Transmitter (UART) protocol (Figure 8); in particular,

. ESP32-E, ESP32-F and ESP32-D acted as Transmitter, sending their acquired data to
ESP32-A, ESP32-C and ESP32-B, respectively.

e ESP32-A and ESP32-C acted as Receiver-Transmitter, forwarding the data received
from the leaves nodes and sending their own RSSI measures to the ESP32-B.

e  ESP32-B acted as a concentrator, receiving and processing its measured RSSI along
with the other received values.

Figure 7. Layout of network topology with ESP32.
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ESP32-E

ESP32—-A ESP32-D ESP32-C
Figure 8. Definition of roles for every ESP32.

3.4. Offline and Online Data Acquisition

During the offline phase, several RSSI values were acquired and filtered for each
different position of the grids in Figure 6. In particular, 130 samples were acquired for
each point of the grid with a sampling rate of 1 Hz; acquired samples were averaged and
finally arranged according to a 15X6 matrix containing the mean values of RSSI of each
grid position of each zone. These average values were exploited for the training phase of
the k-NN classifier. In the online phase, for each zone, the acquisition took place in a time
interval equal to 360 s—420 s.

3.5. Statistical Inferences

The significance of the differences experienced in RSSI measures has been assessed by
means of statistical analysis such as One-Way ANOVA and the Siegel-Tukey Test. In both
analyses, the zones are associated as described in the following:

The Left zone;

The Front zone;

The Right zone;

The Rear zone;

The Driver zone;
The Passenger zone.

SARNANE IR A

3.5.1. One-Way ANOVA

This section shows the results of the ANOVA test for the radio map (Figure 9) and for
the data obtained in the online phase as a result of the classifier (Figure 10). In particular,
the results are shown in terms of box plot; the rectangle is delimited by the first and
third quartiles, divided by the median, while the external segments corresponded to the
minimum and maximum encountered values. In this way, the four intervals that were
equally populated and that corresponded to the quartiles are graphically represented.
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Figure 9. ANOVA Box Plot for Radio Map.
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Figure 10. ANOVA Box Plot for classifier output.

As can be appreciated from Figures 9 and 10, the different positions of the driver
(either inside or outside the vehicle) are significantly distinguished.

3.5.2. Siegel-Tukey Test

Once ANOVA determined the significance of the different values of RSSI, the Siegel—-
Tukey Test was performed to evaluate the correlation of the RSSI value for every zone
where the ESP32s are placed. To evaluate the classifier performance, the Siegel-Tukey Test
was adopted. The result of the Siegel-Tukey Test for the radio map before the processing
is shown in Figure 11, which the highlighted zones Left, Right and Rear overlap, i.e., the
different positions could not be identified. Instead, the Siegel-Tukey results, after the
filtering and classification process (Figure 12), highlight that the different zones are clearly
marked and it is possible to identify the correct zone.

The Tukey test for the radio map shows both visually and statistically that the group
averages for the internal and external zones are significantly different in terms of signifi-
cance « (equal to 0.05), expressing the potential of the system to recognize if the smartphone
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is inside the vehicle or outside. It is also evident, however, that the averages for the external
zones and for the internal zones are not significantly different.

1+ —o— .
2+ —o— |
3L i

Q

=

)

N
4+ |
5F —o— .
6 —o— .
—70 —65 —60 —55 -50 —45 —40 -35

RSSI [dB]
Figure 11. Siegel-Tukey Test for Radio Map.

1+ o .
2+ < .
3+ © .

(5]

=

Q

N
4+ < .
5F = 4
6 e .
—70 —65 —60 —55 —50 —45 —40 —35

RSSI [dB]
Figure 12. Siegel-Tukey Test for classifier output.

3.6. Classification Learner

The Classification Learner was useful in training the models exploited to classify the
data. The dataset consists of columns representing the values acquired by the six ESP32s,
the relative classification by the ESP32-B which has the task of classifying and the expected
classification relating to the area to which they belong. The dataset (2208 x 8) was imported
and reorganized, randomly arranging the matrix rows. The data were divided into 70%
for the training phase and 30% for the testing phase. As for the results, it was possible
to observe:

¢  The Scatter Plot (Figure 13), which helps to examine the characteristics to be included
or excluded, to visualize the training data and the points classified incorrectly, sensing
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RSS! classification value [dB]
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a dispersion of data such as to believe that the system has encountered some difficulties
only in certain areas where it creates a certain overlap of samples; in fact, as shown
in Figure 13, the classifier is able to identify the RSSI values for every zone with an
accuracy of 98.7 %, while the system presents incorrect predictions only for a few
values between Zones 1 and 4.

Model predictions

o=y
ol 1 I I I I
70 65 60 55 50 15 10 35 30 2

RSSI [dB]

Figure 13. Dataset scatter plot.

True Class
w

IS

The Confusion Matrix (Figure 14) identifies the areas where the classifier was accurate.
In fact, the Positive Predictive Value (PPV) and False Discovery Rate (FDR) are defined
as the proportion of correctly classified observations per expected class and the propor-
tion of incorrectly classified observations per intended class, respectively (Figure 15).
In contrast, the True Positive Rate (TPR) and False Negative Rate (FNR) defined as
the proportion of correctly classified observations per real class and is the propor-
tion of observations incorrectly classified per true class, respectively, (Figure 16) [21].
Comparing the true class with the predicted class, noting the number of observations
correctly evaluated, the predictive positive rates are greater than the false negatives
and false detection rates, so the classifier method adopted is capable of identifying
with a high degree of reliability the correct user position in the different zones tested.

375 5
3 231 1
9 327
5 1 214
2 351 3

1 2 3 4 5 6
Predicted Class

Figure 14. Confusion Matrix: Number of observations.
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Figure 15. Confusion Matrix: Positive Predictive Values vs. False Discovery Rate.

True Class

Predicted Class

Figure 16. Confusion Matrix: True Positive Rate vs. False Negative Rate.

In order to quantify the agreement between measured and true values of the measure,
the accuracy was evaluated according to [22]:

TP+ TN
ACCURACY = TP+ TN+ FP+FN ®

where TP is the true positive, TN is the true negative, FP is the false positive and FN is the
false negative.

In particular, the overall accuracy reached by the proposed method thanks to the
filtering stage and the exploited network topology was equal to 98.5%, greater than that
provided by similar solutions presented in the literature [11].

4. Conclusions

The aim of the paper was the definition, implementation and assessment of a model
for a PEPS-BLE system based on micro-controllers, as a means of interaction between
smartphone and vehicle. Once their optimal orientation is defined in space, the complete
system consisting of six micro-controllers in an asymmetrical arrangement, communicating
via UART protocol according to the experimental network topology, called ¥ network, was
created and installed. By adopting the BLE Fingerprinting technique, consisting of an of-
fline phase for the construction of the radio map and an online phase, for the acquisition of
real-time samples and through the use of the K-NN classifier that was previously evaluated
by means of the Kalman Filter, the system has granted an overall accuracy of 98.5%, thus
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allowing to reliably distinguishing whether the user/smartphone is inside or outside the
vehicle. As a comparison with other results reached in the literature, in [11] the accuracy
obtained was equal to 94,6%, thus confirming the benefit brought by the adoption of a
dedicated embedded system to collect data, the selection and implementation of a different
topology network (composed by only six BLE nodes) and the Kalman Filter approach
proposed that ensures an overall system performance enhancement. The method’s perfor-
mance was assessed by considering only one smartphone model; future works will include
a measurement campaign involving different smartphones in order to carry out a more
comprehensive performance assessment and provide the possibility for its deployment as
a commercial solution. To this aim, thanks to a suitable connection of the BLE devices with
the car ECU, it would be possible to allow actions managed directly from the smartphone,
such as unlocking the doors or starting the car, making the user—car relationship smart.
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