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Bączkowicz, D. Repeatability of the

Vibroarthrogram in the

Temporomandibular Joints. Sensors

2022, 22, 9542. https://doi.org/

10.3390/s22239542

Academic Editor: Steve Ling

Received: 15 November 2022

Accepted: 5 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Repeatability of the Vibroarthrogram in the
Temporomandibular Joints
Adam Łysiak 1,*,† , Tomasz Marciniak 2,† and Dawid Bączkowicz 3
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Abstract: Current research concerning the repeatability of the joint’s sounds examination in the
temporomandibular joints (TMJ) is inconclusive; thus, the aim of this study was to investigate the
repeatability of the specific features of the vibroarthrogram (VAG) in the TMJ using accelerometers.
The joint sounds of both TMJs were measured with VAG accelerometers in two groups, study and
control, each consisting of 47 participants (n = 94). Two VAG recording sessions consisted of 10 jaw
open/close cycles guided by a metronome. The intraclass correlation coefficient (ICC) was calculated
for seven VAG signal features. Additionally, a k-nearest-neighbors (KNN) classifier was defined and
compared with a state-of-the-art method (joint vibration analysis (JVA) decision tree). ICC indicated
excellent (for the integral below 300 Hz feature), good (total integral, integral above 300 Hz, and
median frequency features), moderate (integral below to integral above 300 Hz ratio feature) and
poor (peak amplitude feature) reliability. The accuracy scores for the KNN classifier (up to 0.81) were
higher than those for the JVA decision tree (up to 0.60). The results of this study could open up a new
field of research focused on the features of the vibroarthrogram in the context of the TMJ, further
improving the diagnosing process.

Keywords: vibroarthrography; VAG; joint vibration analysis; JVA; temporomandibular disorders;
TMD; TMJ; joint sounds; repeatability; intraclass correlation coefficient

1. Introduction

There are two general means of assessing motion in human joints – quantity and
quality. The quantity of movement can be measured with a simple ruler or a goniometer,
but also with highly specialized motion capture system such as VICON® [1–3].

The quality of the movement is rarely analyzed due to fewer available diagnostic
devices, with vibroarthrography (VAG) being one of them [4–6]. It is a tool for assessing
the quality of motion in human joints [7–9]. It has been used for assessing joint’s sounds,
for example, in the knees, ankles, and temporomandibular joints (TMJ) [5,10,11]. Figure 1
shows exemplary vibroarthrograms of TMJ joints: Figure 1a, asymptomatic, and Figure 1b,
symptomatic.

Temporomandibular disorders (TMD) are the most common cause of orofacial pain [12].
TMD is an umbrella term for different symptoms that may occur in the orofacial area, espe-
cially in temporomandibular joints [12]. It is estimated that the prevalence of TMD in the
general population is between 3 and 12% [13–15], mostly affecting women up to 4–8 times
more often than men, of an age between 16 and 45 years [16–19].
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Figure 1. Exemplary VAG signal for (a) asymptomatic and (b) symptomatic temporomandibu-
lar joints.

Among the pain of mastication muscles and/or pain of the TMJ itself, joint sounds
are one of the most frequent intra-articular joint disorders in this joint with a prevalence
between 21.1% and 73.3% [20]. According to the Diagnostic Criteria for Temporomandibular
Disorders (DC/TMD), which are the most frequently used diagnostic protocol for TMD
for both scientific research and clinical practice, a joint’s sounds may manifest as clicks,
crepitus, or eminence clicks [1]. Joint sounds mainly concern younger patients, i.e., below
27 years old [21].

There are two main clinical methods of examining TMJ’s sounds. One of them is a
simple tactile palpation also used in the (R)DC/TMD protocols [22,23], while the other
is an examination using a stethoscope [24]. Previous research showed that both methods
present low ICC values and a high number of false-positive results regarding crepitus [7].
The above-mentioned premise has led to searching for alternative and more objective
examination methods regarding joint sounds in the TMJ [25–27]. VAG became one of the
potential solutions.

Since the palpatory assessment of mechanical vibrations produced by a moving joint
is subjective and seems inaccurate in its form [6,28–30], the usage of VAG would be an
attempt to render the examination more objective.

The most commonly used device for recording and analyzing vibroacoustic signals is a
joint vibration analysis (JVA) system, which was designed to examine temporomandibular
joints, and consists of two accelerometers and the accompanying software enabling registra-
tion and signal analysis [4,5,31,32]. The built-in software determines features characterizing
vibroacoustic signals on the basis of the frequency spectrum (features described in the
following section). On the basis of these features, the classification of the TMJ pathology in
the form of a JVA decision tree was developed [33].

VAG is based on the analysis of vibroacoustic signals produced by the friction created
inside the joint. Previous studies regarding knee joints showed that OA knees have a greater
frequency, higher peaks, and longer duration concerning the vibroacoustic emissions
compared to healthy knees [6,34,35]. An up-to-date VAG is not only used to determine the
condition of the cartilage, but also for other intra-articular elements of the joints, such as
the menisci in the knee joint and the temporomandibular joint’s disc [5,36]. VAG gives the
opportunity to dynamically examine joint function in movement, unlike static imaging
showing only the structure. Information obtained by both means could be beneficial for
the diagnosing process and treatment options. Additionally, VAG is a very cost-effective
tool to incorporate into the process.

Some authors indicated the interpretation subjectivity of vibroacoustic signal analysis,
emphasizing the low intrarater reliability [7]. On the other hand, the latest papers showed
good and very good repeatability expressed with the intraclass correlation coefficient
(ICC) [4,6,28,31,37].
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Due to inconclusive research results, the aim of this study was to investigate the
repeatability of the specific features of the vibroarthrogram in temporomandibular joints
using accelerometers. Additionally, a k-nearest-neighbor classifier was defined to differen-
tiate TMJ VAG signals into symptomatic and asymptomatic groups, and was more accurate
than the state of the art.

Currently, only a few features describing the vibration signal of the TMJ joint are
defined. By providing evidence for the repeatability of a signal in the measurement chain
proposed in this study, a whole new field of research is opened up. In future research, it
would be possible to define VAG features that allow for the better classification of a signal
(that is, joint diagnosis). VAG signal classification could also be unified with clinical and
scientific examination protocols, such as the (R)DC/TMD questionnaire, improving the
clinical reasoning process in differentiating pathologies, especially since the JVA decision
tree is based on Piper’s classification and is not the most used (R)DC/TMD protocol [38,39].
In addition, the measurement chain described in this publication is used in the diagnosis
of other joints, specifically the knee joint, demonstrating the versatility of the described
approach. Thus, it is possible to study vibroarthrographic signals in the context of other,
as-yet unexplored, joints.

2. Materials and Methods
2.1. Material

The study comprised 94 subjects divided into two groups on the basis of the pres-
ence/absence of joint sounds (clicks representing a disc displacement with reduction
according to RDC/TMD) examined by palpation: study group (n = 47, 10 men, 37 women;
age mean 27.5 (SD 5.6) years)—participants with a presence of joint sounds in the clinical
examination, and control group (n = 47, 15 men, 32 women; age mean 26.8 (SD 6.8) years)—
participants without any sounds or other TMD symptoms in the clinical examination. The
female-to-male (FM ) ratio for the examination group was 3.7:1; for the control group, it
was 2.1:1. There were no significant differences between the groups regarding age and sex
(p > 0.05). The group allocation was based on the RDC/TMD examination protocol. The
study obtained the approval of the ethical committee of the Józef Piłsudski University of
Physical Education, Warsaw, Poland (signature SKE 01-30/2021) in accordance with the
latest revision and standards of the Helsinki Declaration. All participants signed a written
consent form prior to joining the project.

2.2. Methods

The examination was performed with the subjects in a seated position. The VAG
sensors were mounted on a headband placed over the subject’s TMJs (both right and left
at the same time) and fixed with a double-sided adhesive tape to avoid any excessive
motion during the jaw movements (Figure 2). The location of the joints was determined by
palpation performed by a single TMD specialist.

Prior to examination, the subjects were instructed on how to perform the procedure
during the recordings. Each recording session lasted for 20 s, and comprised 10 cycles of
maximal unassisted opening and closing of the jaw guided by a metronome set at 80 beats
per minute. The recording sessions were performed twice, with a 5-min break between
them with the removal and replacement of the device. Sensor placement and all recordings
were performed by the same examiner.

The VAG signals were collected with accelerators (model 4513B-002) and a multichan-
nel Nexus conditioning amplifier (Brüel & Kjær Sound and Vibration Measurement A/S,
Denmark). The data were recorded at a frequency of 5 kHz, signal amplitude of 2 mV, and
recording time of 20 s. The mentioned parameters were chosen on the basis of the pilot
study. The TiePie Multi Channel (version 1.44.11000/0.9.15.3, www.tiepie.com) was used
for the recordings.

www.tiepie.com
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Figure 2. Sensors and their placement on the subject’s joints.

2.3. Statistical Analysis

To obtain the intraclass correlation coefficient (ICC), the two-way mixed-effects,
absolute-agreement, multiple-measurement model was chosen [40], i.e., ICC(A, 1), as
defined in [41]. Confidence intervals (lower: CIL and upper: CIU) were calculated in
accordance with [42]. Specific equations used to obtain both the ICC and the confidence
intervals are included in Appendix A.

The ICC was calculated for three groups: separate study group (symptomatic), sepa-
rate control group (asymptomatic), and the two groups combined. In each group, the ICC
was determined for seven VAG features. According to [43], the sample size used in this
study (94 subjects) was enough to estimate an ICC greater than around 0.7. The control
and the study group comprised 47 subjects each, which, according to [43], was enough
to estimate ICC above around 0.8. Comparing the ICC values calculated for the separate
groups to those for the combined group allowed for us to draw additional conclusions
about the differentiation capabilities of the specific features. When the ICC for the combined
group was lower than the ICC of the separate groups, we could assume that the feature
could be used to distinguish between the separate classes, since a lower ICC value indicates
greater variability between subjects.

2.4. Vag Signal Features

Seven VAG features were calculated in accordance with the previous research men-
tioned earlier. All features were defined in the frequency domain on the spectrum obtained
via fast Fourier transform [31]. Those features were:

1. Total integral (TI): area under the spectrum curve.
2. Integral below 300 Hz (IB3): area under the spectrum up to the 300 Hz mark.
3. Integral above 300 Hz (IA3): area under the spectrum above the 300 Hz mark.
4. Ratio of integral below and above 300 Hz (IBAR): area under the spectrum up to the

300 Hz mark divided by the area under the spectrum curve above the 300 Hz mark.
5. Peak amplitude (PA): value of the highest amplitude of the spectrum.
6. Peak frequency (PF): value of the frequency at which peak amplitude occurred.
7. Median frequency (MF): value of the frequency at which areas under the curves above

and below it are equal.

2.5. Classification

To test the classification capabilities of the studied features, we constructed a simple
k-nearest neighbors (KNN) classifier and compared it to the JVA decision tree classifier [33].
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The KNN classifier [44] was defined for 10 neighbors and Euclidean distance. To
improve classification, features were standardized, i.e., rescaled to have a mean value
of 0 and standard deviation of 1 [45]. Classification metrics were obtained for 10-fold
cross-validation [46].

Previous studies reported the VAG spectrum to be of 0.1 Hz resolution in the 0 to
1000 Hz range [31] or 0 to 500 Hz with a resolution of 1 Hz [47]. In our setup, the VAG signal
was obtained with 5 kHz sampling frequency and lasted for 20 s, resulting in frequencies
up to 2500 Hz with a resolution of 0.05 Hz.

Therefore, three types of features were used as the JVA decision tree classifier:

1. Raw features, i.e., features obtained for the 0–2500 Hz range with a resolution of
0.05 Hz.

2. Norm1 features, i.e., features obtained for the spectral curve up to 1 kHz and resampled
to a resolution of 0.1 Hz [31].

3. Norm2 features, i.e., features obtained for the spectral curve up to 500 Hz, resampled
to a resolution of 1 Hz [47].

Each resampling was performed using simple linear interpolation. Additionally, the
ICC was computed for each feature defined on those two resampled spectra, for which the
results are included in Appendix C.

Classification results were, therefore, obtained for 8 setups: the JVA tree classifier with
raw, norm1, and norm2 features, and the KNN classifier for raw features. Each classification
was performed for two signal groups: the first and second measurements.

3. Results

Intraclass correlation coefficients of the raw features with the corresponding 95%
confidence intervals are included in Table 1. The values of the ICC for the computed
features using normalized spectra are included in Appendix C (Tables A2–A4).

Table 1. Intraclass correlation coefficients (ICC) for each feature with corresponding 95% confidence
intervals (CIs).

Study Group Control Group Combined
Feature LCI ICC UCI LCI ICC UCI LCI ICC UCI

TI 0.826 0.871 0.905 0.685 0.761 0.821 0.779 0.881 0.937
IB3 0.878 0.910 0.934 0.581 0.677 0.755 0.817 0.902 0.949
IA3 0.795 0.847 0.887 0.672 0.752 0.814 0.736 0.856 0.924
IBAR 0.707 0.778 0.834 0.248 0.392 0.519 0.356 0.610 0.780
PA 0.782 0.837 0.879 0.436 0.557 0.657 0.723 0.848 0.919
PF 0.024 0.183 0.332 0.291 0.431 0.553 0.030 0.352 0.606
MF 0.669 0.748 0.811 0.268 0.410 0.534 0.356 0.609 0.779

Figures 3–5 include the box plots of raw, norm1 and norm2 features, respectively. The
blue box represents the interquartile range of samples inside the class, the red line inside
the box indicates the median, and the whiskers represent the rest of the values that were
not considered to be outliers. Outliers are denoted by red crosses. The box plots were
generated including the values of the features from both measurements. Corresponding
figures for the first and the second measurements are separately included in Appendix D
(Figures A1–A6).
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Figure 3. Box plots of raw features: (a) TI feature, (b) IB3 feature, (c) IA3 feature, (d) IBAR feature,
(e) PA feature, (f) PF feature, (g) MF feature.

Figure 4. Boxplots of the norm1 features: (a) TI feature, (b) IB3 feature, (c) IA3 feature, (d) IBAR
feature, (e) PA feature, (f) PF feature, (g) MF feature.

A comparison of the classification metrics (true-positive and true-negative rates, and
accuracy) between different classifiers is shown in Table 2. The confusion matrices of each
classifier are3 included in Appendix E (Figures A7–A10).

Table 2. Classification comparison for different normalizations. TPR, true-positive rate; TNR, true-
negative rate; ACC, accuracy.

Classifier TPR TNR ACC

JVA—raw features, the first signal 0.000 1.000 0.500
JVA—raw features, the second signal 0.000 1.000 0.500
JVA—norm1 features, the first signal 0.000 1.000 0.500
JVA—norm1 features, the second signal 0.000 1.000 0.500
JVA—norm2 features, the first signal 0.298 0.894 0.596
JVA–norm2 features, the second signal 0.298 0.830 0.564
KNN—raw features, the first signal 0.915 0.660 0.787
KNN—raw features, the second signal 0.915 0.702 0.809
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Figure 5. Box plots of norm2 features: (a) TI feature, (b) IB3 feature, (c) IA3 feature, (d) IBAR feature,
(e) PA feature, (f) PF feature, (g) MF feature.

4. Discussion
4.1. ICC

According to Koo and Li [40], ICC values can indicate poor, moderate, good, and
excellent reliability when they fall within the ranges of 0.0–0.5, 0.5–0.75, 0.75–0.9, and
0.9–1.0, respectively. For the combined groups, ICC indicated excellent reliability for the
integral below 300 Hz feature. The total integral, integral above 300 Hz, and peak amplitude
features had good reliability. Moderate reliability was determined for the IBAR and median
frequency features. Only the peak amplitude had an ICC value below 0.5, indicating poor
reliability. However, according to [43], for the sample size of 94 participants used in this
study, only ICC values of around 0.7 and above were reasonably interpretable.

The values of the ICC calculated for the separate control group were generally much
lower, with only two features, i.e., total integral and the integral above 300 Hz, indicating
good reliability. This means that the variability of the features’ values between participants
was just a little greater than that between the measurements of the same participant. This
can indicate that VAG signals for participants in the control group were similar in terms of
mentioned features. This was to be expected to some extent, since the features were defined
to differentiate between symptomatic and asymptomatic joints in the first place. The values
of the study group were generally significantly greater than those of the control group.
This means that the variability between participants was much greater than that between
measurements of the same joint. Again, however, the specific values of the ICC determined
for the control and study groups alone are to be taken with a grain of salt. The reliable
interpretation of ICC values with a sample of 47 subjects is possible for values above around
0.8 [43]. Additional tables regarding the power analysis of the ICC calculation [48] are
included in Appendix B.

4.2. Differences in Features between Groups

Box plots from Figures 3–5 indicate that the values of the total integral, integral
below 300 Hz, integral above 300 Hz, and peak amplitude features were higher for the
symptomatic group. This suggests that, in general, symptomatic joints generate signals of
higher energy. The ratio (IBAR) feature indicates that, for most signals in both groups, for
the raw and norm1 features, the integral above 300 Hz was lower than the integral below
300 Hz. This difference was more profound in the asymptomatic group. Figure 5 shows
that, for norm2 features (i.e., spectrum resampled to 1 Hz resolution up to 500 Hz), the
ratio was also higher is control group. However, because of spectral normalization, the
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values of the IBAR feature were generally lower than 1, i.e., the integral above 300 Hz was
higher than the integral below 300 Hz. The peak frequency and median frequency features
indicate that the spectrum tended to lower values in the symptomatic group.

4.3. Classification

The JVA decision tree classifier did not work with the raw and norm1 features, classify-
ing each signal as generated by an asymptomatic joint. A couple of signals for which the
features were computed using the norm2-normalized spectrum were classified as symp-
tomatic. For this classification setup, accuracy was 0.596 and 0.564 for the first and the
second measurements, respectively. Low accuracy is to be expected, however, since the
JVA decision tree [33] was defined for a completely different signal acquisition setup.

The KNN classifier achieved 0.787 and 0.809 accuracy scores for the first and the
second signals, respectively. This may be considered to be rather low. However, only
features known from the literature using different setups were considered.

Features describing the vibroarthrogram in the same measurement setup but a different
joint [6,49] could prove to be much more informative. This will be carried out in future
studies. Frequency range maps [49] could also be obtained using independent feature
evaluation coefficients of the classification algorithm [50].

4.4. Comparison to Previous Research

Designations can be found in the literature on the use of JVA features of vibroacoustic
signals that best characterize individual TMJ pathologies. The research results indicate
that the characteristics of vibroacoustic signals that best describe disk displacement with
reduction (IIa according to the (R)DC/TMD) are: (1) high peak amplitude values [33],
(2) total integral values above 80 Pa (even reaching 1000 Pa in sharp displacements) [33],
(3) and high integral parameter below 300 Hz values [33,51].

In the current study, these parameters were characterized by good (PA and TI) and
excellent (IB3) repeatability between the two measurements, which suggests that they
would be valuable predictors in differentiating study-group joint clicks from those of the
control group. Further analysis of the results confirmed this assumption, because all of them
(PA, TI, and IB3) significantly differed in both groups, where the presence (or lack) of joint
clicks was the main criterion for qualifying participants to the study and control groups. PA
and IB300 features showed the highest differences between the groups among all analyzed
features of the VAG signals. All “integral” features were higher for the symptomatic group,
further confirming the previous findings.

In connection with the postulation outlined by the authors of the above publications
to conduct further research on this problem, work has emerged over the years showing
that vibroacoustic signals registered in the temporomandibular joint are repeatable [4,5,31].
The same results were presented by the authors using a piezoelectric accelerometer while
examining other peripheral joints of the knee or ankle [6,28,37].

In conclusion, the results of this research are in line with previous reports on the
proposed parameters of vibroacoustic signals best illustrating joint clicks.

The previous literature of the acoustic emission analysis of different joints (such as the
knee joint) [52–54] is quite informative, especially in the context of healthy/osteoarthritis
distinction (classification accuracies of over 90%). Therefore, VAG analysis in the TMJ
context requires much more further research, especially in the area of feature extraction.

4.5. Further Research

Currently, there are only a few defined features of the vibration signals of the TMJ
joint. However, by providing evidence for the repeatability of signals in the proposed
measurement chain in this study, an entirely new field of research has opened up.

Future research could benefit from focusing on the VAG features used to diagnose
other joints, such as the knee. This would allow for a more accurate diagnosis of the TMJ. Ex-
emplary features could include previously used measures in knee-joint VAG analysis. Those
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include time-domain features, such as rectified average value, root mean square value,
and shape factors [55,56], and frequency-domain features, such as spectral entropy [57].
Additional preprocessing such as (ensemble) empirical mode decomposition [58,59] could
also be studied in the context of TMJ.

Additionally, since the measurement chain used in this study was accurate for both
the TMJ and knee joint [6], it would be of great value to study vibroarthrographic signals in
the context of other joints.

4.6. Conclusions

Most of the investigated features showed moderate-to-excellent reliability, indicating
a high repeatability of VAG signals, thus allowing for diagnostic usage for further research.

Temporomandibular joint sound diagnostics using the KNN classifier showed higher
accuracy scores compared with those of the JVA decision tree, but the results could still be
considered to be rather low.
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Appendix A. Equations Used to Calculate the ICC and It’s Confidence Intervals

To obtain the intraclass correlation coefficient (icc), the two-way mixed-effects, absolute-
agreement multiple-measurements model was chosen [40], i.e., ICC(A, 1), as defined
in [41]:

ICC =
MSBS − MSE

MSBS + (k − 1) · MSE + (k/n) · (MSBM − MSE)
, where: (A1)

MSBS is the value of the mean square between subjects, MSE is the mean square error,
MSBM is the mean square between measurements, k is the number of measurements for
each subject, and n is the number of subjects. Confidence intervals (lower: CIL and upper:
CIU) were calculated in accordance with [42]:

CIL =
n · (MSBS − F∗MSE)

F∗[k · MSBM + (kn − k − n) · MSE] + n · MSBS
(A2)

CIU =
n · (F∗MSBS − MSE)

k · MSBM + (kn − k − n) · MSE + n · F∗ · MSBS
(A3)

where F∗ and F∗ denote 97.5-th percentiles of the F distribution with n − 1 degrees of
freedom (DOF) in the numerator and ν DOF in the denominator for F∗, and inversely for F∗.

ν =
(a · MSBM + B · MSE)2

(a·MSBM)2

k−1 + (b·MSE)2

(n−1)·(k−1)

(A4)

a =
k · (ICC)

n · (1 − ICC)
(A5)

b = 1 +
k · ICC · (n − 1)

n · (1 − ICC)
(A6)

Appendix B. Post Hoc Power Analysis

Post hoc power analysis was conducted for the ICC values from Table 1 according
to [48]. Power values were obtained for an alpha level of 0.05, and the null hypothesis of
ICC was equal to 0.0 and 0.5. Results are included in Table A1.

Table A1. Post hoc power analysis of the ICC for each feature in Table 1. The columns of power (0.0)
and power (0.5) correspond to power values obtained for the null hypothesis of ICC equal to 0.0 and
0.5, respectively.

Study Group Control Group Combined

Feature ICC Power
(0.0)

Power
(0.5) ICC Power

(0.0)
Power
(0.5) ICC Power

(0.0)
Power
(0.5)

TI 0.871 1.000 1.000 0.761 1.000 0.862 0.881 1.000 1.000
IB3 0.910 1.000 1.000 0.677 1.000 0.460 0.902 1.000 1.000
IA3 0.847 1.000 0.997 0.752 1.000 0.828 0.856 1.000 1.000
IBAR 0.778 1.000 0.915 0.392 0.802 0.000 0.610 1.000 0.337
PA 0.837 1.000 0.994 0.557 0.990 0.077 0.848 1.000 1.000
PF 0.183 0.241 0.000 0.431 0.879 0.000 0.352 0.944 0.000
MF 0.748 1.000 0.811 0.410 0.840 0.000 0.609 1.000 0.331
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Appendix C. Expansion of ICC Analysis

Table A2. Intraclass correlation coefficients (ICC) for each feature computed on norm1-normalized
spectrum with corresponding 95% confidence intervals (CI).

Study Group Control Group Combined
Feature LCI ICC UCI LCI ICC UCI LCI ICC UCI

TI 0.676 0.902 0.928 0.676 0.755 0.949 0.817 0.902 0.949
IB3 0.579 0.907 0.932 0.579 0.676 0.947 0.813 0.900 0.947
IA3 0.665 0.885 0.915 0.665 0.746 0.937 0.779 0.881 0.937
IBAR 0.299 0.785 0.839 0.299 0.438 0.782 0.362 0.614 0.782
PA 0.465 0.853 0.891 0.465 0.581 0.926 0.743 0.860 0.926
PF 0.163 0.434 0.555 0.163 0.314 0.624 0.059 0.377 0.624
MF 0.001 0.843 0.884 0.001 0.161 0.769 0.334 0.594 0.769

Table A3. Intraclass correlation coefficients (ICC) for each feature computed on norm2-normalized
spectrum with corresponding 95% confidence intervals (CI).

Study Group Control Group Combined
Feature LCI ICC UCI LCI ICC UCI LCI ICC UCI

TI 0.877 0.909 0.934 0.822 0.719 0.788 0.822 0.905 0.950
IB3 0.860 0.896 0.924 0.800 0.658 0.740 0.800 0.893 0.944
IA3 0.860 0.896 0.924 0.777 0.704 0.777 0.777 0.880 0.937
IBAR 0.636 0.722 0.790 0.373 0.507 0.616 0.373 0.621 0.786
PA 0.691 0.766 0.825 0.629 0.537 0.641 0.629 0.791 0.887
PF 0.004 0.164 0.316 0.000 0.378 0.507 0.000 0.286 0.558
MF 0.705 0.777 0.833 0.506 0.579 0.676 0.506 0.712 0.842

Table A4. Best normalization for intraclass correlation coefficients (ICC) based on Tables 1, A2, and A3.

Study Group Control Group Combined
Feature LCI ICC UCI LCI ICC UCI LCI ICC UCI

TI norm2 norm2 norm2 norm2 raw norm1 norm2 norm2 norm2
IB3 raw raw raw norm2 raw norm1 raw raw raw
IA3 norm2 norm2 norm2 norm2 raw norm1 norm1 norm1 norm1
IBAR raw norm1 norm1 norm2 norm2 norm1 norm2 norm2 norm2
PA raw norm1 norm1 norm2 norm1 norm1 norm1 norm1 norm1
PF norm1 norm1 norm1 raw raw norm1 norm1 norm1 norm1
MF norm2 norm1 norm1 norm2 norm2 norm1 norm2 norm2 norm2

Appendix D. Boxplots for Separate Measurements

Figures A1–A6 include box plots of each feature for the first and the second measure-
ments, respectively. Box plots were very similar between the measurements. Therefore, the
interpretation of the box plots obtained for the separate measurements was the same as
that of the combined measurements (box plots in Figures 3–5).
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Figure A1. Box plots of raw features obtained for the first measurement: (a) TI feature, (b) IB3 feature,
(c) IA3 feature, (d) IBAR feature, (e) PA feature, (f) PF feature, (g) MF feature.

Figure A2. Box plots of raw features obtained for the second measurement: (a) TI feature, (b) IB3
feature, (c) IA3 feature, (d) IBAR feature, (e) PA feature, (f) PF feature, (g) MF feature.
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Figure A3. Box plots of norm1 features obtained for the first measurement: (a) TI feature, (b) IB3
feature, (c) IA3 feature, (d) IBAR feature, (e) PA feature, (f) PF feature, (g) MF feature.

Figure A4. Box plots of norm1 features obtained for the second measurement: (a) TI feature, (b) IB3
feature, (c) IA3 feature, (d) IBAR feature, (e) PA feature, (f) PF feature, (g) MF feature.
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Figure A5. Box plots of norm2 features obtained for the first measurement: (a) TI feature, (b) IB3
feature, (c) IA3 feature, (d) IBAR feature, (e) PA feature, (f) PF feature, (g) MF feature.

Figure A6. Box plots of norm2 features obtained for the second measurement: (a) TI feature, (b) IB3
feature, (c) IA3 feature, (d) IBAR feature, (e) PA feature, (f) PF feature, (g) MF feature.
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Appendix E. Confusion Matrices of the Classifiers

Figure A7. Confusion matrices for raw features used in the JVA decision tree classifier for the (a) first
and (b) second signals.

Figure A8. Confusion matrices for norm1 features used in the JVA decision tree classifier for the
(a) first and (b) second signals.

Figure A9. Confusion matrices for norm2 features used in the JVA decision tree classifier for the
(a) first and (b) second signals.
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Figure A10. Confusion matrices for raw features used in the KNN classifier for the (a) first and
(b) second signals.

References
1. Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al.

Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of
the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J. Oral Facial Pain Headache 2014,
28, 6–27. [CrossRef] [PubMed]

2. Svensson, M.; Lind, V.; Löfgren Harringe, M. Measurement of Knee Joint Range of Motion with a Digital Goniometer: A Reliability
Study. Physiother. Res. Int. 2019, 24, e1765. [CrossRef] [PubMed]

3. Prodoehl, J.; Thomas, P.; Krzak, J.J.; Hanke, T.; Tojanic, J.; Thomas, J. Effect of Starting Posture on Three-Dimensional Jaw and
Head Movement. J. Oral Maxillofac. Res. 2022, 13. [CrossRef] [PubMed]

4. Bakalczuk, M.; Berger, M.; Ginszt, M.; Szkutnik, J.; Solomiia, S.; Majcher, P. Intra-Rater Reliability of TMJ Joint Vibration—A Pilot
Study. Eur. J. Med. Technol. 2017, 14, 5.

5. Sharma, S.; Crow, H.C.; Kartha, K.; McCall, W.D.; Gonzalez, Y.M. Reliability and Diagnostic Validity of a Joint Vibration Analysis
Device. BMC Oral Health 2017, 17, 56. [CrossRef]
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