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Abstract: With the rise in new soft robotic applications, the control requirements increase. Therefore,
precise control methods for soft robots are required. However, the dynamic control of soft robots,
which is required for fast movements, is still an open topic and will be discussed here. In this contri-
bution, one kinematic and two dynamic control methods for soft robots are examined. Thereby, an
LQI controller with gain scheduling, which is new to soft robotic applications, and an MPC controller
are presented. The controllers are compared in a simulation regarding their accuracy and robustness.
Additionally, the required implementation effort and computational effort is examined. For this
purpose, the trajectory tracking control of a simple soft robot is studied for different trajectories. The
soft robot is beam-shaped and tendon-actuated. It is modeled using the piecewise constant curvature
model, which is one of the most popular modeling techniques in soft robotics. In this paper, it is
shown that all three controllers are able to follow the examined trajectories. However, the dynamic
controllers show much higher accuracy and robustness than the kinematic controller. Nevertheless,
it should be noted that the implementation and computational effort for the dynamic controllers
is significantly higher. Therefore, kinematic controllers should be used if movements are slow and
small oscillations can be accepted, while dynamic controllers should be used for faster movements
with higher accuracy or robustness requirements.

Keywords: soft robotics; control; dynamic control; kinematic control; piecewise constant curvature

1. Introduction

Soft material robots are an emerging and fast-growing field of research with poten-
tial applications in various areas. In contrast to conventional robots, which are usually
fabricated out of high-stiffness materials such as steel, soft robots are mostly fabricated
out of soft materials such as silicone or foam. The material stiffness of soft robots is often
in the range of 104 . . . 109 Pa, which is comparable to the stiffness of biological tissue [1].
Due to the use of soft materials, very large deformations often occur. These are usually
used to allow movements of the soft robot without the use of separate rigid joints. Typi-
cal applications of soft robots are medical applications and all sorts of human–machine
interactions [2].

For the practical application of soft robot, feedback control is often required. As soft
robots usually have a very task-specific design, the control methods used are often very
specific as well. In this contribution, the focus is mainly on task-space control for trajectory
tracking. In Section 1.1, a short overview over existing control approaches is given.

Controller design often requires a model. One of the most popular modeling tech-
niques for soft robots, which will also be used in this paper, is the piecewise constant
curvature (PCC) model [3]. This model subdivides a soft robot into sections with constant
curvature. The PCC model is described in more detail in Section 2.2.

In this paper, one so-called kinematic control method and two dynamic control meth-
ods for tip-position trajectory tracking control of a tendon-actuated soft robot are compared
in simulation. For each of the controllers, the achievable accuracy for trajectory tracking, the
robustness against parameter uncertainty, the implementation effort and the computation
time are examined. The kinematic control method is a model-free closed-loop control

Sensors 2022, 22, 9464. https://doi.org/10.3390/s22239464 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239464
https://doi.org/10.3390/s22239464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3882-537X
https://orcid.org/0000-0003-0330-2939
https://orcid.org/0000-0001-5795-7610
https://doi.org/10.3390/s22239464
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239464?type=check_update&version=1


Sensors 2022, 22, 9464 2 of 24

approach based on [4,5]. The first examined dynamic control method is a linear quadratic
control approach with integral action and gain scheduling, which is novel to soft robotics.
The second dynamic control method is a model predictive control approach, which has
already been used for the control of different soft robots in the literature. Both dynamic
control methods are model-based and closed loop. A PCC model of the soft robot is used
for the simulation and for the design of the two model-based controllers.

1.1. Related Work

There is a large amount of work related to the control of soft robots. In the follow-
ing, a short overview is given and summarized in Table 1. The control methods used
for soft robots can be divided into two categories: model-based and model-free control.
Furthermore, a distinction can be made between kinematic control, where the dynamics
of the soft robot are neglected, and dynamic control, where the dynamics of the soft robot
are considered [6]. In soft robotics literature, the terms “static controller” and “kinematic
controller” are often used interchangeably. Moreover, a distinction can be made between
open-loop and closed-loop control [2].

Table 1. Comparison of state-of-the-art control approaches for soft robots.

Class Study Model Control Approach Type

kinematic,
model-
based

[7] PCC direct inversion of kinematics open-loop
[8,9] PCC differential inversion of kinematics open-loop
[10] Cosserat rod differential inversion of kinematics open-loop
[11] PCC inversion of kinematics by optimization open-loop

[12] PCC inversion of kinematics with Jacobian transpose
approach open-loop

kinematic,
model-
free

[13] - learning of inverse kinematics with NN; learning
on model open-loop

[14] - learning of inverse kinematics with NN; learning
on physical robot open-loop

[4,5,15] - learning of inverse kinematics with NN closed-loop

[16] -
learning of inverse kinematics with multitask
Gaussian Process (open-loop) + locally weighted
projection regression (closed-loop)

closed-loop

[17,18] - online learning of kinematic Jacobian by
incrementally moving each actuator open-loop

dynamic,
model-
based

[19] PCC sliding mode closed-loop
[20–23] PCC PD closed-loop
[24] rigid multibody system MPC closed-loop

[25] linear model + online
Jacobian update MPC closed-loop

[26] PCC adaptive control closed-loop
[27] port-Hamiltonian energy-shaping closed-loop

dynamic,
model-
free

[28–30] - reinforcement-learning with Markov decision
process closed-loop

[31] - supervised learning with NN closed-loop
[32–34] - MPC with NN model of soft robot closed-loop

1.1.1. Model-Based Kinematic Control

Model-based kinematic controllers are the most widely used controllers in soft
robotics [6]. Most model-based controllers use the piecewise constant curvature (PCC)
model [1]. This model is described in Section 2.2 in more detail. However, other models
such as the Cosserat rod model are also used [6].

One approach for open-loop model-based kinematic control is to directly invert the
forward kinematics, as, e.g., shown by [7]. For the soft robot considered in [7], the deforma-
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tion depends linearly on the actuation variables. This allows the direct inversion. Since the
system is underactuated, the Moore–Penrose pseudoinverse is used.

For more complex soft robots, the relationship between actuation variables and control
variables is usually nonlinear and not unique. Therefore, the inverse kinematics cannot
be calculated directly. A popular approach here is to use differential inverse kinematics,
as, e.g., shown by [8–10]. Other approaches to obtain the inverse kinematics are to solve
the inversion as an optimization problem [11] or to use an iterative Jacobian transpose
approach [12].

1.1.2. Model-Free Kinematic Control

An alternative to model-based kinematic control is model-free kinematic control.
Model-free approaches are especially popular for highly nonlinear and nonuniform systems
that are difficult to model [6]. In model-free kinematic control, the mapping of actuation
variables to control variables is usually learned by a neural network. Model-free kinematic
controllers were first proposed in [13]. In that approach, the inverse kinematics of a fully
actuated robot are directly learned with a neural network. The training data for the neural
network are obtained from the forward kinematics in simulation. In similar approaches, as,
e.g., [14], the training data are obtained experimentally from a physical robot.

For redundant soft robots, the relationship between actuation variables and control
variables is usually not unique. To achieve a smooth movement, the current configuration
of the soft robot has to be considered for the determination of the control variables. This
is, e.g., carried out in [4,5,15]. As the current configuration of the soft robot is needed for
control, this is a closed-loop control approach. In [16], a combination of open-loop and
closed-loop control is used. For the open-loop controller, the kinematics are learned using
the multitask Gaussian Process method [35]. The closed-loop control behavior is learned
using locally weighted projection regression (LWPR).

Offline training, which is usually very time-consuming, can be fully avoided by using
online learning techniques, as, e.g., presented in [17,18]. There, the kinematic Jacobian is
determined online by incrementally moving each actuator. However, with this approach,
only very low control frequencies can be archived.

1.1.3. Model-Based Dynamic Control

For faster movements and higher accuracy requirements, kinematic control is often
not sufficient as the dynamics of the soft robot cannot be neglected anymore. This can be
solved by using model-based dynamic control. Compared to kinematic control, dynamic
control is much more computationally expensive [6]. Thereby, the PCC model is also one of
the most widely used models for model-based dynamic control of soft robots.

One of the first model-based dynamic controllers for soft robots was proposed in [19].
The soft robot is modeled with the PCC model, and the controller is a sliding mode con-
troller. In [20], a closed-loop PD controller based on the same kinematic and dynamic model
is presented. Similar control approaches for slightly different soft robots are presented
in [21–23].

Another very popular control approach that has been successfully applied to soft
robots is model predictive control. Model predictive controllers (MPCs) are usually com-
putationally very expensive since, in every control step, the control output is obtained by
solving an optimization problem. Therefore, mostly comparatively simple dynamic models
of the soft robot are used. In [24], an MPC for an inflatable soft robot is presented. How-
ever, in the model used, the soft robot is assumed to be rigid. In [25], a model predictive
control approach for soft robots is presented using a linear model with an online update of
the Jacobian.

Another approach from classic nonlinear control is adaptive control. Adaptive control
is robust to model uncertainties. This is important for in robotics, as, often, model param-
eters can only be approximated. It is used in [26] for the control of a multi-segment soft
robot in 3D. One disadvantage of the formulation of the controller used in [26] is that it
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can only be used for fully actuated systems. However, soft robots are often underactuated.
Finally, in [27], a control law constructed with an energy-shaping approach for a soft robot
modeled as a port-Hamiltonian system is presented.

1.1.4. Model-Free Dynamic Control

Model-free dynamic controllers are especially used if no model of the soft robot is
available or the available models are too slow for real-time control applications. This is
often the case if soft robots are very complex. However, they strongly depend on the
availability of training data.

Most model-free dynamic controllers are based on machine learning. In [28–30],
different reinforcement learning approaches are presented based on a description of the
control problem as a Markov decision process. For reinforcement learning, the controllers
are usually pretrained in simulation, then the training is continued on the physical robot.
A supervised learning approach based on neural networks is presented in [31]. In these
approaches, the control output is directly obtained by machine learning.

An alternative approach is to use control concepts known from model-based control
but use machine learning techniques to represent the model of the soft robot. This is, e.g.,
conducted for model predictive controllers in [32–34] for different soft robots.

2. Modeling

In this contribution, a tendon-driven soft robot arm is considered as an application
example (see Figure 1). In the following, the used simulation model is presented. First, the
design of the model is discussed. Then, the basic piecewise constant curvature model is
presented to describe the soft robot. Finally, the inclusion of the cable actuation is discussed.

tendons

Figure 1. Cut through the soft robot.

2.1. Simulation Model of the Used Soft Robot

For the comparison of the controllers in this contribution, the control of a simple
tendon-actuated soft robot, as shown in Figure 1, is examined in simulation. The model
is based on a soft robot of long, slender shape, whose cross-section forms a circular ring
with an outer radius of R = 50 mm and an inner radius of r = 25 mm. The soft robot
has a total length of Ltotal = 500 mm and a Young’s modulus of E = 7.32× 105 Pa. In
this contribution, stiffness proportional damping is assumed with a damping constant
of Eµ = 36.6× 103 Nms. For the actuation, three pairs of tendons run along the top and
bottom of the soft robot. The tendons have a distance of rcable = 25 mm to the neutral fiber.
These geometric and material properties are summarized in Table 2. For simplicity, only
movements in the xz-plane are considered and modeled. However, this can be extended to
3D in a straight forward way. In the following, only the discretized version of the soft robot
is described in more detail.
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For the discretization, a PCC model with six segments with constant curvature is used.
In Section 2.2, the PCC model is described in more detail. The discretized soft robot is
shown schematically in Figure 2. For the complete description of the robot configuration,
the curvatures βi of the individual segments in the xz-plane are sufficient. However, for the
full dynamical model, the rate of change of the curvature β̇i is also required. The model is
actuated by three tendon pairs, which run along the outside of the robot. The first tendon
pair (indicated in red) ends at the second disk, the second tendon pair (indicated in green)
ends at the fourth disk and the third tendon pair (indicated in blue) ends at the sixth disk.
The tendon forces of the three tendon pairs are the control variables u1, u2, u3 of the soft
robot and can be summarized to the vector of control variables u = [u1 u2 u3]

T.

1
β3

x5

z5

x6

z6

elastic link disktendon

x

z

Figure 2. Schematic representation of the 2D system with 6 segments described as the PCC model.

Because the soft robot is assumed to be inextensible, only the force difference between
the upper and lower tendon of each tendon pair is relevant. As tendons can only transmit
pulling forces, it makes sense to assume that for each tendon pair one tendon transmits
no force while the other one transmits the required pulling force. Therefore, only one
control variable is needed for each tendon pair. A positive sign indicates that the force
has to be applied at the upper tendon; a negative sign indicates that the force has to be
applied at the lower tendon. In this contribution, it is assumed that all states βi and β̇i are
accessible. In practical applications, often, only the curvatures βi can be measured directly
by sensors integrated into the soft robot, as, e.g., shown in [36–39]. The rate of change β̇i
of the curvature usually cannot be measured directly due to the lack of suitable sensors.
However, as shown in [39], the rate of change β̇i of the curvature can, e.g., be determined
by numerical differentiation with good accuracy.

Table 2. Parameters of the simulation model.

Variable Description Value

Ltotal total length 500 mm
r inner radius 25 mm
R outer radius 50 mm

rcable distance of cables to centerline 25 mm
E Young’s modulus 7.32× 105 Pa

Eµ damping constant 36.6× 103 Pas

2.2. Piecewise Constant Curvature Model

The piecewise constant curvature (PCC) model is one of the most popular modeling
techniques for soft robots. It uses a state-space model to describe the soft robot. The method
is presented by [3,40], among others. Compared to other techniques, such as the Cosserat
rod theory, it uses fewer modeled degrees of freedom to represent a soft robot. This makes
the model less complex than other methods. With a sufficiently fine discretization, it can
still reflect the kinematics and dynamics of a soft robot sufficiently well.

The PCC model discretizes a soft robot by a series of N segments with constant
curvature. In Figure 2, the discretization of a tendon-actuated soft robot with 6 segments



Sensors 2022, 22, 9464 6 of 24

is shown. Each of these segments consists of a disk, which is connected to the disk of
the previous segment by an elastic link. The inertias and masses of the continuous soft
robot are lumped in the disks. The properties of the elastic links are chosen to reflect the
elasticity and damping of the real system. According to the model assumption, the links
are massless, homogeneous cylinders with constant cross-sections, which have a constant
elastic modulus E and constant shear modulus. The states of this model are the curvatures βi
of the sections as well as their derivatives β̇i. This modeling approach is able to represent
bending deformations and, in the three-dimensional case, also torsion. Deformations due
to shear or strain cannot be represented by this method. However, their influence on the
total deformation of the robot is often small compared to bending and torsion and therefore
can often be neglected. One advantage of using this model in control is that the curvature
of the sections can be directly measured with a suitable sensor on the real robot, while the
derivatives of the curvature can be obtained by numerical differentiation [39]. Therefore, in
contrast to other methods, there is no need for an advanced state observer.

Following [40], the position pi,local of disk i relative to the position of the previous
disk i− 1 can be described in a local coordinate frame using the curvatures βi as

pi,local =
[

1−cos(βi`i)
βi

0 sin(βi`i)
βi

]T
, (1)

where `i is the length of segment i. The global location vector pi of the i-th segment results
from the location vector of the previous segment and its rotation matrix Ri−1 to

pi =

{
pi,local i = 1
pi−1 + Ri−1 pi,local i > 1

. (2)

The rotation matrix between the local coordinate systems of two neighboring segments
is obtained in the two-dimensional case by a simple rotation by the angle θi = βi`i along
the y-axis. By concatenating these rotations, the rotation matrix from the local coordinate
system of the i-th disk to the reference system results in

Ri =

{
Ri,local i = 1
Ri−1Ri,local i > 1

. (3)

The equation of motion also requires the forces fi and torques `i acting on each
segment. These act at the center of mass of the disk belonging to each segment. The force
vector is calculated as

fi = f̂i + fi,actuation, (4)

where f̂i are external forces and fi,actuation are forces resulting from the actuation. The torque
acting on disk i includes the bending torques `i,bnd and `i+1,bnd, the damping torques `i,dmp

and `i+1,dmp, the sum of the external torques ˆ̀ i and the torques due to actuation `i,actuation.
This results in

`i =

{
`i,bnd − `i+1,bnd + `i,dmp − `i+1,dmp + ˆ̀ i + `i,actuation i < N
`i,bnd + `i,dmp + ˆ̀ i + `i,actuation i = N

. (5)

Under the assumption of linear-elastic material behavior, the bending torques can be
calculated as

`i,bnd = −EJyyβiey, (6)
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where Jyy is the second moment of area around the y-axis, and ey is the unit vector along the
y-axis. In an analogous way, the damping torques can be determined under the assumption
of stiffness-proportional viscous damping to

`i,dmp = −EµJyy β̇iey. (7)

Here, the product Eµ is the damping constant. The derivation of the actuation forces fi,actuation
and actuation torques `i,actuation for a tendon-actuated soft robot is described in Section 2.3.

With the mass mi and inertia tensor Ji for all disks, the balance of linear and angular
momenta can be established for all disks. Using the direct kinematics and the derived
forces fi and torques `i, from this follows the equation of motion of the form:

M(x̄) ¨̄x = h(x̄, ˙̄x, t). (8)

Here, M(x̄) is the mass matrix, and x̄ =
[
β1 β2 . . . βN

]T is the vector of generalized

coordinates. With x =
[
x̄ ˙̄x

]T, this can also be written as a state-space model:

ẋ =

[
˙̄x

M−1h

]
︸ ︷︷ ︸

f (t,x)

. (9)

As an output function,

y =

[
1 0 0
0 0 1

]
· pN(x)︸ ︷︷ ︸

g(x)

(10)

is chosen, which returns the tip position. However, depending on the control problem, dif-
ferent choices are possible. The entire nonlinear differential equation can thus be written as

ẋ = f (t, x),

y = g(x).
(11)

2.3. Actuation Forces from Tendon Actuation

Besides pneumatic actuation, tendon actuation, which is used in this contribution, is
one of the most popular actuation methods for soft robots. As tendons can only transmit
pulling forces, in the planar case, pairs of two tendons have to be used to allow bending
the robot in both directions. Thereby, one tendon is placed at the upper side of the robot
and the other one at the lower side of the robot. The tendon configuration considered in
this work is described in Section 2.1 in more detail.

For the calculation of the actuation forces, friction in the tendon guidance is neglected.
Therefore, for each tendon, the tendon force Fq is constant over the whole tendon length.
Here, the index q describes the position of the tendon in the tendon pair, where the upper
tendon of the tendon pair has the index 1, and the lower tendon has the index 2. Each
tendon pair can be considered separately. Therefore, in the following, only one tendon pair
is considered. If, as in this contribution, more than one tendon pair is used, the forces and
torques of the different tendon pairs can simply be summed up. A tendon pair can either
pass through a disk, end at the disk or not reach this disk. It is assumed that the tendon
pair passes the first k− 1 disks and ends at disk k. Obviously, the largest actuation forces
act on the disk where the tendon pair ends, and no actuation forces act on disks that are not
reached. Note that actuation forces also act on all disks that the tendon pair only passes.

For the calculation of the actuation forces, the routing points of the tendons through
the disks are of importance. These are shown in Figure 3 for the configuration of tendons
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used in this contribution. The locations of the routing points in relation to the center of
gravity Si of a disk are given by

ri,1,local = rtendon
[
1 0 0

]T, (12)

ri,2,local = rtendon
[
−1 0 0

]T. (13)

In global coordinates, these can be written as

ri,1 = pi + Riri,1,local, (14)

ri,2 = pi + Riri,2,local. (15)

From the position of the routing points in global coordinates, the normalized vector
cq,i can now be obtained. This vector describes the direction of the tendons—and thus
the direction of the tendon forces—from disk i to disk i − 1. For the i-th disk, they are
computed by

cq,i =
ri−1,q − ri,q

‖ri−1,q − ri,q‖
. (16)

The forces ftendon,i acting on disk i can now be calculated as

ftendon,i =



2
∑

q=1
cq,iFq − cq,i+1Fq i < k

2
∑

q=1
cq,iFq i = k

0 otherwise

. (17)

In an analogous way, the resulting torques `tendon,i

`tendon,i =



2
∑

q=1

((
Ri · ri,q,local

)
×
(
cq,iFq − cq,i+1Fq

))
i < k

2
∑

q=1

((
Ri · ri,q,local

)
×
(
−cq,iFq

))
i = k

0 otherwise

(18)

can also be obtained.

r1,i,local

r2,i,local

c1,i+1

c2,i+1

c1,i

c2,i

ii− 1
i + 1 Si

Figure 3. Position of tendon routing points and tendon force vectors on a disk.

3. Control Methods

In the following, the three examined control methods are briefly presented.
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3.1. Kinematic Control

The first considered controller uses a model-free, kinematic approach based on [4,5].
Here, a shallow neural network is used to learn the global inverse kinematics of a soft robot.
This can then be used to determine the necessary control values for a desired configuration
of the robot. The dynamics of the system are neglected.

In general, the direct kinematics of the soft robot can be denoted as

y = h(u) (19)

with the vector of the control variables u and the resulting steady-state tip position y. To
determine the inverse kinematics, the direct kinematics from Equation (19) have to be
inverted. Since the considered soft robot is kinematically redundant, there exists no unique
global solution for this; the function h is surjective. However, the inverse differential
kinematics

δy = J(u)δu (20)

can be used to obtain a locally unique solution [41]. Here, J(u) is the Jacobian-matrix of
h(u) with respect to the control variables u. The variations of the tip position y and the
control variables u are denoted δy and δu, respectively. Following [5], Equation (20) can be
discretized such that

yj+1 − yj = J(uj)(uj+1 − uj). (21)

Here, uj+1 is the vector of control variables that reaches the positions yj+1 starting from
the current position yj with the corresponding control variables uj. In general, Equation (21)
only holds if the difference between the control variables uj and uj+1 is infinitesimally
small. In practice, [41] shows that the equation also provides usable approximate solutions
for larger distances.

For the kinematic control, Equation (21) must be solved for the control variable vec-
tor uj+1. This results in

uj+1 = J(uj)
†(yj+1 − yj + J(uj)uj

)
= z(yj, yj+1, uj) (22)

with J(uj)
† as the Moore–Penrose pseudoinverse of the Jacobian matrix J. The mapping

function of yj, yj+1 and uj to uj+1 is denoted as z in the following. It represents a locally
valid inversion of the kinematics of the soft robot. For the soft robot model considered
in this contribution, the function of the local inverse kinematics z cannot be determined
analytically. Therefore, in the following, it is approximated with a neural network with one
hidden layer. The structure of the neural network is shown in Figure 4. The input layer
has seven neurons. The hidden layer has 30 neurons and uses the tangent hyperbolicus
as activation function. The output layer has three neurons and uses a linear activation
function. The training is performed with Bayesian regularization.

...
...

yj
uj+1

...
...

...
...yj+1

uj

...

Figure 4. Structure of the neural network of the kinematic controller.

For the training of the neural network, a sufficient number of value pairs of the
mapping (yj, yj+1, uj) → uj+1 are required. To determine the required training data, the
simulation model described in Section 2.1 is used. For the generation of one pair of values,
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the vector of control variables uj and the vector of varied control variables uj+1 are chosen
randomly such that uj ∈ [−Nmax, Nmax] with Nmax = 20 N and

|uj − uj+1| < εNmax (23)

with ε = 5%. Then, the robot is excited with the vector of control variables uj, and
the resulting initial position yj is determined after the transient processes have decayed.
Subsequently, the control variables are changed to the new vector of control variables uj+1,
which results in the corresponding position yj+1. In this way, a complete pair of values of
the mapping (yj, yj+1, uj)→ uj+1 is determined. This procedure is repeated 10,000 times
to collect the training data for the neural network. This takes about 5 min on a PC with an
“Intel Core i7 - 6700K” processor. The resulting workspace of the soft robot is shown in
Figure 5 and is reasonable and realistic for this type of robot.

−0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

x [m]

z
[m

]

Figure 5. Empirically determined workspace of the kinematic controller for Nmax = 20 N.

The trained neural network can now be used as a controller for the soft robot, as
shown in Figure 6. The inputs of the neural network are the current tip position yj, the
current control variables uj and the desired tip position yref. The outputs of the neural
network are the control variables uj+1 that are required to archive the desired tip position.
The controller runs with a sample frequency of fcontroller = 5 Hz. The reason for this
comparatively low frequency is the kinematic behavior of the controller neglecting the
dynamics of the soft robot. With each change in the control output u, the dynamics of the
system are excited; however, the kinematic controller assumes that the steady-state position
is reached instantaneously. With the low sample frequency, the transients can at least partly
decay before the measurements for the next control step are taken, which improves the
performance and the stability of the controller. On the other hand, if the sample frequency
of the controller is chosen even lower, the robot can only move very slowly.

neural network soft robot
u y

yref

Figure 6. Block diagram of the closed control loop with the neural network as controller.

3.2. Linear Quadratic Control with Gain Scheduling

The second controller considered is a linear quadratic controller with integral action
(LQI controller) and gain scheduling. This is an approach from optimal control that has
not been applied to soft robotics so far. In general, for the control of linear time-invariant
systems of the form

ẋ = Ax + Bu,

y = Cx
(24)
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LQI controllers can be used [42]. Here, x is the state vector, u the input vector and y
the output vector. The dynamic behavior of the linear system and the relationship between
the input vector u, the states x and the output y are described by the matrices A, B and
C. As LQI controllers are extensively discussed in the literature, e.g., [43,44], they are not
described in further detail here.

The controller considered so far requires a linear model of the system to be controlled
for the design. However, the soft robot used in this contribution has nonlinear behavior,
which can be described as

ẋ = f (x, u),

y = g(x).
(25)

In order to derive an LQI controller for such a nonlinear system, it has to be lin-
earized [45]. In this paper, the nonlinear system is therefore linearized around 2288 opera-
tion points OP, which are regularly distributed in the workspace. The operation points are
chosen such that the velocities of the soft robot are zero in these points. They are shown in
Figure 7. Each operation point consists of a state vector xOP, a control variable vector uOP
and the corresponding system output yOP. However, as long as no external forces are
considered, as in this contribution, three parameters are sufficient to describe an operation
point because the steady-state configuration of the soft robot then only depends on the three
tendon forces u1 . . . u3. Here, the curvature of the first, third and fifth segment, β1, β3 and β5,
is chosen. These can be collected in the scheduling vector σ = [β1 β3 β5]

T.
Given the state function f (x, u), the output function g(x) and the operating point, the

matrices of the state space representation of the linearized system can be determined. These
are calculated, as shown by [45], among others, as

Ã =
∂ f
∂x

∣∣∣∣
xOP,uOP

, (26)

B̃ =
∂ f
∂u

∣∣∣∣
xOP,uOP

, (27)

C̃ =
∂g
∂x

∣∣∣∣
xOP,uOP

. (28)

This results in the linearized system

˜̇x = Ãx̃ + B̃ũ,

ỹ = C̃x̃
(29)

with x̃ = x− xOP, ỹ = y− yOP and ũ = u− uOP.
For each of the linearized systems in the operation points, a separate LQI controller is

now designed. For the control of the soft robot, in each time step, a trilinear interpolation
is performed between the eight controllers spanning the cuboid in the three-dimensional
parameter space in which the current scheduling parameter σ lies. In Figure 8, the block
diagram of the LQI controller with gain scheduling is shown. The control law results in

u(σ) = K(σ)(x− xOP(σ)) + Ki(σ)
∫
(y− yref)dt + uOP(σ). (30)

Here, the gain matrix of the controller is subdivided into the gain Ki of the integrated
control error xe =

∫
(y − yref) for the integral behavior and the gain matrix K for the

proportional and derivative behavior of the controller.
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Figure 7. Tip position and spanned workspace of the LQI controller.
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−
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σ(yref)
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Figure 8. Block diagram of the closed control loop with the LQI controller with gain scheduling.

3.3. Model Predictive Control

The third control method considered is a model predictive controller (MPC). The block
diagram of this controller is shown in Figure 9. This discrete, model-based method is, e.g.,
used by [25] for the control of a soft robot. The MPC solves an optimization problem in
each timestep of the control in order to determine the best possible control output u. For
this purpose, in every timestep, the controller optimizes the control output for the next c
timesteps (control horizon) such that the control error and control effort over the next p
timesteps (prediction horizon) is minimized. The optimization problem is described by

min
p∈P

J(x(k), u(p)) P = {z ∈ Rm·c} (31)

with the cost function

J(x(k), u) =
p

∑
i=1

(
e(k + i)TQe(k + i) + u(k + i)TRu(k + i) + ∆u(k + i)TR∆∆u(k + i)

)
(32)

where

e(n) = yref(n)− y(n), (33)

∆u(n) = u(n)− u(n− 1). (34)

Here, Q, R and R∆ are weighting matrices to specify the influence of the different
cost terms. In total, m · c variables have to be computed in an optimization, where m is
the number of control variables. The parameters for the optimization are obtained by
combining the control variables of the individual time points in the control horizon in the
vector

p =
[
uT

k+1 uT
k+2 · · · uT

k+c
]T

. (35)
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Here, un is the control variable that applies to the time step with index n in the control
horizon. To solve the optimization problem, in every timestep, the nonlinear soft robot
model integrated into the controller has to be evaluated several times.

In this paper, a sample time of Ts = 0.1 s, a prediction horizon of p = 5 steps and a
control horizon of c = 3 steps are chosen. Usually, better control results can be archived
with a shorter sample time and longer prediction and control horizons. However, the
computational costs also increase because the optimization problem is harder to solve.

xMPC soft robot
u

yyref

Figure 9. Block diagram of the closed control loop with the model predictive controller.

The controller is implemented in SIMULINK with the Model Predictive Control Toolbox.
The internal model is integrated with the explicit Euler method with stepsize Ts. The
optimization problem is solved with the MATLAB function fmincon. It uses the SQP method
for the minimization [46]. With the chosen implementation of the MPC in SIMULINK, a
time delay of one control step (0.1 s) is induced. However, with a different implementation
of the MPC, this could be avoided.

4. Results

In the following, for all three controllers, the trajectory tracking results as well as the
results of the examination of the robustness against parameter uncertainty are presented.
Thereby, the control error of the tip position is calculated for an arbitrary time t as

e(t) = ‖y(t)− yref(t)‖2. (36)

4.1. Test Trajectories

For the examination of the performance of the three controllers, three different types
of trajectories are considered: A step change in the tip position, a swing trajectory passing
through nearly the whole workspace and an L-shaped trajectory. These are shown in
Figure 10. For all trajectories, only the tip position is defined; the controllers are free to
choose any configuration of the soft robot that reaches that tip position. The configurations
shown in Figure 10 are the configurations archived with the LQI controller. Note that the
step trajectory is not continuous, and all three trajectories are not differentiable. Therefore,
the controllers cannot follow the trajectories exactly.
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Figure 10. Examined trajectories. (a) Step trajectory. (b) Swing trajectory. (c) L-shape trajectory.
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The step trajectory is the most basic trajectory of the three considered trajectories
and is especially popular in linear control but is also widely used for nonlinear systems.
Here, three different step widths of dstep = 50 mm, dstep = 100 mm and dstep = 200 mm
are examined. The swing trajectory crossing through nearly the whole workspace is the
most natural movement of the soft robot. Starting at rest from an initial position, the soft
robot has to reach its final position within 10 s with constant velocity and come to a rest
there. The trajectory is not differentiable at its beginning and at its end due to the desired
constant velocity. The L-shape trajectory consists of two axis-parallel movements with
constant velocity that take 5 s each. Again, the soft robot has to come to a rest at the final
position. This movement is less natural and can only be archived with larger curvatures.

4.2. Step Trajectory

As the first control scenario, the step change in the tip position is examined, starting
with the stepsize dstep = 50 mm. In Figure 11, the tip position is plotted over time in
x− and z−direction for all three controllers together with the desired trajectory. Charac-
teristic quantities for the step responses are the rise time, the settling time, the overshoot
and the remaining control deviation. These are listed in Table 3. Here, the rise time is the
time the response takes to rise from 10% to 90% of the way from the initial value to the
steady-state value. For the settling time, a band of 2% around the final rest position is
considered.
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Figure 11. Reference trajectory as well as the tip position for different controllers with dstep = 50 mm
over time.

Table 3. Characteristic quantities of the step trajectory with dstep = 50 mm.

Kinematic LQI MPC

rise time (10% . . . 90%) 237.3 ms 90.2 ms 86.2 ms
settling time (2% band) 7.65 s 0.88 s 0.49 s

overshoot 47.46% 46.36% 31.49%
steady-state error 4.85% <0.01% <0.01%

It can be seen that all control methods considered are capable of bringing the tip of
the soft robot to the desired reference position, but the quality of control partly differs
clearly between the methods. It is particularly noticeable that the kinematic controller
has more than twice the rise time compared to the two dynamic controllers. At the same
time, the settling time of the kinematic controller is also about one order of magnitude
larger. This can be explained by the fact that the kinematic controller does not consider
the dynamic behavior of the soft robot. Therefore, it cannot actively damp the excited
oscillations of the robot. This leads to a significantly longer settling time and reduces the
maximum useful speed of the robot. The LQI and the MPC controller achieve a comparably
low rise time. However, with 0.49 s, the settling time of the model predictive controller
is about 45% lower than the settling time of the LQI controller. This can be explained by
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the predictive control behavior of the model predictive controller. This also explains the
about 15% lower overshoot of the model predictive controller compared to the other two
controllers considered.

Both the LQI and MPC controllers exhibit a negligible steady-state error. For the LQI
controller, this can be explained by the integral control behavior. The model predictive
controller achieves a negligible control error because its internal prediction model matches
the soft robot model used exactly. Therefore, the necessary control variables can be deter-
mined exactly from the optimization problem. The kinematic controller has a steady-state
error of 4.85%. This can be explained by the used neural network, which only represents an
approximation of the inverse kinematics.

For larger steps of dstep = 100 mm and dstep = 200 mm, the behavior of the controllers
is qualitatively comparable. The characteristic quantities for the step responses with
dstep = 200 mm are listed in Table 4. Only the settling time of all controllers nearly doubles
or triples. This is especially noticeable for the kinematic controller since it has a very
long settling time anyway. Therefore, large step sizes should be avoided when using the
kinematic controller.

The calculation time of all three controllers is sufficient for real-time applications. The
kinematic controller requires 5.4 µs per evaluation, which is much lower than the sample
time TS = 200 ms of the controller. Note that, as described in Section 3.1, even though
the computation time is very low, the sample time should not be chosen much lower
to keep the controller stable. With 11.2 µs per evaluation, the LQI controller is slightly
slower. The model predictive controller takes 49.7 ms for the calculation of one control step.
As expected, it has the longest computation time per evaluation of the three considered
controllers. Nevertheless, the model predictive controller with a used sampling time of
Ts = 0.1 s is also real-time capable on the used hardware and with the chosen prediction
and control horizons. The calculation times and sample times of the controllers are listed in
Table 5. For the other trajectories, comparable computation times are archived. These will
therefore not be discussed further in the following.

Table 4. Characteristic quantities of the step trajectory with dstep = 200 mm.

Kinematic LQI MPC

rise time (10% . . . 90%) 248.9 ms 78.6 ms 66.6 ms
settling time (2% band) 14.10 s 1.61 s 1.37 s

overshoot 53.71% 54.84% 20.51%
steady-state error 2.10% <0.01% <0.01%

Table 5. Computation time and sample time of the three controllers for the step trajectory.

Controller Sample Time Calculation Time per Control Step

kinematic 200 ms 5.4 µs
LQRI 1 ms 11.2 µs
MPC 100 ms 49.7 ms

4.3. Swing Trajectory

The time courses of the trajectories in x- and y-directions, as well as the position
error e, are shown in Figure 12 for the three examined controllers. It can be seen that all
the examined controllers are in principle able to follow the given trajectory. However, the
control error e of the controllers differs significantly.

The largest control error of all controllers is observed for the kinematic controller. The
maximum error is 27.3 mm (5.46% related to the total length of the soft robot), which is
more than twice the peak error of the model predictive controller and four times that of the
LQI controller. From the plots of the tip position over time, it is evident that the kinematic
controller oscillates around the nominal trajectory. This can be mainly explained by the
controller neglecting the dynamic characteristics of the soft robot. In addition, there are
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inaccuracies in the prediction of the required values for the control variables by the neural
network. The kinematic controller also takes the longest time after the completion of the
swing motion to reach the final position. Within the additional time of 5 s considered after
the completion of the motion, it does not succeed in reaching the target position completely.
Considering longer simulation times, the oscillation decays due to the internal damping of
the soft robot, and a permanent control error of 1.7 mm (0.34%) remains.

The LQI controller shows the smallest control error of the examined controllers with
a maximum error of 6.13 mm (1.23%) shortly after the motion starts. A second significant
error occurs at time t = 10 s when the given swing motion ends and the tip remains in
the final position. The cause of both errors is that the swing trajectory, as described in
Section 4.1, is not continuously differentiable at these points. Therefore, here, the transient
behavior of the system and the overshoot behavior of the controller can be observed. For
the rest of the motion, the error is smaller than 1 mm (0.2%).

The model predictive controller has a maximum control error of 11.77 mm (2.35%).
The errors occurring during the movement are nearly constant at that level. They vary by
only about 1 mm during the trajectory. This can be seen in Figure 12 where the tip trajectory
as well as the control error are plotted over time. The reason for the control error is mainly
the used implementation of the MPC, which, as described in Section 3.3, induces a small
time lag. The lag also shows in the tip trajectories as a nearly constant offset during the
motion. This cause is also supported by the fact that the control deviation drops to nearly
zero as soon as the swing movement ends and the reference signal is constant.
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Figure 12. Reference trajectory as well as the tip position for different controllers for the swing
trajectory over time.

In addition to the time courses for the tip position and the control error, the values
for the control variables applied by the controllers are also of interest. These are shown for
the different controllers in Figure 13 over time. Note that a positive force is an actuation of
the upper tendon and a negative force is an actuation of the lower tendon. It is noticeable
that all controllers calculate different values for the control variables. The basic form of
the curves and the total control effort are similar, but the actual values differ by up to 29 N.
Large differences are particularly noticeable for the LQI and the model predictive controller.
This can be seen especially well at the end of the simulation time where both the LQRI and
the MPC have a negligible control error. Furthermore, both controllers calculate different
control forces. However, it follows from the different values for the control variables that
the curvatures of the soft robot archived by the controllers are also different. This can be
explained by the controllers finding different robot configurations that lead to the same tip
position. This is also true, to a certain extent, for the kinematic controller, although it does
not reach the target position completely. The configuration determined by it is also different
from those of the other two controllers. The differences in the actuation forces calculated
by the three controllers are only possible because the soft robot model is a kinematically
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redundant system. This means that there are different configurations and hence values for
the control variables that lead to the same tip position.
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Figure 13. Actuation forces for the swing trajectory over time.

4.4. L-Shape Trajectory

The results for the control of the L trajectory are shown in Figures 14 and 15 and
largely match those already observed for the swing trajectory in Section 4.3. In particular,
they turn out even better for the dynamic controllers.

For the kinematic controller, the control error is again significantly larger than for the
other two controllers. Thus, with a maximum value of 21.57 mm (4.31%), this is at the same
level as for the swing motion. From Figure 14, it is clear that the controller has particular
difficulties in reaching the final position along the x-axis. The deviation at time t = 5 s for
this component is 20.37 mm. A possible reason for this very large deviation, also compared
to the swing motion, is the considered workspace. For the design of the kinematic controller
in Section 3.1, maximum actuating forces of ±20 N are considered. The controller does
not have any data from the design about the relationship between the control variables
and the tip position outside this area and therefore has to extrapolate there. However,
to follow the trajectory, actuation forces of ≈ ±40 N are required. The control variables
calculated by the neural network therefore differ from those actually required. Only at
the end of the movement, when the required tip position is again in the workspace of the
kinematic controller, does the occurring control error decrease again. If the time simulation
is continued for a longer simulation duration, a permanent control error of 5.47 mm (1.09%)
is obtained, which is significantly higher than the permanent error for the swing motion.

The maximum control error of the LQI controller with 1.71 mm (0.34%) is below the
value determined for the swing motion. It is well recognizable that the position deviation
always increases abruptly at the times when the trajectory is not continuously differentiable.
The smaller deviation, compared to the swing motion, is due to the fact that the motion
is slower because of the shorter trajectory. Thus, the steps in the velocity course of the
trajectory are smaller at the points where it is not continuously differentiable. It is therefore
easier for the controller to follow the trajectory and to compensate for the error that occurs.
Apart from the three sudden increases and the following decay, the control error of the LQI
controller is below 0.2 mm (0.4%).

With a maximum error of 3.11 mm (0.62%), the model-predictive controller also has a
significantly lower control error compared to the swing trajectory. As with the latter, the
deviation is at a roughly constant level during the motion. The lower occurring control
error is, just as in the case of the LQI controller, due to the slower speed of the movement.
As the control error is mainly caused by the lag, as explained in Section 4.3, it is nearly
proportional to the velocity. This is again supported by the fact that the deviation quickly
approaches zero as soon as the reference trajectory has reached the end position.
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Figure 14. Reference trajectory as well as the tip position for different controllers for the L-shape
trajectory over time.
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Figure 15. Actuation forces for the L-shape trajectory over time.

Finally, the control variables calculated by the controllers for the executed movement
are considered. These are shown in Figure 15 for the individual controllers over the
simulation time. Once again, it can be seen that the controllers determine different values
for the control variables. Therefore, for this trajectory, the occurring robot configurations are
also different depending on the controller. Furthermore, it is noticeable that the calculated
values for the control variables are larger than in the case of the swing motion. For the
kinematic controller, the maximum value of the control, 43.85 N, is more than twice as large
as the 20 N considered during the design.

5. Robustness against Parameter Uncertainty

Finally, the robustness of the different control concepts against deviations in the mate-
rial parameters of the robot to be controlled is investigated. Especially for soft materials, the
material parameters are often not known precisely, contain unmodeled nonlinear effects,
are hard to determine and might even change over time [47]. Therefore, a robustness of the
controllers against parameter uncertainty is of importance.

In order to examine the influences that parameter uncertainties have on the control
performance of the different controllers, deviations in the value of the Young’s modulus E
are considered as examples. It is often difficult to determine this value exactly, and at the
same time, it has a large influence on the static and dynamic properties of the soft robot.

For the examination, for each controller, five simulations with different values of the
Young’s modulus in the simulation are performed. Thereby, the nominal value of the
Young’s modulus E0 = 7.32× 105 Pa as well as a change in the Young’s modulus by ±25%
and ±50% are considered. In all cases, the controllers are designed for the nominal Young’s
modulus E0. Note that a change in the Youngs’s modulus also affects the internal damping
of the soft robot model since, in this work, stiffness-proportional damping is assumed. As
an example, in this work, only the tracking of the swing trajectory is considered in the
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robustness analysis. For the other trajectories, qualitatively comparable results could be
achieved.

In Figures 16–18, the trajectory of the tip position is plotted for all three controllers
and different values of the Young’s modulus in the simulation model. As described in
Section 5, the controllers are designed for the nominal modulus of elasticity E0. The
different controllers react very differently to this modeling error.
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Figure 16. Trajectories of the tip position for the kinematic controller for different values of the
young’s modulus E.
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Figure 17. Trajectories of the tip position for the LQRI for different values of the young’s modulus E.
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Figure 18. Trajectories of the tip position for the MPC for different values of the young’s modulus E.

5.1. Kinematic Controller

The kinematic controller again shows the worst performance of the three controllers.
While the control of the robot with increased Young’s moduli (E > E0) shows similar
control results as those obtained when considering the nominal system with E = E0,
the determined tip position for softer robots with E < E0 differs significantly. For these,
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an unsteady oscillatory behavior is shown before the tip comes to rest after the reference
position no longer changes. However, the rest position is far away from the desired position.
The reason for this is that due to the lower Young’s modulus, the applied control forces
result in significantly larger motions than expected by the controller. As a result, the tip
of the soft robot clearly leaves the workspace considered when designing the controller.
Additionally, these large motions strongly excite the dynamics of the soft robot, which
only decay very slowly. This makes the control for the kinematic controller even more
difficult. Thus, the controller is no longer able to determine the required control variables
with sufficient accuracy. This leads to the observed unsteady oscillation behavior. This
behavior is also favored by the change in the dynamic behavior of the soft robot and the
decrease in its internal damping. If, on the other hand, the Young’s modulus of the robot
is greater than assumed by the controller, control variables that are too small are initially
applied. In this case, the robot remains in its workspace, the dynamics of the controller are
only slightly excited and the controller achieves a control result that is almost as good as
that with the nominal Young’s modulus. The higher internal damping also probably has a
positive influence on the achieved control quality.

5.2. LQI Controller

In contrast to the other two controllers investigated, the LQI controller shows no
noteworthy differences between the trajectory tracking with the changed Young’s modulus
and the nominal Young’s modulus of the simulation. Note that the gains of the controller are
only determined for the nominal values. There are only minor deviations at the beginning
of the movement. The reason for this is the changed static behavior of the soft robot
model. As a result, the controller initially determines the control variables that belong to
the equilibrium position of the robot at the current operating point with a comparatively
large error. This is compensated by the controller after a short time. The LQI controller has
no difficulties with the changes also occurring in the dynamic behavior of the controlled
robot. The reasons for this are the integral component of the controller, the large gain of the
controller and the high sampling frequency of f = 1 kHz, which allows the controller to
react quickly to changes.

5.3. MPC

Furthermore, for the model predictive controller, differences in the achieved control
performance and occurring deviations can be observed depending on the Young’s modulus
of the controlled system. For stiffer robots with E > E0, the z component of the tip position
is permanently above the corresponding reference curve. The curvatures of the controlled
robot turn out to be too small. As in the case of the kinematic and the LQI controller, this is
due to the changed static properties of the soft robot. The control variables of the model
predictive controller are determined by solving an optimization problem in such a way
that they lead to the desired motion in the controller-internal model that uses the nominal
parameters. If these are applied to the system to be controlled with a larger modulus of
elasticity, there is less curvature than predicted by the controller due to the stiffer behavior
of the robot. The too-low curvature for stiffer robots with E > E0 can also be seen in the
course of the x component of the tip point trajectory.

The presented effects also occur, with the same reasoning but opposite sign, for the
softer robot with E = 0.75E0. For this robot, the curvature is smaller than predicted by the
controller. If the elastic modulus of the controlled robot is further reduced, see E = 0.5E0, it
becomes apparent that the MPC is no longer able to follow the reference trajectory. The low
stiffness, as well as the resulting change in dynamic and static behavior, causes the closed
loop to become unstable. Thus, the model predictive controller calculates ever increasing
control variables to follow the reference trajectory with the internal model. These lead to
the fact that the curvature of the soft robot increases more and more, and finally, the soft
robot just “rolls up”. From the time t = 1.3 s on, the optimizer does not converge anymore
and is no longer able to determine a solution for the optimization problem on which the
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control is based. From this moment on, the control variables of the controller are kept
constant at the last “successfully” determined value. Due to the internal damping, the soft
robot oscillates to the corresponding equilibrium position and remains in this position.

6. Conclusions

In this article, one kinematic and two different dynamic control approaches were
analyzed for soft robots. For this purpose, these controllers were used to track various
trajectories in simulation using an exemplary soft robot model. All three control methods
are suitable for the control of soft robots. However, they strongly differ in implementation
effort, achievable accuracy and robustness. Therefore, for these controllers, different
applications arise. The advantages and disadvantages of the controllers are explained in
the following and summarized in Table 6.

Table 6. Advantages and disadvantages of the examined controllers.

Kinematic LQRI MPC

Online/offline implementation effort low medium high
Computation effort very low medium high
Accuracy low very high high
Robustness low very high high

6.1. Kinematic Controller

The simplest of the three controllers studied is the kinematic controller. This can be
seen as the standard approach in soft robotics. This controller is model-free. The data
required for training the neural network on which the controller is based can for example be
determined experimentally. However, compared to the dynamic controllers, the archived
control errors are large. This is especially the case for fast motions. Here, large oscillations
around the desired trajectory often occur. Additionally, the examination of the robustness
has shown that the stiffness of the robot must not be overestimated by the controller to allow
trajectory tracking. Additionally, this controller requires very low computational effort.
Therefore, the kinematic controller should be used if low online implementation effort
is important and/or no accurate model of the soft robot is available, while the required
movements of the robot are slow and medium control errors, as well as oscillations, can be
accepted. This holds for most of the current soft robotic applications.

6.2. LQRI

In this paper, an LQI controller with gain scheduling was proposed, which has not
been used before in soft robots’ literature. This is the most accurate and robust of the
three examined controllers. At the differentiable parts of the trajectory, the control error is
negligible. Small control errors can only be observed at the non-differentiable parts of the
trajectory. The LQRI is very robust against parameter uncertainties. Even a large change in
the Young’s modulus of ±50% leads to small control errors. The controller has moderate
computational effort (11.2 µs per iteration on a standard PC). The LQRI is a good option if
the performance of the kinematic controller is not good enough. It can archive much higher
accuracy and robustness than the kinematic controller, resulting in much higher achievable
speeds. However, the implementation and computational effort is higher.

6.3. MPC

The model predictive controller achieves a comparatively high accuracy as the LQRI.
However, due to the implementation used in this contribution, a small time delay cannot
be avoided. The controller is model-based and therefore requires an accurate model of the
robot. The MPC is robust against moderate parameter uncertainties. However, the control
error increases significantly with increasing difference between the controlled robot and
the internal model of the robot. If the stiffness of the robot is strongly underestimated by
the MPC, it fails to find a solution for the optimal control problem. The computational cost
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of the MPC is very high compared to the other two examined controllers, but depending
on the choice of control and prediction horizon, it is real-time capable on a standard PC.
The MPC is a good alternative to the LQRI, especially if an accurate model of the robot is
available and high computational costs are not a problem. As an advantage, additional
constraints, such as actuator limits and avoiding obstacles, can easily be included in the
optimization problem.

6.4. Limitations and Perspectives

The main limitation of this work is that the results were only obtained in simulations
so far. In the future, it is planned to experimentally investigate what extent the results can
be transferred to applications with physical robots. Additionally, the controllers can be
extended to the control of movements in 3D.
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