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Abstract: The navigation of small unmanned aerial vehicles (UAVs), such as quadcopters, signifi-
cantly relies on the global positioning system (GPS); however, UAVs are vulnerable to GPS spoofing
attacks. GPS spoofing is an attempt to manipulate a GPS receiver by broadcasting manipulated
signals. A commercial GPS simulator can cause a GPS-guided drone to deviate from its intended
course by transmitting counterfeit GPS signals. Therefore, an anti-spoofing technique is essential to
ensure the operational safety of UAVs. Various methods have been introduced to detect GPS spoofing;
however, most methods require additional hardware. This may not be appropriate for small UAVs
with limited capacity. This study proposes a deep learning-based anti-spoofing method equipped
with 1D convolutional neural network. The proposed method is lightweight and power-efficient,
enabling real-time detection on mobile platforms. Furthermore, the performance of our approach
can be enhanced by increasing training data and adjusting the network architecture. We evaluated
our algorithm on the embedded board of a drone in terms of power consumption and inference time.
Compared to the support vector machine, the proposed method showed better performance in terms
of precision, recall, and F-1 score. Flight test demonstrated our algorithm could successfully detect
GPS spoofing attacks.
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1. Introduction

Small unmanned aerial vehicles (UAVs) of approximately 30 kg, represented by quad-
copters, have been widely used in civil and military fields, and their practical use is rapidly
increasing. Because the global positioning system (GPS) sensor is comparatively precise
among the many sensors in small UAVs, their positioning and navigation are highly reliant
on GPS.

In recent years, the vulnerability of small UAVs to GPS spoofing attacks has been
studied. Kerns et al. succeeded in a GPS spoofing attack on a helicopter [1]. Noh et al.
proposed a method to hijack drones using a GPS spoofing technique called meaconing [2].
Numerous GPS spoofing detection methods have been introduced [3]. However, they are
unsuitable for small UAVs because their capacity (e.g., space, battery, and payload) is not
affordable to add heavy hardware [4].

Recent advances in deep neural network (DNN) provide a valuable tool to detect
anomalies in time-series data [5]. A one-dimensional (1D) convolutional neural network
(CNN) is suitable for mobile devices that require real-time operability owing to its low-cost
implementation [6].

This study presents a GPS spoofing detection method based on 1D CNN. Our method
can detect a GPS spoofing attack before GPS position falsification, contrary to previous
study [7]. In addition, the adopted model is lightweight and can be executed on an
embedded board (e.g., NVIDIA Jetson Nano or Xavier) of small UAVs. Furthermore, we
evaluated the power consumption and inference time of our model on corresponding
boards. Finally, the developed algorithm was employed on the Pixahawk drone, and its
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feasibility was demonstrated in flight test. The contributions of our work are summarized
as follows:

e  To our knowledge, this study is the first to deploy a deep learning-based spoofing de-
tection model in drone and validates the model in flight test. Most spoofing detection
studies have conducted in simulation environments.

e  Previous researches fall short of addressing the defense against an intermediate spoof-
ing attack in real test. However, using 1D CNN model, we could circumvent the attack,
whereas commercial drones became out of control in the field test.

e Inference time and power consumption are the important aspects for mobile platform
applications. So far, most of related works are only focused on performance of machine
learning model. We evaluated them and showed that our proposed method was fitted
for the operation of small UAVs.

The remainder of this paper is organized as follows. GPS spoofing detection methods
applicable to small UAVs are summarized in Section 2. In Section 3, we suggest a GPS
spoofing detection method based on 1D CNN accommodating residual network (ResNet).
The inference time and power consumption of 1D CNN on an embedded board are evalu-
ated in Section 4. Before flight test, we tested the efficiency of the spoofer for DJI Phantom 4
and Mavic. We modified the Pixahawk drone and equipped it with 1D CNN. The anti-
spoofing enabled drone successfully detected a spoofing attack and safely returned to the
base during the flight test. Further research directions and conclusions are presented in the
end of Sections 4 and 5.

2. Related Works
2.1. Taxonomy of GPS Spoofing Signals and Attacks
2.1.1. Types of GPS Spoofing Signals

As listed in Table 1, GPS spoofing signals can be classified into meaconing and genera-
tive spoofing.

Table 1. Classification of GPS spoofing signal.

Signal Type Meaconing Generative Spoofing
Navigation message same deformed
GPS time delayed synchronized
Accompanied by jamming 0 X
Target receiver mode signal acquisition signal tracking

Meaconing signal is generated by recording and rebroadcasting an authentic GPS
signal. Therefore, the signal has a time offset from that of authentic GPS. In addition, a UAV
can be spoofed if the target receiver is in GPS signal acquisition mode. If it reaches signal-
tracking mode, a meaconing attack requires jamming for the target receiver to re-acquire
GPS signals [2].

Generative spoofing requires a subtler approach. It can synchronize GPS time and
modulate navigation messages using a spoofing simulator. To capture the tracking loops of
the target receiver, the signal is emitted at low power, and its power is gradually increased.
Subsequently, the victim receiver is dragged to a counterfeit position. Snapshots of the
steps enabling spoofing attacks are illustrated in [3]. Detailed requirements for successful
spoofing attacks are described in [8]. Because a generative spoofing attack maintains a lock
during the process, detection can be avoided even when the target receiver is in GPS tracking
mode. Because meaconing signal can be easily discriminated by checking the time offset, we
suggest that generative spoofing is a foreseeable threat for small UAVs. The following section
describes the GPS spoofing types with respect to sophistication of the attacks.
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2.1.2. Classification of GPS Spoofing Attacks

GPS spoofing attacks are further classified into three levels of difficulty: simplistic,
intermediate, and sophisticated [9,10], as listed in Table 2. A simplistic attack utilizes GPS
simulation software, such as software-defined radio. It uses a low-cost GPS signal simulator
but does not offer time synchronization. Therefore, GPS spoofing is possible only when the
target receiver is in signal acquisition mode. Otherwise, jamming should be accompanied
by the target receiver to locate other GPS signals.

Table 2. Classification of GPS spoofing attacks.

Attack Spoofer Target Receiver Mode Cost Effectiveness Practicality
Simplistic GPS signal simulator Signal acquisition Low Low Low
Intermediate Portable receiver spoofer Signal vaPISItlon/ Medium High High
tracking
. Multiple phase-locked Signal acquisition/ . .
Sophisticated Portable receiver-spoofers tracking Very high Very high Low

The intermediate attack via a portable receiver spoofer synchronizes its signal to GPS
time, and it can generate false signals that align with the authentic signals. Compared
with the simplistic approach, this synchronized attack is relatively expensive and requires
additional clock-generating hardware and software. This type of attack is likely to be a
significant risk to UAVs in the future because it can manipulate the target receiver in the
signal-tracking mode.

A sophisticated attack is coordinated using multiple phase-locked spoofers. It can
thwart the target receiver with an angle-of-arrival defense. According to [8], cryptographic
authentication is the only known countermeasure. However, this attack is not feasible
to spoof small UAVs because the system setup is complex and expensive. Among three
attacks, we consider the intermediate attack to be the most significant near-term threat
to small UAVs. The following discussion focuses on the detection and prevention of
intermediate attacks.

2.2. GPS Spoofing Detection Techniques

Hardware-based GPS spoofing detection methods have been introduced, such as
phased-array antennas, multiple receivers, attitude and heading reference system
(AHRS)/accelerometer and cryptographic systems [11,12]. However, these methods cannot
be employed because of the hardware capability (e.g., space and battery) of small UAVs.
Recent studies have focused on data-driven and software-based GPS spoofing detections.
Various machine learning approaches were exploited in global navigation satellite system
(GNSS) use cases, including DNN [13-22]. However, the performance of the previous
approaches was tested in simulation environments. Most studies have not validated their
efficiency in real-world environments, such as drone flight tests.

We narrowed the candidates of applicable methods to small UAVs down to four
categories as follows [4,11,23]:

M1: Consistency check of data within the GPS PVT (Position, Velocity, Time) solution
M2: Monitor the relative GPS signal strength

M3: Monitor the signal strength of each received satellite signal

M4: Monitor space vehicle identification codes and number of received signals

Before moving on to introduce our approach, the stages of the intermediate spoofing
attack should be addressed. It is divided into a signal hijacking stage and a position
falsification stage [8]. In the hijacking stage, the target receiver is forced to capture the
signal which has a stronger power with no time offset between the generated one and
authentic GPS signal. After pseudo-position information is inserted into the generated
signal, the position of target UAV is falsified.
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The consistency check of an inertial navigation system (INS) and GPS was proposed
for detecting GPS spoofing [7]. In our opinion, this approach is inadequate because it is the
post-detection of the spoofing attack in the phase of position falsification. It is impossible
to prevent the signal hijacking. Therefore, M1 is not a suitable countermeasure for our
purpose. We eliminated M4 in our candidates, because it cannot utilize pattern analysis of
time-series data.

We chose the method, M2, which monitor the average signal strength of all satellites,
and M3, which compare the signal strength of between satellites. We also used the GPS
service Daemon (GPSd) to collect GPS data [24] and acquired the TPV and SKY class data
using the NMEA-0183 interface, as shown in Table 3. Integrating the above-mentioned
approach and GPSd, we try to detect deception in the hijacking signal stage prior to
position falsification.

Table 3. Type of NMEA-0183 interface.

Class Data
TPV position, time, velocity, error
SKY prn, signal strength, azimuth, used, elevation

First, we extracted three features: the mean (snr_mean), difference (snr_rangel), and
standard deviation (snr_range2) of received satellites” signal to noise ratios (SNRs) in SKY
class. Second, we preprocessed the acquired GPS data as follows:

snr_mean = mean (snr);

snr_rangel = max (snr) — min (snr);

snr_range?2 = standard deviation (snr);

where snr is given by the list (SNRs of GPS satellites used in fix).

3. GPS Spoofing Detection Method Based on Deep Learning
3.1. One-dimensional CNN Model

A CNN model was developed for image recognition [25]. By replacing 2D image data
with time-series data, the CNN model can also be applied to detect anomalies in time-series
data [26].

Because the 1D CNN performs scalar multiplications and additions, its computational
complexity is significantly lower than that of 2D CNN. It has a competitive advantage
where training data is scarce and fast inference is required. Thus, it is a viable option for
mobile platform applications because of its real-time operation and low-cost hardware
implementation [6]. We adopted the ResNet architecture and its structure is shown in

Figure 1 [26,27].
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Figure 1. One-dimensional CNN (ResNet) structure [26].
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ResNet consists of nine convolutional layers followed by a global average polling
layer and a fully connected layer. In ResNet, adding the shortcut residual connections in
each residual block enables an efficient training of DNNs by mitigating vanishing gradient
problem. Each residual block consists of 3 convolution layers and their ouput is added
to the input of residual block. Then, it is fed to the consecutive layer [26]. After each
convolution, batch normalization and rectified linear unit activation function are used.

Convolutional layers generate a number of feature maps of 64, 128, and 128, respec-
tively. A global average pooling layer reduces the dimensionality and converts the data
into 1D array. We used sigmoid function in a fully connected layer for binary classification
(Authentic/Spoofing).

3.2. Data Preprocessing

Data preprocessing procedure is as follows. We selected three features, snr_mean,
snr_rangel, and snr_range2, as shown in Figure 2. The training data were preprocessed by
a 3 x 8 matrix with a window size of three channel data and eight ticks. Each vector of the
aforementioned matrix was labeled such that authentic signal was “0” and spoofing signal
was “17.

Window
o 1 2 3 4 5 6 7

5 snr_mean Authentic
= (0

S snr_rangel

= Spoofing
O snr_range? (1)

X Y

Figure 2. Data preprocessing procedure.

After training with the labeled data, GPS data is discriminated as “0” (authentic signal)
or “1” (spoofing signal) using the 1D CNN inference model (Figure 3).

1D CNN

GPS

signa Data processing
- snr_mean

/\/ « snr_ranget

- snr_range2

Figure 3. Spoofing detection procedure by deep learning approach.

To determine the size of slicing window, we examined precision, recall, and F-1 score
with respect to different window sizes from 4 to 20. They are the performance metric of
evaluating machine learning algorithms and calculated as follows:

True Positive (TP)

Precision — 1
FECISION = Ty e Positive (TP) + False Positive (FP) @

True Positive (TP)
Recall = 2
eca True Positive (TP) + False Negative (FN) @)

2

F-1score = —5———— (©)

precision + fecall

where TP, TN, FP, and FN are the components of confusion matrix in Table 4.
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Table 4. Confusion matrix.
Predicted Authentic Signal Predicted Spoofing Signal
Actual Authentic Signal True Positive (TP) False Negative (FN)
Actual Spoofing Signal False Positive (FP) True Negative (TN)

As shown in Figure 4, for authentic GPS signals, most scores in all cases are close to
1 when the window size is greater than 6. It is seen that optimal range of window size lies
within 8 to 12. The scores of window size of 8 are not only comparable to those of window
size of 10 or 12, but it can also achieve faster response. Consequently, we determined the
window size as 8.

1.2
1 :/ —————
0.8
2
806
(2]
0.4
0.2
0
4 6 8 10 12 14 16 18 20
Slicing Window Size
=== Precision(Authentic) ==@==Recall(Authentic) F-1 score(Authentic)

Precision(Spoofing) ==@==Recall(Spoofing)  ==®=F-1 score(Spoofing)

Figure 4. Precision, recall, and F-1 score with respect to slicing window size.

4. Experiments
4.1. Environment to Simulate the GPS Spoofing Signal

To acquire sufficient data, we set up an environment to simulate GPS spoofing signals,
as shown in Figure 5.

4 Wy GPS satelites
A2\ /™

GPS repeater

GPS simulator

Receiver
Authentic

signal

TX antenna

Spoofing
Control computer signal

Figure 5. GPS spoofing signal simulation environment.
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GPS signal was relayed using both an exterior antenna and a GPS repeater. Spoofing
signal was generated in a spoofing simulator and entered a GPS receiver through a TX
antenna. Thus, we acquired both authentic and spoofing GPS signals simultaneously.

We utilized the receiver spoofer that can emit intermediate spoofing signals. The
receiver spoofer comprises a GPS spoofing simulator, TX antenna, receiver, and control
computer, as shown in Figure 6. It performs the following function: receives GPS satellite
signals, generates clocks/spoofing signals, and amplifies them. We also developed an
in-house program to monitor the current GPS signal status and control the spoofing signals.
Controllable factors include amplitude of the generated spoofing signals, time offset, and
position falsification information.

’:'x antenna

Figure 6. Configuration of GPS spoofer.

4.2. Spoofing Data Analysis

According to [8], GPS signal can be stably snatched when the relative difference in
the signal strength between spoofer and receiver exceeds 2 dB. In this study, we acquired
spoofing data in which the relative difference of the signal strength ranged from 2 to 8 dB.
The spoofing signal data are shown in Figure 7.

Authentic Signal Analysis

e —— e — —

——snr_mean

—snr_rangel

’/—/_/_/—\_’_’_’_/—/— —snerange2

Intermediate Spoofing Attack Analysis

Hijacking signal

Position falsification

ey

Figure 7. Spoofing data analysis.

It is observed that snr_mean increases; however, both snr_rangel and snr_range2
decrease. Snr_rangel and snr_range? rarely increase. It is observed repeatedly under
several adjusted power settings of GPS simulator.

On the attacker’s side, increasing the average signal strength of satellites is a natural
strategy because the GPS receiver normally tries to capture the stronger signal. Furthermore,
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reducing the variability among the signal strengths of satellites can be a plausible way for
GPS receiver to be locked onto at least one of them. Suppose that the variability is too high,
one signal strength of the satellites can be high-powered at the same time. An excessively
amplified signal has the possibility to be suspected as the spoofing signal. In this context,
we believe that our selected parameters (i.e., mean, standard deviation, and difference)
contain the distinguishable features for classifying the spoofing.

A DNN basically requires a large amount of training data and it often suffer from poor
performance, also known as catastrophic forgetting, when it is exposed to very different
environments. Thus, our model can adapt to similar types of the spoofer following the
above-mentioned strategies, but it may not work well for totally different type of spoofing.
Domain randomization [28] might be helpful, but it is still a challenging problem. Future
work includes collecting the spoofing dataset generated by different types of spoofers and
developing a versatile detection model for various attack scenarios.

4.3. Performance Comparison of Machine Learning Models

We performed a comparative test of 1D CNN (ResNet) and support vector machine
(SVM) [29]. For the SVM, we used two types of kernels: linear and radial basis functions
(RBEF). The training/verification data ratio was 80:20. We used a test dataset collected from
different regions of the training dataset. The authentic/spoofing signal ratio of the training
dataset was 12:1. A number of training data is 33,056. The batch size is 128 and cross
entropy is used for loss function. The test result of confusion matrix is given in Table 5.

Table 5. Confusion matrix of SVM and 1D CNN.

Model SVM (Linear) SVM (RBF) 1D CNN (ResNet)
GPS Signal Authentic  Spoofing  Authentic  Spoofing  Authentic = Spoofing
Authentic 8191 1 8189 3 8192 0
Spoof 54 22 14 62 2 74

Precision, recall, and F-1 score were also considered to evaluate the performance of
the learning models, as listed in Table 6.

Table 6. Performance comparison with machine learning models.

Model SVM (Linear) SVM (RBF) 1D CNN (ResNet)
GPS Signal ~ Authentic  Spoofing  Authentic  Spoofing  Authentic  Spoofing
Precision 0.99 0.96 1.00 0.95 1.00 1.00
Recall 1.00 0.29 1.00 0.85 1.00 0.97
F-1 score 1.00 0.44 1.00 0.85 1.00 0.99

All machine learning models were inferred accurately for authentic signals; however,
they predicted different results for the spoofing signal. For the SVM, the RBF kernel
performed better in terms of recall and F-1 score than the linear kernel. This experiment
shows the 1D CNN (ResNet) outperforms the other machine learning models.

4.4. Measurement of Inference Time and Power Consumption

We evaluated the power consumption and inference time running on an embedded
board to investigate real-time operability. The lower the energy consumption, the more
advantageous the battery exhaustion. The shorter the inference time, the faster the operation
of spoofing detection algorithm.

We adopted the NVIDIA Jetson AGX Xavier and Jetson Nano as the embedded boards
for drone. First, we inspected the average power consumption for 5 min with respect to
different operating modes (idle/running). In addition, we measured the average inference
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time of 30 tests when 1D CNN (ResNet) was executed on the board. The experimental test
results are presented in Table 7.

Table 7. Comparison of power consumption and inference time between Xavier and Nano.

Embedded Board Mode Power [Watt] Time (ms)
Idle 30 W 2.52 -
Jetson AGX Xavier Running 30 W 4.65 28
Running 15 W 4.25 32
Idle 10 W 1.42 -
Jetson Nano Running 10 W 3.63 30
Running 5 W 2.75 47

As shown in Table 7, the Jetson AGX Xavier consumed more power; however, the
inference time was shorter than that of the Jetson Nano. The average power of 8.26 W is
consumed when Wi-Fi communication and GPS receivers are used simultaneously in a
small UAV [30]. As the power consumptions of two embedded boards were less than 5 W,
our algorithm is applicable for small UAVs. During drone flights, GPS data are normally
acquired below 6 Hz. Because our average inference time was less than 50 ms, real-time
operations are possible. In summary, our 1D CNN model is suitable for small UAV flights.

4.5. Field Tests and Results
4.5.1. Validation Test for the GPS Spoofer

To validate the performance of our spoofer, we selected the DJI Phantom 4, a repre-
sentative consumer drone. The drone was exposed to a GPS spoofing attack in hovering
mode. When a spoofing attack manipulated the drone, it became uncontrollable. Although
position modulation occurred, the drone was unaware of it. The flight control system
forced the drone to move to the predefined target position. However, the deviation from
current position received by the GPS cannot be reduced by feedback control. Therefore,
the flight control system fails to stabilize the drone, and it moves radically. As shown in
Figure 8, the spoofing attack falsified the Phantom drone’s GPS receiver.

Figure 8. Test result of the Phantom drone.

We also tested our spoofer’s performance for DJI Mavic drone. The drone was exposed
to a spoofing attack again and we succeeded in deceiving the GPS receiver as shown in
Figure 9. When most commercial drones encounter a problem in receiving GPS signals,
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the implemented fail-safe function is activated. To handle this emergency, they usually
hover at the same location and try to find other GNSS services such as BeiDu, Galileo,

and GLONASS.

HOVETING==

T TR

Figure 9. Test result of Mavic drone.
As shown in Figures 8 and 9, two commercial drones failed to find other GNSSs
without having a chance to activate the fail-safe function. They immediately misconceived

the intermediate spoofing signal as authentic signal.

4.5.2. Flight Test Results
drones were hovering in the field. One was our developed drone equipped with an anti-

spoofing solution. We implemented the 1D CNN spoofing detection algorithm mounted on

We benchmarked our approach according to the scenario shown in Figure 10. Two
the Jetson Xavier (Figure 11). The other was a famous commercial drone, the DJI Phantom 4

2 Transmit
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Figure 10. Spoofing test scenario.
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Figure 11. Anti-spoofing enabled drone and NVIDIA Jetson AGX Xavier.

In our system, the command center sends a spoofing alarm when the algorithm
interprets the received signal as spoofing signal. It immediately commands the drone to
avoid spoofing. For instance, if the drone receives an alert signal (spoofed), it elevates its
altitude and returns to the base.

However, without spoofing detection, the DJI Phantom failed to receive authentic GPS
signals. Suddenly, the spoofed drone moved to an undesired position.

It is noted that the received SNR of drone will be much different between flight and
hover state. It is affected by the flight speed, the relative direction to the spoofing antenna,
and so on. Currently, our work is focused on reliably detecting the intermediate spoofing
under a hover state.

In the flight test, we reused the spoofer whose efficiency was demonstrated in
Section 4.5.1. We induced intermediate spoofing attacks on two drones in hovering status.
Compared to our drone, the DJI Phantom reacted slowly to spoofing attacks. Notably, the
response time can differ depending on GPS update frequency and flight control mechanism.
After the Phantom drone received the spoofed signal, it recognized the deviation between
the current and target positions. The flight control system forced the manipulated drone to
drift to its previous position according to the hovering command. However, this deviation
could not be reduced. Suddenly, it became unstable and out of control because of incorrect
feedback. As shown in Figure 12, manipulated drone moved speedily in a wrong direction;
thus, we had to interrupt the operation manually.

Figure 12. Spoofed DJI Phantom in the flight test.
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Our drone detected the spoofing attack within about 0.5 s as shown in Figure 13a.
The spoofing detection and response time of ours is dependent of GPS signal receiving
frequency, the drone’s processing and control mechanism, and the window slicing size as
determined in Section 3.2. It detected the attack while maintaining the hovering mode. Once
the spoofing alarm was ON, the drone moved up to approximately 20 m high to retreat from
the hazardous area and safely returned home. The flight trajectories (time increment = 0.05 s)

are given in Figure 13.

6 Spoofing Detected at
t=2.05s
5
T4
g
3 3
z2
Spoofing Attack Started at
1 t=1.55s
0
00 05 10 15 20 25 30 35 40 45
Time(s)
(a)
25
20 Hovering
% 15
'g Return to Base/
b= anding
E 10 Elevation after
5 Spoofing Detection
Hovering
0 10 20 30 40 50
Time(s)
(b)

Figure 13. Flight trajectories; (a) from t = 0 to 5 s (b) during the flight test.

Figure 14 represents the feedback loop of an anti-spoofing enabled drone. The con-
troller aims to minimize the error between the desired states and estimated states, including
position, velocity, or attitude of the drone [31]. Monitoring the GPS states using 1D CNN
classifier, we determine whether the current signal is authentic or spoofed in real-time.
Once spoofing is detected, we cancel all the operations. Then, the return to base (R2B)

command will be proceeded by moving to a higher altitude.

Estimated
IMU States

Control

States

Gyroscope
Accelerometer

GPS

Command |Comm. | Error input Drone
Center & Controller Dynamics
Elevgtion &  |&stmier |
RPB ﬁ Authentic
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Detected | (Cassifier | Ssimeted
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Figure 14. Feedback loop for the anti-spoofing enabled drone.
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Following this feedback algorithm, our drone could detect the intermediate spoofing
attack and perform emergency landing, as shown in Figure 15.

Moving
Upward

Hovering

Figure 15. Spoofing detection and emergency landing of our drone in the flight test.

It showed fair detection performance in repeated experiments, however we found
that its performance deteriorated, especially in multi-path environments (e.g., false alarms).
Further works remain to improve the performance and reliability as follows:

e According to various spoofing attack scenarios, constructing database is essential. Suf-
ficient data must be obtained under multi-path environments, various flight conditions
and attacks by different types of spoofer.

e Ensemble techniques that combine several machine learning models can be adopted
for better prediction. Accommodation of several features may also be helpful. They
can compensate the weakness of different sensor data.

e  Above approaches should be incorporated and well customized for operational safety
over a period of time.

5. Conclusions

In this study, we investigated the GPS susceptibility of small UAVs and suggested that
intermediate spoofing attacks would be an emerging threat to GPS-dependent platforms.

We have proposed a GPS spoofing detection method using 1D CNN to counter these
attacks. We adopted the ResNet architecture, enabling us to detect most spoofed signals.
Its performance in terms of precision, recall, and F-1 scores outperformed that of the SVM.
Furthermore, the proposed method prevented position falsification before signal hijacking.

To validate the operability of small UAVs, we measured the power consumption and
inference time on the embedded board. In the field test, our drone with the 1D CNN
algorithm showed fair detectability of GPS spoofing attacks and successfully returned to
the base.

Enhancing the performance and robustness of our model with respect to various
environments, such as the flight conditions of drones and different spoofing attack scenarios,
is our future research perspective.
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