
Citation: Zhai, C.; Yang, C.; Na, J.

Bifurcation Control on the

Un-Linearizable Dynamic System via

Washout Filters. Sensors 2022, 22,

9334. https://doi.org/10.3390/

s22239334

Academic Editors: Xue-Bo Jin and

Yuan Gao

Received: 12 November 2022

Accepted: 27 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Bifurcation Control on the Un-Linearizable Dynamic System
via Washout Filters
Chi Zhai 1,2, Chunxi Yang 1 and Jing Na 1,*

1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology,
Kunming 650093, China

2 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
* Correspondence: najing25@163.com

Abstract: Information fusion integrates aspects of data and knowledge mostly on the basis that system
information is accumulative/distributive, but a subtle case emerges for a system with bifurcations,
which is always un-linearizable and exacerbates information acquisition and presents a control
problem. In this paper, the problem of an un-linearizable system related to system observation
and control is addressed, and Andronov–Hopf bifurcation is taken as a typical example of an
un-linearizable system and detailed. Firstly, the properties of a linear/linearized system is upon
commented. Then, nonlinear degeneracy for the normal form of Andronov–Hopf bifurcation is
analyzed, and it is deduced that the cubic terms are an integral part of the system. Afterwards, the
theoretical study on feedback stabilization is conducted between the normal-form Andronov–Hopf
bifurcation and its linearized counterpart, where stabilization using washout-filter-aided feedback
is compared, and it is found that by synergistic controller design, the dual-conjugate-unstable
eigenvalues can be stabilized by single stable washout filter. Finally, the high-dimensional ethanol
fermentation model is taken as a case study to verify the proposed bifurcation control method.

Keywords: Andronov–Hopf bifurcation; washout filter; normal-form degeneracy; feedback stabilization

1. Introduction

In nonlinear systems covering ecology, economics, sociology and many other fields,
complex dynamic evolutionary behaviors, such as multiplicity, self-oscillation, and even chaos
arise in the vicinity of bifurcation points [1], and various methods are adopted to enhance
sensory ability for accurate manipulation and control: the bifurcation oscillator is applied as a
quantum state amplifier [2], the oscillating clearance of the rolling-element bear is taken as
the bifurcating parameter with repetitive errors fused into the control system [3], and deep
learning is implemented for the control of the Van del Pol system [4]. Mathematically, a
bifurcation takes place at a parameter value where the system loses structural stability with
respect to parameter variations, i.e., a phase portrait around the equilibrium is not locally
topologically conjugate to the phase portraits around the equilibrium at nearby parameter
values [5,6], which leads the solution manifold to change significantly, and exacerbates system
information acquisition and control implementation [7,8].

Bifurcation control [9] refers to the task of designing a controller to suppress or reduce
existing bifurcating dynamics, thereby achieving desirable dynamical behaviors, i.e., to
obtain an asymptotically stable phase portrait. Feedback is often applied on a system
with bifurcations, where the methods of linear/nonlinear feedback, washout-filter-aided
feedback, impulse control, vibrational control, delayed feedback [10], etc., are frequently
adopted. Nonlinear analysis and control based on harmonic balance approximations or
nonlinear frequency response is also studied [11]. Recently, the idea of the anti-control of
bifurcations [12] is proposed to segregate unwanted dynamics by deliberately introducing
simple bifurcations into the system.
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However, bifurcation control sometimes exhibits contradictory outcomes: improper
control actions or process–model mismatch might cause the closed-loop system to move
across the stable manifold, leading to more complicated dynamic behaviors [13], and one
cause is that many control laws are developed on the basis of linear system theory (gain-
scheduling, feedback linearization, etc.), but most dynamic systems with bifurcation are
un-linearizable, i.e., truncating out the nonlinear terms alters the structural stability of
the original system, and the higher-ordered-terms might not shrink to zero as the time
approaches infinity. On the other hand, normal form degeneracy provides an effective
way to evaluate those nonlinear terms, where types of bifurcations are expressed with
quadratic or cubic degeneracy, and state-feedback based on normal forms and invariant
sets are developed [14,15].

The main goal of this paper was to address the problem of an un-linearizable system
in bifurcation control, where a comparative study is conducted on both the original and
linearized models using washout-filter-aided state feedback. Through washout filters, a
feedback signal is expected to be well geared with the open-loop dynamics and generate
asymptotic outcomes. Abed and co-workers [16–19] implemented washout filters for
bifurcation control, and feedback stabilization theory is proposed through auxiliary state
variables that are inter-coupled. For systems with varying bifurcation parameters, the
adaptive control scheme is also developed [12]. Since washout-aided feedback is introduced
to migrate out of unstable eigenvalues, Marquardt [20] suggested manipulating directly
on the unstable eigenspace, and introducing a pair of complex conjugate eigenvalues
instead. Zhang [21] further employed eigenvalue assignment to achieve bifurcation control
with guaranteed transient dynamics. Chen [22] proposed a systematic way of choosing
constants and control parameters for the control of a high-dimensional bifurcating system.
However, for a complicated system, i.e., both single- and dual-unstable eigenvalues exist,
and controller design could be rather sophisticated.

The aforementioned washout-filter-aided control was developed on the linearized
system, and the linearization procedure might change the structural stability of the original
system and cause redundant control actions. In this work, the elementary properties of
a linearizable system are offered, which provides a comparison with the un-linearizable
system when these properties fail. Then, the system under Andronov–Hopf bifurcation is
taken as a typical case of an un-linearizable one and the related analysis and bifurcation
control strategy are developed. Since washout-filter-aided control can migrate the unstable
eigenvalues, numerical bifurcation analysis on the closed-loop system reveals that, by
inserting only one washout filter to any of the dual-unstable eigenspaces, the system might
be stabilized. Compared with previous developed control strategies [23], our method could
downsize the numbers of washout filters, facilitating the application for more practical and
general cases, especially for high-dimensional systems.

The inconsistency of feedback stabilization and numerical bifurcation analysis stems
from the fact that many nonlinear systems with bifurcation are un-linearizable [24].This
work is organized as follows: Through the analysis of the normal form of Andronov–Hopf
bifurcation, the properties of an un-linearizable system are detailed in this paper; then,
washout-filter-aided feedback on the un-linearizable system is analyzed in contrast with
previously developed washout-filter-aided control strategies; and the continuous ethanol
fermentation model is taken as an example of the un-linearizable system and is discussed
in detail, and finally, concluding remarks are provided last.

2. The Un-Linearizable System
2.1. Properties of the Linear System

Previously to the discussion on the nonlinear dynamic system, basic properties con-
cerning the linear system are provided. Consider a system exhibiting outcomes (characters)
M, and which is detected with finite numbers of sensible causes x1, . . . , xn, related by func-
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tion f ; then, a linear/linearizable system starts as a weighted contribution of individual
variables

M = f (x1, x2, · · · , xn) ≈
∂ f
∂x1

x1 +
∂ f
∂x2

x2 · · ·+
∂ f
∂xn

xn. (1)

Furthermore, the coupling relation between causes and outcomes is decoupled through
variable substitution and combination, e.g., a 2 × 2 input–output system with a linearized
form is given as follows,

M =

[
M1
M2

]
=

[
f1(x1, x2)
f1(x1, x2)

]
≈
[

∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

][
x1
x2

]
. (2)

Assume that the Jacobian matrix is non-singular, and a coordinate change y = Ax
exists that could diagonalize Equation (2)

[
M1
M2

]
≈
[

∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

][
x1
x2

]
= A−1

[
J11 0
0 J22

]
A
[

x1
x2

]
= A−1

[
J11y1
J22y2

]
,

where :[
∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

]
= A−1

[
J11 0
0 J22

]
A, y =

[
y1
y2

]
= A

[
x1
x2

]
.

(3)

Equation (3) indicates that for a linear/linearizable system, outcomes can be departed
as a sum of the weighted causes separately, and sets of causes can be found to correlate
every outcome exclusively.

The above linear system properties are held for the linear-time-invariant (LTI) dynamic
system. Given in state-space form, a multi-input–multi-output (MIMO) system undergoes
Laplace transform and obtains similar distributive and decoupling properties{

x′ = Ax + Bu + ξ(x, u)
y = Cx + Du

←−−−→
Laplace

y
u
= G(s) ≈ C

B
sI − A

+ D, (4)

where ξ is the nonlinear terms that are truncated out in the linearizable dynamic system,
whilst y and u represent outcomes and causes, respectively.

Mention that many nonlinear controls are developed on the linearized system. In
practical applications, the presence of system nonlinearities causes the dynamic behavior
to be qualitatively different from one operating regime to another; hence, one might obtain
linear (at a specific set-point) models valid within a “small” region about the linearization
point, and perform local designs for a set of operating conditions and then construct a gain-
scheduling scheme that interpolates controller gains as the process traverses the operating
region.

Accordingly, un-linearizable dynamic systems are those truncating out ξ as it alters
the structural stability of the original system, and many dynamic systems with bifurcation
are un-linearizable. Since a system under Andronov–Hopf bifurcation has dual- unstable
eigenvalues with planar phase portrait, which is a typical multivariate, un-linearizable
case, the following analysis and control is focused on the systems with Andronov–Hopf
bifurcation.

2.2. Normal Form Andronov–Hopf Bifurcation: A Typical Un-Linearizable System

A standard approach to study the behavior of ordinary differential equations (ODE)
around a bifurcation point is through normal form analysis, which starts by center manifold
degeneracy. For a parameterized dynamical system,

x′ = f (x, a), (5)
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where x → f (x, α) ∈ Rn and α is the bifurcation parameter, with equilibrium x0 satisfying
f (x0, 0) = 0. Assume eigenvalues of the Jacobian about x0 are λ1,2 = ±iω, λk < 0(k =
3, 4, . . . , n), then, there exists n-2 invariant/center manifold that is tangent at the bifurcation
point to the eigenspace of the neutrally stable eigenvalues λ1,2. Specifically, for a small
neighborhood of α ∈ (0, δ) and within the invariant manifold exists a 2-dimensional
attracting manifold and the coordinate change of the first two eigenspace; by introducing
complex conjugates z and z∗, Equation (5) around x0 can be given as

z′ = iωz + g(z, z∗) z ∈ C1, (6)

where g(z, z∗) is the degenerated terms at α = 0 and can be given explicitly through rules
of implicit function theorem. Assume S(z, z∗) ∈ R(n−2) represents the stable manifold, the
n-2 stable equivalence is provided as follows

ω
(

z∗
∂S
∂z

(z, z∗)− z
∂S
∂z∗

(z, z∗)
)
= f3,...,n(S(z, z∗), p(z, z∗)), (7)

and the n-2 solutions are exponentially convergent to S(t)

x3,...,n(t) = S(t) + O(e−βt), ast→ ∞, (8)

where β is the positive convergent rate. Considering that x3,...,n are locally asymptotic
and therefore can be neglected in a local stability analysis around the bifurcation point,
in the following discussion, about the Andronov–Hopf bifurcation, a two-dimensional
topologically equivalent eigenspace containing dual-unstable (λ1,2 = ±iω) is discussed
instead of Equation (5).

For a general two-dimensional parameterized system, i.e.,x = (x1, x2) → f (x, α) ∈
R2, α ∈ R, linearization about the equilibrium gives

x′ = A(α)x + h(x, α),

where :

A(α) =

(
a b
c d

)
,

(9)

where α, b, c and d are elements of the Jacobian A(α), which is simplified as A; h(x, α)
represents the higher-ordered term. The characteristic equation corresponding to A gives

λ2 − tr(A)λ + det(A) = 0

⇒
{

λ = 1
2 (tr(A) +

√
tr(A)2 − 4det(A))

λ∗ = 1
2 (tr(A)−

√
tr(A)2 − 4det(A))

,
(10)

where tr(A) and det(A) are the trace and determinant, respectively. Andronov–Hopf
bifurcation takes place at α = 0 satisfying tr(A) = 0 and det(A) = ω2

0. Assume in a
small neighborhood α ∈ (0, δ) that the eigenvalues are written as λ1(α) = µ + iω and
λ2(α) = µ− iω, where µ = tr(A) and ω2 = tr(A)2− det(A); then, T(α) exists to transform
A(α) into canonical real form as follows

J = T(α)A(α)T−1(α) =

(
µ(α) −ω(α)
ω(α) µ(α)

)
, (11)

where J−1 = JT/(µ2 + ω2). Let y = T(α)x and Equation (9) turns to{
y′1 = µ(α)y1 −ω(α)y2 + o(|y|2)
y′2 = ω(α)y1 + µ(α)y2 + o(|y|2)

. (12)
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Introducing z = y1 + iy2 and z∗ = y1− iy2 and Equation (12) presents one-dimensional
equivalence as follows

z′ = λ(α)z + g(z, z∗), (13)

with g = o(z2). Let q(α) be the eigenvector of λ1 about A(α) and one can give an eigen-
vector p(α) corresponding to λ2. Since λ1 and λ2 are complex conjugates, p and q can be
chosen so that the inner product satisfies 〈q, p〉 = 1, and

〈p, q∗〉 =
〈

p,
1

λ2
Aq∗

〉
=

1
λ2
〈AT p, q∗〉 = λ1

λ2
〈p, q∗〉

⇒ 〈p, q∗〉 = 0.
(14)

Equation (11) after transposition has TT(α)JT = AT(α)TT(α), and if p(α) has the
following form

p(α) =
(

p1
p2

)
=

(
T11 − iT21
T12 − iT22

)
, (15)

where Tij is i-th line, j-th row element , then z has the explicit form as follows

z = 〈p(α), x〉. (16)

Considering 〈q, p〉 = 1 and Equation (13), the original variable x has the only equiva-
lent transform

x =

(
q
q∗

)
(z z∗). (17)

Substituting Equation (17) into (16), one obtains

z′ = λ(α)z + 〈p(α), F(zq + z∗q∗, α)〉. (18)

Here, the nonlinear term F(x, α) in Equation (9) after Taylor expansion gives

F(x, 0) =
1
2

B(x, x) +
1
6

C(x, x, x) + O(||x||4),

with


B1,2(x, y) = ∑2

j,k=1
∂2F1,2(ξ,0)

∂ξ j∂ξk

∣∣∣∣
ξ=0

xjyk

C1,2(x, y, m) = ∑2
j,k=1,l=1

∂3F1,2(ξ,0)
∂ξ j∂ξk∂ξm

∣∣∣∣
ξ=0

xjykml

.
(19)

Substituting Equation (19) into (18) and the second-order term B gives

z′ = λz +
〈p, B(q, q)〉

2
z2 + 〈p, B(q, q∗)〉zz∗ +

〈p, B(q∗, q∗)〉
2

z∗2 + O(|z|3). (20)

Through a coordinate change in Equation (21) the second-order term vanishes and
gives Equation (22)

z = ω +
〈p, B(q, q)〉

2λ
ω2+

〈p, B(q, q∗)〉
λ∗

ωω∗ +
〈p, B(q∗, q∗)〉
2(2λ∗ − λ)

ω∗2 (21)

ω′ = λω + O(|ω|3) (22)

Similarly, the third-order term after coordinate change obtains

ω′ = λω + σω2ω∗ + O(|ω|4),
where :

σ =
〈p, C(q, q, q∗)〉

2
.

(23)
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Next, let ω = ρeiφ and Equation (23) turns to{
ρ′ = ρ(α− ρ2) + Φ(ρ, ϕ)

ϕ′ = 1 + Ψ(ρ, ϕ)
,

where :

Φ = O(|ρ|4); Ψ = O(|ρ|3).

(24)

Suppose that ϕ performs constant rate rotation and Equation (24) mapped to the
rotating plane gives

dρ

dϕ
=

ρ(α− ρ2) + Φ
1 + Ψ

= ρ(α− ρ2) + (ρ, ϕ),

where :

R = O(|ρ|4).

(25)

Assume that ρ0 = 0 is the initial condition, solving Equation (24) that provides

ρ = eαϕρ0 + eαϕ 1− e2αϕ

2α
ρ3

0 + O1(|ρ0|4). (26)

For a fixed α > 0, there exists a limit cycle, and when ϕ = 2π, the state ρ1 would turn
back to the initial point

ρ1 = e2παρ0 − e2πα(2π + O(α))ρ3
0 + O2(|ρ0|4). (27)

Comparing Equations (26) and (27), it is found that the 4th- or higher-order terms are
unaffected by the formation of limit cycles, and hence can be truncated out. Furthermore,
an Andronov–Hopf bifurcation is structurally equivalent to the following standard form(

x̂′1
x̂′2

)
=

(
α −1
1 α

)(
x̂1
x̂2

)
± (x̂2

1 + x̂2
2)

(
x̂1
x̂2

)
. (28)

As shown in the following schematic diagram, if Equation (28) is linearized by trun-
cating out the nonlinear terms, the phase portrait shows that the outcome is asymptotically
stable to the origin (Figure 1a); if the nonlinear terms at Equation (28) are preserved, the
phase portraits of the Andronov–Hopf bifurcation would be super-critical (Figure 1b),
where the periodic solution is stable, or sub-critical (Figure 1c), where the periodic solu-
tion is unstable, and the criterion for super- or sub-criticality is judged by the sign of the
third-order term of Equation (28).

It is an obvious standard form of the Andronov–Hopf bifurcation system that differs
from the linearized system as it either attracts or repels an oscillatory trajectory, while the
linearized one exhibits a diverging trend in the whole phase portrait. Hence, the nonlinear
terms in Equation (28) are indispensable, and a system with Andronov–Hopf bifurcation is
un-linearizable.

Figure 1. Phase portrait of (a) linearized system, (b) supercritical; and (c) subcritical Andronov–Hopf
bifurcations, where α = 0.1, and the arrows point out the time evolution direction.
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Address that there exists two variables x̂1 and x̂2 interacting with one another to form
a limit cycle around the Andronov–Hopf bifurcation point (α > 0). Furthermore, Equation
(28) can be represented one-dimensionally using complex variables, which means manip-
ulating either x̂1 or x̂2 to affect the dynamic behavior of the system directly (or equally).
Hence, introducing one state feedback suffices stabilizing a system with Andronov–Hopf
bifurcation. Notion, the sign of the third-order term in Equation (28), decides whether the
bifurcation is super-critical (−) or sub-critical (+), and one can refer to [21] for more details.

3. Stabilizing Normal Form Andronov–Hopf Bifurcation
3.1. Washout Filter as a State Manipulator

Since washout filters reject steady-state signals and passing transient ones, it could
be used as a state manipulator and by fine-tuned feedback, eliminates the instabilities
originating from open-loop bifurcations. Figure 2 is the washout-filter-aided controller
design scheme: by inserting washout filters between states and outputs, transient dynamic
behaviors are separated out that can be used to cancel out the perturbations of the system
through feedback; while outputs preserve the steady state information, this is important
for a control system, meaning washout filters are inoperative until vibrational signals are
detected. Assume that xk is the k-th element of the state variables, and d is the filter time
constant. The control law used in this paper is quite simple, and v is the reference input
used to determine the actual operating point and k is a controller parameter.

Figure 2. Block diagram for bifurcation control with washout-filter-aided stabilization.

3.2. Feedback Stabilization Based on the Linearized System

To stabilize the normal-form Andronov–Hopf bifurcation, washout-filter-aided control
is constructed. Without loss of generality, the linearized system is extended as follows

x′ = Ax + Bu + h(x, u), (29)

where the control u = [u1, u2]
T takes u = v+ ky, and k is the feedback gain; B is an arbitrary

input-state transfer matrix and h(x, u) represents the higher-ordered-terms.
Adding the auxiliary state satisfies dz/dt = y, and the closed-loop system is provided

as follows 
x′ = Ax + Bu + h(x, u)
z′ = P(x− z)
u = K(x− z)

. (30)
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Stabilizing Equation (30) requires the following augmented matrix AC being Hurwitz(
x′

z′

)
=

(
A + BK −BK

P −P

)(
x
z

)
= AC

(
x
z

)
.

(31)

Theorem 1. If A is non-singular and (A, B) is stabilizable, there exists (P, k), which makes
AC Hurwitz.

Proof. AC after similarity transforms of T1 and T2 gives

T1 ACT−1
1 =

(
I 0
0 P−1

)(
A + BK −BK

P −P

)(
I 0
0 P−1

)−1

=

(
A + BK −KBP

I −P

)
,

T2T1 ACT−1
1 T−1

2 =

(
I M
0 I

)(
A + BK −BK

P −P

)(
I M
0 I

)−1

=

(
A + BK + M −AM− KBM−M2 − KBP−MP

I −M− P

)
.

(32)

Through the following small gain analysis, the control (P, K) is obtained

AM + KBM + M2 + KBP + MP = 0,

s.t.

{
P = εP1 + O(ε2)

M = M0 + εM1 + O(ε2)
.

(33)

Canceling the first- and second-order perturbational terms provides{
(A + BK + M0)M0 = 0
(A + BK)M1 + AP1 = 0

,

where :

M0 = −A− BK,

(34)

which dictates,
M1 = −AP1(A + BK)−1. (35)

Then, around M0 in a small region, the only M satisfying Equation (33) is given

M = M0 + εM1 + O(ε2)

= −A− BK− εAP1(A + BK)−1 + O(ε2)
(36)

with AC satisfying

T2T1 ACT−1
1 T−1

2 =

(
−εAP1(A + BK)−1 + O(ε2) 0

I AC2(2, 2)

)
,

where :

AC2(2, 2) = A + BK + ε(AP1(A + BK)−1 − P1) + O(ε2).

(37)

When (A, B) is stabilizable, A + BK can be designed Hurwitz. Since A is non-singular,
setting P1 = A−1(A + BK), then −AP1(A + BK)−1 is Hurwitz, so as AC2. Plus, proper
feedback gain k can promise the good transient dynamics of the closed-loop system.
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One can design P based on above perturbation theory, but how many washout filters
needed to stabilize the system is still a problem, the following lemma provides some
insights.

Lemma 1. The parity of the unstable eigenvalues of −P needs to be consistent with that of A to
make AC in Equation (31) be Hurwitz.

Proof. From Equation (31), one has det(AC) = det(A)det(−P); hence, sign(det(AC)) =
sign(det(A)det(−P)). If all eigenvaluses of AC have a negative real part, then sign(det(AC))
= (−1)2n, which leads to sign(det(A)det(−P)) = (−1)n−l(−1)n−r, where l represents the
number of unstable eigenvalues of A, and r represents the corresponding numbers of −P,
i.e., l + r is an even number.

Therefore, to stabilize the normal form Andronov–Hopf bifurcation based on informa-
tion of Equation (29), −P needs to be a 2 × 2 matrix. The Laplace transform between state
and control gives

u(s)
x(s)

= K
sI

sI + P
. (38)

Obviously, when the state x(s)is one-dimensional, the washout filter has d = P, but
for a multi-dimensional system, e.g., P is 2 × 2, and the parameters of the washout filters
are difficult to provide

sI
sI + εp∗

=
s
∆

(
s + εp∗22 −εp∗12
−εp∗21 s + εp∗11

)
,

where :

∆ = s2 + ε(p∗11 + p∗22)s + ε2(p∗11 p∗22 − p∗12 p∗21).

(39)

In accordance with the form of washout filters, the higher-ordered terms in Equation (39)
need to be simplified. Considering only the transient dynamics are concerned with washout
filters, and based on the Laplace extreme theorem, s in Equation (39) takes maximal value,
which leads to the idea of the form of washout filters

sI
sI + εP∗

=

( s
s+ε(P∗11+P∗22)

0

0 s
s+ε(P∗11+P∗22)

)
. (40)

Meaning two washout filters with d = tr(P) aid the controller design, and Equa-
tion (40) is decoupled.

3.3. Bifurcation Analysis on the Closed-Loop System

Consider only one washout filter is introduced to xi with feedback u = Kiy, and (i, j)
pairing generates four possible cases for a two-input–two-output system. The normal form
Andronov–Hopf bifurcation is augmented and h(x, u) explicitly presented

{
x′ = Ax + Bu + h(x, u)
z′ = xi − dz = y

⇒

x′ =

(
a −1
1 a

)(
x1

x2

)
− (x2

1 + x2
2)

(
x1

x2

)
+ Kiy

y′ = fi(xi, Kiy)− dy

, (41)

where y is the washout-filter-output corresponding to xi. Based on Routh–Hurwitz stability
criterion [25], one can deduce the control gain Ki of the washout filter that stabilizes
Equation (41), and the Jacobean of the augmented system gives

Ã =


(

a −1
1 a

)
(BK)i

∂ fi
∂x1

∂ fi
∂x2

(BK)i − d

. (42)
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Expending Equation (42) along the last column gives the characteristic polynomial Pc

Pc = det(Ã− λI2+1)

= ((BK)i − d− λ)(λ−i − λ) +
(

∂ fi
∂xi

)
n
· (BK)i(λ−i − λ)

=

[
((BK)i − d− λ)(λ− λn)− (

∂ fi
∂x1

)n · (BK)i

]
(λ−i − λ).

(43)

One can design pairs of (Ki, d) to make eigenvalues of [∼] in Equation (43) stable, but
λ−i is kept unchanged. Meaning that, for the linearized system, dual-unstable eigenvalues
need two washout filters.

However, Equation (41) is a nonlinear control, and the dynamics of fi could be com-
pensated through feedback. The Jacobian from Equation (42) ignores nonlinear correlations
between system and control feedback, which leads to redundant control loops. When
numerical bifurcation analysis is implemented, it is found that only one washout filter can
stabilize the closed-loop system represented by Equation (41).

One can design controllers through the identification of critical points for the emer-
gence/elimination of unstable eigenvalues. For the case of Equation (41), the limit cycles
when α > 0 need to be eliminated (or stabilized); hence, with the aid of a washout filter
framed in Figure 2, Andronov–Hopf bifurcation points in the (Ki, d) domain can belocated
numerically (refer to Appendix A for more details).

Substantial configurations are provided in Figure 3, where the solid lines are Andronov–
Hopf bifurcation curves. BT represents Bogdanov–Takens bifurcation, and ZH represents
zero-Hopf bifurcation, both of which are codimension-2 bifurcations originating from
Andronov–Hopf bifurcation curves. Since x1 and x2 in Equation (41) are somewhat sym-
metric, configurations C1 and C4 are identical, and so are C2 and C3. For each stabilizable
region, d > 0 implies the analog signal after washout filters are stable, while d < 0 means
that the feedback signal is unstable.

Figure 3. Analysis on the closed system of normal form Andronov−Hopf bifurcation.

As shown in Figure 3, the Andronov–Hopf bifurcation curves separate out parameter
space (Ki, d) that stabilizes the closed-loop system. Mention d = 0 in cases of C1 and C4
indicates that traditional PID control stabilizes the system. It is observed d < 0 is able
to stabilize the system from a nonlinear analysis perspective, but the unstable washout
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filter generates diverging signals which are dangerous for real-time applications where
interference is unavoidable and is not recommended. Exclusively for d > 0, it is found C2
and C3 have broader stable margins than C1 and C4, which implies manipulating variables
and control feedback could be chosen such that stabilizing control is easy to achieve.

Based on an analysis in Figure 3, numerical simulations on the Simulink platform
were conducted, where α = 0.1 for Equation (41). As is shown in Figure 4, when the
parameter pair (−5, 0.5) is adopted for case C1, it is stabilizable. The perturbation output
after washout filter damps down and so as the states x1 and x2, and a positive phase shift
between y and x1 implies that the oscillatory dynamics of the control feedback and forward
signal are well geared to stabilize the closed-loop system. Since x1 and x2 are coupled in
the self-oscillatory system, stabilizing x1 would cause x2 to damp down. Further study
of the information acquisition by the washout filter shows that, the stable one obtains
oscillatory signals, while the unstable one is exponentially divergent, where the overall
stable character of the closed-loop system is obtained by the subtraction of the forward and
backward signals. Hence, to stabilize the self-oscillatory dynamic system, stable washout
filters are suggested.

Figure 4. Time series of the closed-loop system, where the washout-filter-aided feedback parameters
are d = 0.5, k =-5.

4. Case Study
4.1. Bifurcation Analysis on the Continuous Ethanol Fermentation Model

One of the most important bio-industrial sectors is the production of ethanol, which
can be used as a gasoline additive to improve vehicle performance and reduce carbon
emission. However, complex microorganism growth kinetics and ethanol inhibition present
challenges for continuous production at the industrial scale, which limits the contribution
of bio-fuel to current energy supply, and hence an exquisite controller design is critical to
stabilizing the process. The structured model for Zymomonasmobilis fermentation [26] in a
continuous stirred reactor is provided as follows, which considers the mass balance of the
substrate (Cs, g/L), microorganism (Cx, g/L), K-compartment biomass (Ce, g/L), product
(Cp, g/L) and the related parameters are given in Table 1

dCs

dt
=

µ · CS · Ce

Ysx · (KS + CS)
−mS · Cx + D · (Cs f − Cs)

dCX
dt

=
µmax · Cs · Ce

Ks + Cs
− DCx

dCe

dt
=

(k1 − k2Cp + k3C2
P)Cs · Ce

(Ks + Cs)
− DCe

dCp

dt
=

µmax · Cs · Ce

Ypx · (Ks + Cs)
+ mp · Cx − DCp

, (44)

where the dilution rate D and the substrate feed concentration Cs f are set as the design /op-
eration parameters because of practical concerns. D is the reciprocal of the residence time
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for the reaction stream, which has a fundamental impact on the bioreactor behavior; Cs f
always comes from upstream, which may be interfered with due to upstream uncertainties.

Table 1. Parameters used for the continuous bio-ethanol reactor model.

Parameter Definition Value

µmax Maximum specific biomass growth rate (h−1) 1.0
Ysx Yield factor for substrate to biomass (g/g) 0.00244498
Ypx Yield factor for substrate to product (g/g) 0.00526315
ms Maintenance substrate consumption rate (g/g h−1) 2.16
Ks Monod constant (g/L) 0.5
k1 Empirical constant (h−1) 16
k2 Empirical constant (L/g h−1) 0.497
k3 Empirical constant (L2/g2h−1) 0.000383
mp Maintenance product consumption rate (g/g h−1) 1.1
Cs f Substrate feed concentration (g/L) 140

With this model, nonlinear analysis is conducted on the open-loop system. A two-
parameter bifurcation diagram decomposes the parameter space (D, Cs f ) into different
sections, and each has distinct dynamic properties. Furthermore, as is shown in Figure 5, the
Andronov–Hopf bifurcation curve divides the parameter space into S1 and S2. Any design-
ing point at S1 generates a self-sustained oscillator, while the point at S2 is in stable steady
equilibrium. Particularly, when Cs f is set as 140 g/L, H is detected at DH = 0.05024 h−1. H
is a supercritical Hopf bifurcation point due to its negative first Lyapunov coefficient (lp),
and operating the process with D at the left hand side of H leads to self-oscillations, while
stable equilibriums are obtained on the right-hand side. It is obvious that the highest Cp
is achieved when D is infinitesimal, which means that the reactor size needs to be very
large. Since a high Cp of the bioreactor outlet cuts down the separation cost of later process-
ing, one should design the reactor by setting D as the small reasonable equipment cost.

Figure 5. Bifurcation analyses on the ethanol fermentation process: two-parameter continuation
diagram (left); and one-parameter continuation diagram (right).

We set the design point for Equation (44) as Pd(0.022, 140) in this work, which falls
into the self-oscillatory section. The idea of designing a self-oscillatory process was in-
spired by [27,28]. Taking Pd point as example, time average Cp is 8.8% higher than the
corresponding steady-state output of the same design condition. However, the presence
of self-oscillatory dynamics brings a challenge for the control of the continuous system;
therefore, bifurcation control with the aid of washout filters is demanded to stabilize this
multi-dimensional system.

4.2. Washout-Filter-Aided Control of the Fermentation Model

The model in Equation (44) is four-dimensional, and dual-unstable eigenvalues exist
when Andronov–Hopf bifurcations emerge. For Pd, the equilibrium for Cs, Cx, Ce and Cp
are 0.8509 g/L, 21.6547 g/L, 0.01915 g/L and 58.71 g/L, respectively; and the corresponding
eigenvalues are−2,−0.07136, 0.01232± 0.1411. Dual-unstable eigenspace emerges between
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states Ce and Cp, indicating that the controlling variable would be chosen among them,
Cp is set as the washout filter input, and it is assumed that Cp can be detected with online
measuring devices. Then, the washout filter output is provided

y
Cp

=
s

s + d
⇒ y′ =

µmax · Cs · Ce

Ypx · (Ks + Cs)
+ mp · Cx − DCp − dy, (45)

where d is the filter parameter, and to promise that y is stable and convergent, d needs to
be positive. The manipulating variable is set to D, which is related to the input flow rate.
Compared to the nominal D0 = 0.022 h−1, the feedback by P control is provided

D = D0 + ky, (46)

where k is the feedback gain.
Combining Equations (44)–(46), one could implement bifurcation analysis on the

closed-loop system. As is shown in Figure 6, when the washout-filter-aided P-control is
facilitated on the continuous fermentation model, the controlling space (k, d) is separated
into three sections by the Andronov–Hopf and neutral saddle curves, where only the upper-
left one is stabilizable. Note that both Andronov–Hopf and neutral saddle bifurcations
are codimension-1 bifurcations, and the bifurcations happening on these two curves are
codimension-2 bifurcations. For the Andronov–Hopf bifurcation curve, three codimension-
2 bifurcations, GH1 (0.1745, 0.0024), GH2 (0.0623, 0.0006) and ZH (0, 0.0005) are detected;
and for the neutral saddle bifurcation curve, HH (0.02221, −0.03037) is detected. Mention
for a given filter parameter, e.g., d = 2, with the decrease in k, that the dynamics of the
closed-loop system evolves from stable to saddle, and then diverges.

Figure 6. Two−parameter continuation diagram for the control variables, where GH1 and GH1 are
the general Hopf bifurcation, ZH is the zero Hopf bifurcation and HH is the Hopf–Hopf bifurcation.

Further study is conducted by setting the control parameters to constant, e.g., d = 2
and k = 1, and observing the changes in the dynamics. As shown in Figure 7, between the
two Andronov–Hopf bifurcation curves is the segment that can be stabilized by washout-
filter-aided P-control. When the control is facilitated, stabilizing the designing point
demands that Cp reaches the steady state, and then the washout filter output y has a
tendency to converge towards zero, and Equation (45) tends towards zero; hence, the
closed-loop system has the same equilibrium as the open-loop one, and Cp = 58.71 g/L is
preserved at operational point Pd. As provided in Figure 8, the simulation results show
converged dynamics after control d = 2 and k = 1, where Cp and D reach Pd as time
approaches infinity.
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Figure 7. Two-parameter continuation diagram for the designing parameters.

Figure 8. Stabilized outcomes for the closed-loop system, where d = 2 and k = 1.

5. Conclusions

In the presented study, we have focused on a subtle case with bifurcations, which
is always un-linearizable and exacerbates information acquisition and a control problem.
Taking the system with Andronov–Hopf bifurcation as a typical example, normal form
analysis reveals that the cubic terms are the integral part of the whole system, and with the
consideration of the un-linearizable characteristics, the stabilization procedure adopting
washout-filter-aided control could realize the migration of dual-unstable eigenvalues with
only one washout filter, which is not possible by previous control strategies. Moreover,
the continuous ethanol fermentation process is taken as a case study for stabilizing a
high-dimensional Andronov–Hopf bifurcation system: (1) variables mapping to the dual-
unstable eigenspace are chosen as the manipulated variable; and (2) a stable washout filter
parameter is demanded to stabilize the dual-unstable eigenvalues. By washout-filter-aided
P-control, the ethanol fermentation process is stabilized and the equilibrium is preserved.
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Nomenclature

D dilution rate, h−1

KS saturation constant, g/L
k1, k2, k3 inhibition constant, L/g
T0 inherent period, h
Pd design point for unforced system
re growth rate of the K-compartment, g/L h
Cs f substrate feed concentration, g/L
t time, h
x biomass concentration, g/L
Ysx, Ypx yield factor of biomass on substrate/product, g/g
ms maintenance item, g/g h
Greek letters
δ Greek letters
µmax maximum specific growth rate, h−1

Subscripts
s substrate
x biomass
e K-compartment
p product

Appendix A

The following test function (Stephanos theorem) locates the critical points numerically.
Stephanos theorem: If a n× n matrix A has eigenvalues µ1, µ2. . . µn ordered in an arbitrary
order, then 2AΘIn satisfies (µi + µj)n>i>j > 1, and the function

ϕH(x, α) = det(2 fx(x, α)ΘIn)

vanishes at an Andronov–Hopf bifurcation point, where “det” represents the determinant,
and Θ is the bi-alternate product.

Proof. The eigenvalues of a matrix are preserved by similarity transforms as follows

(PΘP)(2AΘIn)(PΘP)−1 = 2BΘIn

where B is the transform of A, B = PAP−1. Hence, one can assume that A is in upper
triangular form (by reducing to the Jordan form if necessary). Then, the eigenvalues of A
become its diagonal elements. By applying the equation below,

(2AΘIn)(i,j)(k,l) = αik



−αil i f k = j
αik i f k 6= i and l = j
αii + αjj i f k = i and l = j
αjl i f k = i and l 6= j
−αjk i f l = i
0 else
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2AΘIn is an upper matrix if its indices are ordered lexicographically, and its diagonal
elements are given as Stephanos theorem claims. By defining the test equation ϕH(x, α) = 0,
the critical point αc can be located and inserted into the continuation sequence.
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