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Abstract: Due to the ever-increasing proportion of older people in the total population and the
growing awareness of the importance of protecting workers against physical overload during long-
time hard work, the idea of supporting exoskeletons progressed from high-tech fiction to almost
commercialized products within the last six decades. Sensors, as part of the perception layer, play a
crucial role in enhancing the functionality of exoskeletons by providing as accurate real-time data
as possible to generate reliable input data for the control layer. The result of the processed sensor
data is the information about current limb position, movement intension, and needed support. With
the help of this review article, we want to clarify which criteria for sensors used in exoskeletons are
important and how standard sensor types, such as kinematic and kinetic sensors, are used in lower
limb exoskeletons. We also want to outline the possibilities and limitations of special medical signal
sensors detecting, e.g., brain or muscle signals to improve data perception at the human–machine
interface. A topic-based literature and product research was done to gain the best possible overview of
the newest developments, research results, and products in the field. The paper provides an extensive
overview of sensor criteria that need to be considered for the use of sensors in exoskeletons, as well
as a collection of sensors and their placement used in current exoskeleton products. Additionally, the
article points out several types of sensors detecting physiological or environmental signals that might
be beneficial for future exoskeleton developments.

Keywords: exoskeletons; sensors; lower limbs; wearable robots; powered orthosis

1. Introduction

Wearable, powered exoskeletons can be classified into two main classes, medical and
non-medical. The first class includes rehabilitative and assistive exoskeletons. The aim
of these exoskeletons is to provide guided movement and facilitate labor-intensiveness
by decreasing the load action on the wearer (rehabilitative) or physical support for daily
living activities (assistive) [1]. The second class, non-medical exoskeletons are intended to
be worn by healthy operators [2]. These exoskeletons are designed to provide an increased
capability of carrying heavy loads with minimal effort, and to increase velocity, power,
and endurance. Typical operators can be soldiers, disaster relief workers, fire fighters, or
industry workers.

Exoskeleton applications are currently more concentrated in military and medical
fields [3]. However, current achievements in exoskeleton technology are only the beginning,
and a large-scale industry for practical application has not yet formed [4].

The exoskeleton control system generally includes three levels: the perception layer,
the control layer, and the execution layer. The perception layer refers to the sensory system
of the exoskeleton. The sensory system is responsible for obtaining data from the external
environment (e.g., obstacles), the exoskeleton itself (e.g., exoskeleton state), the operator’s
body (e.g., movement detection), and the operator–exoskeleton interaction. The control
layer works with data obtained from the perception layer. Its task is to decide what kind
of response should be used. Control mechanisms were reviewed by Yan et al. [5]. The
function of the execution layer is to actuate the exoskeleton structures according to the
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results of the decision layer to make the exoskeleton carry out its action. Currently, electric,
hydraulic, and pneumatic actuators are predominantly used in powered exoskeletons [6].
A new paradigm of “soft exoskeletons” has been increasingly adopted in the last decade.
Soft exoskeletons (also called exosuits) attempt to replace big and rigid elements with soft,
light, thin, and flexible ones [7], e.g., innovative textiles [8].

Current exoskeletons are required to be more and more advanced and accurate in
shadowing the movement of the operators. This task not only requires the exoskeleton
movement to be as close as possible to the operator, but it also involves early recognition
of the operator’s intention. To meet these challenges, it is crucial to have an advanced
sensory system.

The aim of the paper is to provide a connection between currently used sensors in
powered lower-limb exoskeletons (hereon referred to as exoskeletons), an overview of
other sensor possibilities for potential future use in exoskeletons, and the criteria which
all sensors for exoskeletons should meet. The review can be used as a guideline for sensor
type selection and help with decision making concerning new product developments.

The rest of this paper is organized as follows: related research is outlined in Section 1.1.
A methodological review is described in Section 4. Sensor requirements are listed in
Section 2. Sensing technologies for kinematics, kinetics, and physiological signals are
detailed in Section 3. The application of sensors in lower-limb exoskeletons are detailed
in Section 5. Section 6 concludes the paper and discusses the future direction of wearable
sensing in lower limb exoskeletons.

1.1. Related Works

There is research centered on equipment utilized in biomechanics to study the structure
and function of the human body that includes laboratory-based [9,10] sensors as well
as wearable sensors [11,12]. Other publications reviewed wearable sensors in patient
monitoring [13] and rehabilitation [14–16]. Ahmad et al. [17] pursued the application of an
inertial measurement unit in several areas including medical rehabilitation.

Rukina et al. [18] solely focused on the usage of surface electromyography in the
development and control of exoskeletons. They looked at the measurement, processing,
and analysis of the muscle’s bioelectric activity with respect to exoskeleton control.

As far as lower limb exoskeletons are concerned, sensors were mentioned or listed
in some publications [1,19–23]. However, none of this research was directly aimed at the
employment of sensors in exoskeletons. These publications are rather general reviews on
the topic of exoskeleton development.

Recently, Novak and Riener [24] provided an extensive overview of data fusion ap-
proaches that are used with a wearable robot or in similar conditions, e.g., a robot arm
controlled by an EEG. Unlike their research, this article focuses on sensors rather than
sensor fusion methods. Li et al. [25] reviewed control strategies for lower limb rehabili-
tation exoskeletons. Tucker et al. [26] summarized various types of sensors and focused
on techniques for controlling portable active lower limb prosthetics and orthotic devices.
Young and Ferris [27] reviewed common approaches in exoskeleton design, including
actuators, energy supplies, control strategies, and materials. Some sensors were briefly
mentioned in connection with movement perception and control methods [28,29] or assis-
tive strategies [30]. Hussain et al. [31] examined various lower-limb robotic exoskeletons,
concentrating on materials, manufacturing, and actuation.

Redkar et al. [32] focused on inertial measurement unit utilization in gait analysis and
exoskeletons control strategies. Nevertheless, the relationship between these two topics is
not strongly outlined in the article.

Unlike previous reviews, this article focuses on a wide range of sensors rather than
specialized focus on purposefully selected sensors. Next, this review describes sensors
broadly (focusing on sensors) rather than superficially (focusing on sensor fusion methods
or control strategies).
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2. Requirements for Sensor Characteristics

Batavia et al. [33] identified and prioritized a list of factors used by long-term users
of assistive devices. This list was later refined by Lane et al. [34]. As sensors are the
underlying technology to exoskeletons, sensors also need to meet these requirements. The
eleven final criteria that were used to evaluate assistive devices along with a sensor analogy
description are provided in Table 1. We excluded securability and portability criteria from
the list. Further, the safety criterion has been justified in more detail. Securability should
be guaranteed at the level of the entire exoskeleton, not just at the level of its individual
components. Undoubtedly, portability is an essential and required feature of assistive and
some empowering exoskeletons. The ability of the sensor to be moved or carried is an
apparent feature as the sensors are worn by an operator and are used to capture his intent
and movement. On the other hand, it is not expected that the sensor is independently
able to relocate and operate in varied locations outside the exoskeleton. Sensors used in
exoskeletons are currently input sensors that capture without interfering with the operator’s
body. Although it is not expected that such sensors would harm the operator, it is necessary
to keep in mind for future sensors and to assure the safety of the operator against harm.

Table 1. Assistive devices requirements and how they relate to exoskeletons sensors.

Criterion Definition [34] Exoskeletons Sensor Requirements

Effectiveness
How much the device improves one’s living

situation, enhances functional capability
and independence.

Sensed values need to be captured in such a
way (e.g., kind of signal, frequency) that the

exoskeleton can maintain the operator’s quality
of movement.

Affordability
The extent to which a person can purchase,

maintain, and repair a device without
financial hardship.

Sensors on the exoskeleton should not be too
financially demanding to remain

financially viable.

Reliability
The degree to which a device is dependable,

consistent, and predictable in its performance
and level of accuracy under reasonable use.

The sensors should output consistent and
predictable values despite environmental

conditions such as water droplets, moisture,
and sweat.

Portability
The influence of the device’s size and weight on
the user’s ability to move, carry, relocate, and

operate it in varied locations.

The sensors should be portable, small,
and energy-saving.

Durability The extent to which a device delivers continued
operation for an extended period of time.

The expected useful lifetime of the sensor
(despite environmental impurities, e.g., dust).

Securability
How well a consumer believes a device affords
physical control and can be secured from theft

or vandalism.

The sensors should be suitably attached to the
structure of the exoskeleton.

Safety

The physical security a device affords the user,
and how well it protects the user, care provider,
or family member from potential harm, bodily

injury, or infection.

The protection of the operator from potential
harm, injury, infection, etc.

Learnability
The perspective of the device’s ease of assembly,

initial learning requirements, and time and
effort to master use.

Initial learning difficulty to use (e.g., attach,
detach) the sensors.

Comfort/Acceptance

The extent to which a user feels physically
comfortable with the device and does not

experience pain or discomfort with use; how
aesthetically appealing the user finds the device

and the user’s psychological comfort when
using it in private or public.

The fit, appearance does not cause the user to
feel stigmatized while using the device.



Sensors 2022, 22, 9091 4 of 17

Table 1. Cont.

Criterion Definition [34] Exoskeletons Sensor Requirements

Maintenance/Reparability
The degree to which the device is easy to

maintain and repair (either by the consumer, a
local repair shop, or a supplier).

The same as definition.

Operability
The extent to which the device is easy to use,

adaptable and flexible, and affords easy access
to controls and displays.

The perspective of the sensor being easily
fastened in the intended position (with respect

to the operator’s body) including a certain
tolerance to the exact position.

Most of the requirements listed in Table 1 also apply to other exoskeleton classes
(empowering and rehabilitation), see Table 2. Most of the requirements related to different
exoskeleton classes are self-explanatory. However, it would be beneficial to comment
on some of them. Acceptance is much more important for assistive exoskeletons when
everyday personal use in public is anticipated than for empowering exoskeletons whose
purpose greatly prevails over social adoption. The sensors cost (e.g., initial, repair) needs
to be low to keep exoskeletons affordable for personal use, e.g., for assistive exoskeletons.

Table 2. Applicability of requirements to exoskeleton classes.

Criterion Required in Assistive Exoskeletons Required in Empowering Exoskeletons

Effectiveness Yes Yes
Affordability Yes No

Reliability Yes Yes
Durability Yes Yes

Learnability Yes Yes
Comfort/Acceptance Yes No

Maintenance/Reparability Yes Yes
Operability Yes Yes

The next requirement for all standalone exoskeleton sensors is a low energy consump-
tion. It is logical that exoskeleton energy efficiency needs to be improved to prolong the
operation time [35].

3. Current Sensing Technologies

In this section, we provide information concerning sensors’ potential suitability or use
in the design of lower-limb exoskeletons.

3.1. Kinematics Sensors

Among the most common kinematic wearable sensors used in exoskeletons are:

• Inertial measurement units (IMU), i.e., gyro-accelerometers [36],
• Electro-mechanical systems, i.e., electronic goniometers [37].

IMUs allows for the measurement of the rotational and translational variables of
motion and for this reason, they have also been used in exoskeleton designs [38]. In
addition to determining angles and segment positions, accelerometers are also used to
identify gait phases based on instantaneous acceleration values. Information about the
current gait phase is used in the control algorithms of the exoskeletons [35].

In the case of electro-mechanical systems, i.e., electronic goniometers, which were
more recently developed, exoskeletons using electro-mechanical systems record kinematic
parameters of motion on which the control of these robotic systems rely [39]. These sensors
are the basis of measuring angular movements, especially for robot-aided assessment of
lower extremity functions [40].

The limitations are as follows. Accelerometers occasionally need to be re-calibrated.
Otherwise, there could be a signal offset due to changes in temperature, fluctuations in
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gain, or general mechanical wear [41]. Moreover, the sensor is susceptible to changes from
precise attachment for reasons such as vibration (e.g., caused by movement of muscles
during walking, impact on heel strike) which leads to a high frequency-based imprecision
in the signal. The measured signal is influenced by gravity which requires additional
compensation with signal processing. When an acceleration signal is integrated drift
problems may occur [42]. Because the additional measurement of the earth’s magnetic field
vector provides a second non-gravity affected reference, it may increase the measurement
accuracy. Next, the assumption that the local coordinate axis of the sensors aligns with the
joint coordinate axis can lead to errors over long periods [32].

3.2. Kinetics Sensors

A whole range of electronic sensors based on several distinctive methods have been
designed. Among the most common and suitable for exoskeleton design are:

• Strain gauge sensors [43],
• Piezoelectric sensors [44].

These sensors can be used directly to measure force, or they can be modified and
used to measure torque and/or pressure or tension. In the case of the lower-limb body
movement measurements, force/torque sensors are placed on the shank or thigh, or directly
on the joint (i.e., knee). To measure the latter, force and pressure sensors are used in the
construction of medical aids [45]. Typically, they are elements that are directly incorporated
into the mechanical design of the devices or systems.

Strain gauge sensors and piezoelectric sensors are a more expensive option and
are usually used to measure forces transmitted by the exoskeleton segments. For this
reason, several applications have already been used. Sensors are often used to determine
the phases of the gait, walk ratio (step length/cadence), pose, etc. from the measured
force or stress signal [46]. Foot-switches are utilized for gait event detection, for example
the heel strike and heel off by switching to under the heel. In addition, sensors can
determine the weight load which is then used as information for control algorithms to
control exoskeleton actuators. Additionally, strain gauge and piezoelectric sensors have also
been used to monitor the gait state and condition by measuring the ground reaction force
(GRF) development and center of pressure development in stance phases [47]. The strain
gauge and piezoelectric sensors have been also used to measure the pressure distribution
on an exoskeleton [48].

The disadvantage of force-based sensors can be that placement for operators with
abnormal gait is difficult [49]. For this reason, sensors are often installed directly into the
construction of the exoskeletons outside the body segment. However, the accuracy of
identifying gait events can be reduced [50].

3.3. Muscle Activity Sensors

Measuring muscle activity has several uses in determining the physical and mental
state of the subject being measured. Since the electrical activity of muscles precedes
movement, sensing muscle activity allows for estimating the operator’s movement prior to
the movement occurring [51].

For the application of sensors used in exoskeleton design, the most commonly used
are surface electromyography (EMG) sensors. EMG sensors are typically used to study the
state and condition of specific muscles [52] and use the measured signal in actuator control
algorithms [53,54]. In case the exoskeleton is used for robotic rehabilitation, the EMG
data are measured and analyzed to describe the neuromuscular activity and interaction
between the exoskeleton and the user [55]. Applying mathematical models, it is possible to
estimate appropriate forces and movements of the lower limbs [53] and consequently, the
exoskeleton can apply assistive movements.

Another type of sensor used in practice is the muscle pressure sensor [56]. The muscle
pressure sensor has been tested on an actuated knee orthosis with artificial muscles. The
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user’s knee extension intention was estimated by the muscle stiffness, according to which
the actuators were controlled [11,56].

Mechanomyography (MMG) is a measurement technique used to record muscle
activity based on vibrations arising as an effect of the muscle fibers’ mechanical contractions.
Various types of transducers, such as accelerometers, microphones, or laser distance sensors,
can be used to convert mechanical vibrations to electrical signals [57,58]. It has been shown
that an MMG measured by microphone sensors on different days is reliable and relates to
changes in forces [59].

The disadvantage of EMG sensors is that the acquired signal is highly influenced by
the location of the electrodes, skin tissue impedance (e.g., caused by sweat), and muscle
size. As the signals pass through numerous tissue layers before they reach the skin surface,
the signals are prone to cross-talk, interference, and noise [60] Further, the electrodes
do not isolate and register the activity of a single muscle (e.g., controlling the particular
movement), but all those that are located close to the surface covered by the electrode.

Various factors affect the nature of the signals recorded and therefore need to be
considered when using MMG sensors. These include contact pressure, temperature, and
positioning of the sensor [61–65]. These considerations are crucial and might need to be
resolved prior to utilization in the exoskeleton.

There is another class of muscle activity sensors that focuses on changes to the me-
chanical properties of muscles, including muscle elastography sensors [66], muscle stretch
sensors [67], muscle pressure sensors [68], and resonance muscle stiffness sensors. Muscle
elastography sensors are based on ultrasound technique with the aim to non-invasively
assess localized muscle stiffness. The muscle stretch sensors [67] placed on the measured
muscle are usually made of conductive plastic material which changes its resistance de-
pending on the amount it is stretched. The muscle pressure sensors [68] based on the
piezo-resistance principle are used to measure the pressure from the muscle to which
they are attached. The sensors allow for measuring the force exerted by the muscle or to
sense [69] the deformation of the muscle [70]. In addition, muscle stiffness sensors based
on the measurement of resonance signal changes have been tested [71]. The disadvantage
of these sensors is that the mechanical sensing of muscle contractions is slower than the
EMG signal measurement.

When myographic signals are used in the exoskeletons field, one of the essential
areas of optimization is the number and placement of the sensors used [72]. To enforce
endeavors to improve sensing quality, multimodal approaches as well as new sensor
configurations are looked for. One possible approach is combining sensors. An example
of coupling a microphone and an accelerometer [73] or EMG and MMG [74–77] has been
shown. Zhang et al. [77] showed that an introduction of MMG signals might significantly
improve the performance of an EMG-pattern recognition-based prosthetic control.

3.4. Brain Activity Sensors

Brain activity measurements can be divided into invasive and noninvasive according to
the acquisition technique. For robotic systems, researchers prefer noninvasive measurement
by using an electroencephalogram (EEG) signal. EEG signals are electric brain signals
obtained by placing electrodes on the scalp to measure the summation of neuron potentials.
Usually, the international 10–20 system is followed.

An EEG is the most common tool in brain–computer interfaces, although more recently,
functional magnetic resonance imaging (fMRI) [78], functional near infrared spectroscopy
(fNIRS) [79], magnetoencephalography (MEG) [80] and functional transcranial Doppler
ultrasonography [81–83] have been considered.

An EEG provides relatively poor spatial resolution, but fine temporal resolution [84–87].
Since an EEG captures only the electrical field and since the brain is a high energy-
demanding organ and neuronal activation correlates with increases in cerebral blood
flow and volume, accessory analysis of blood-oxygen level-dependent (BOLD) activity
may improve brain activity assessment performance. BOLD activity is typically captured
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with an fMRI [88]. Alternatively, the BOLD can be acquired safely and non-invasively by
fNIRS [79]. A recent study indicated that fNIRS is unable to adequately offer acceptable
performances on its own [89]. However, detecting and quantifying brain activity signals to
discern the user’s movement intention can be boosted by the integration of fNIRS with an
EEG [89].

MEG has the advantage of recording brain activity across the whole scalp while main-
taining much higher spatial and temporal resolution. Compared to an EEG, MEG allows for
detecting higher frequencies such as magnetic fields which are less attenuated by the head
bone and tissue as compared to electric fields [90]. A MEG recording constitutes another
potential approach when combined with an EEG, as it adds complementary information to
the EEG signals [91].

EEG-based brain–computer interfaces have been discussed in excellent reviews pub-
lished by Rashid et al. [92] and Saha et al. [93]

The disadvantage of an EEG is that it needs gel or saline liquid to reduce the impedance
of skin–electrode contact [94]. The problem with the liquid medium is that it dries with
time. However, currently there are some dry electrodes that have been developed which
might solve this problem [95,96].

Although BOLD acquisition by an fMRI can be beneficial in brain activity assessment,
the size and cost of the device makes it unsuitable for application in the exoskeleton field.

Though not portable, MEG-based brain activity monitors are relevant for use as
rehabilitation exoskeletons rather than empowering or assistive.

3.5. Other Physiological Signal Sensors

Beside sensing kinetics, kinematics, and muscle and brain activity, other physiological
signals can be measured. There are several sensors within a range of physiological indica-
tors, including heart rate sensors, respiratory rate sensors, blood pressure sensors, pulse
oximetry sensors, acoustic sensors, temperature sensors, galvanic skin response sensors,
and perspiration sensors. The list and properties of these suitable wearable sensors are
described in detail in [97].

For lower-limb exoskeletons in practice, physiological signal sensors are not usually
used when compared to the above-mentioned sensors. Of course, a number of studies
have been carried out to evaluate the physiological data measured during the use of
exoskeletons; however, physiological data sensors were not used in any of the cases as a
component of the lower limb exoskeleton [98]. Only preliminary designs of lower limb
exoskeletons contained the most basic sensors implemented into exoskeleton construction,
such as temperature and perspiration (i.e., humidity) sensors, were introduced [99,100].

4. Methodology

The aim of this article was not to conduct a systematic review of the literature with
precise search criteria, but instead to propose a thematic review based on the most recent
articles and those already known by the authors.

Two databases—IEEE Xplore (Institute of Electrical and Electronics Engineers and
Institution of Engineering and Technology) and ScienceDirect (Elsevier)—were used for
literature search. A combination of keywords, such as exoskeleton, sensors, wearable, and
kin—were used as search terms. Publications from 2005–2022 were preferred; however,
this range was extended in some cases.

In order to find resources which provided more explicit information on lower-limb exoskele-
ton sensors, we further traversed surveys focusing on lower-limbs exoskeletons [1,5,39,101,102].
However, none of the articles were focused on lower-limb exoskeleton sensors, or the
current state of their use and perspectives.

5. Results

Angle sensors are usually mounted at the hip, knee, and ankle to measure the joint’s
movement angle. Angular acceleration sensors are usually installed on the thigh and
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shank to obtain its angle, angular velocity, and acceleration. Force and pressure insole
sensors are usually used to detect gait events and phases of the gait cycle [103–106]. Beside
insole sensors, PERCRO BE [105] uses sensors placed on the trunk which are employed for
detecting its orientation with respect to gravity. Strain gauges placed on the structure of
the exoskeleton shank are used to measure the bending moment of the shank as well as the
vertical force in the exoskeleton leg [107,108]. A different approach in signal measurement
can be seen in the Berkeley lower extremity exoskeleton (BLEEX) that does not need any
direct measurements from the operator or the operator-exoskeleton interface [109]. Rather,
it uses sensors built-in into the exoskeleton structures [110].

The Naval Aeronautical Engineering Institute Exoskeleton Suit (NAEIES) [111] does
not use any sensors placed in the area of the lower extremities (neither on the lower limbs
nor on the exoskeleton). The movement of the lower limb exoskeleton is based on the idea
that the forearm has a similar motion trajectory with the knee joint during gait. The forearm
motion is measured by a potentiometer and afterwards used as the control signal for the
knee joint.

The Exoskeleton HAL-5 Type-B employs an EMG sensor on the thigh together with
an angle sensor at the joints and pressure sensors under the feet. Only two empowering
exoskeletons rely solely on sensing of muscle activity [112,113].

For a summary and comparison of sensors’ placement, as described above, see Table 3.

Table 3. Placement of sensors employed in lower limbs exoskeletons. A—acceleration sensor,
Po—potentiometer, G—gyroscope, E—encoders F—force sensor, S—strain gauge, FS—foot switch,
P—pressure sensor.

Kinematics Sensors Kinetics Muscles Activity
Exoskeleton Hip Knee Ankle Other Thigh Shank Foot Other

BLEEX
[103,109,110,114] - - - A and E built-in in

exoskeleton structures - - FS - -

MIT exoskeleton
[107,108] Po Po - - F S - - -

Agri-Robot [115] Po Po Po
Po on shoulder and
elbow; G (placement

is not published)
- - - F (placement is

not published) -

PERCRO BE [105] - - - A on the trunk - - F F on the trunk, hands -
NAEIES [111] - - - Po on forearm - - - - -

HEXAR- CR50 [106] - - - - F - F F in the waist harness -

Nursing exoskeleton
[112,116] - - - - - - - -

MSS above the knees;
EMG sensor on the

upper arms and back
above the hip

Hanyang University
exoskeleton [113] - - - - - - - -

MSS on the thigh
above the knees, MSS

on the calf below
the knee

WPAL (walking
power assist leg) [117] E E - - F F F - -

IHMC mobility assist
exoskeleton [104,118]

and Mina [119]
- - - position sensors on

the actuators - - P F on the actuators -

ReWalk [120] - - - tilt sensor on the torso - - - - -
Rex - - - - - - - - -

ELegs - - - - - - - - -
HAL-5 Type-B Po Po - - - P - EMG sensors on thigh
HAL-5 Type-C Po Po - - - P - -
AUSTIN [121] E - - - - - - - -

MindWalker [122] E E E - - - - - -
By G. Belforte [123] Po Po - - - - - - -
Indego/Wanderbilt

[124] E E - - - - - - -

BioMot [125] E E E - - - - - -

C Brace [126] -
angle
sensor,

velocity
sensor

- - - - - ankle moment sensor -

Exo-Lite [127] - - - angle sensor - - P - -
H-MEX - - - - - - F - -

Hank [128] - - - - F F F - -

Keeogo [129] - - - knee, hip, thigh,
no definition - - - - -

KIT-EXO-1 [127] - - - - F - F - -

INDEGO [130] angle
sensor

angle
sensor - A on the thigh, tilt

sensor on the trunk - - - - -

ReStore [131] - - - inertial sensor on calf - F - - -
ExoRoboWalker Po Po Po - - - P - -
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6. Discussion

The question addressed in this review was: what current sensors are employed in
lower-limb exoskeletons? Based on the analysis of the current state, sensors can be grouped
into the following three basic groups, which are discussed separately:

• Movement activity sensors and sensors measuring the state of the musculoskeletal
system,

• Sensors measuring physiological and other biomedical data,
• Sensors for measuring the physical characteristics of the state of the exoskeleton and

the environment.

6.1. Movement Activity Sensors and Sensors Measuring the State of the Musculoskeletal System

Various sensors and sensor combinations are used in exoskeletons to provide signals
that allow human movement recognition. Force sensors under the feet tend to be the most
used kinetic sensors. Force sensors are often used in combination with angle sensors which
are the most used kinematics sensors. Overall, kinematics and kinetics sensors are more
commonly used than biological signal sensors.

The ability to recognize human movement accurately in real-time is crucial for ex-
oskeleton performance. Movement modeling and control algorithms are related to the
proper design and function of the exoskeleton. Employed sensors are essential as these
tasks rely on input signals (e.g., accuracy, synchronization). Thus, the consideration of some
sensor features should be mentioned. Especially the number of sensors, data redundancy
and complementarity, and sensor placement may be emphasized.

Although sensors attached to the foot provides satisfactory results in gait phase
recognition for normal walking [132], sensor information from other parts of the body
is necessary for identifying more challenging movements. The use of more sensors can
achieve improved accuracy in movement recognition. On the other hand, a greater number
of sensors imply a greater number of acquired signals, which may lead to increased
complexity of movement information processing, computational demands, and thus time
delay signal processing (and movement identification). As wearable exoskeletons are
battery-powered devices, the number of sensors coheres strongly with energy efficiency.
With respect to the exoskeleton’s purpose, the number of sensors should be considered to
attain a balance of accuracy and complexity.

In some cases, a variability of interest can be obtained by different methods. For
example, the joint angle can be measured by resistive potentiometers, optical encoders,
etc. In such cases, comparison and assessment of various methods should be performed
considering daily usage and the operability of the sensor. Rueterbories et al. [132] pointed
out that sensor positioning in gait phase detection seems less critical than placing the sensor
on nearly any combination of foot, shank, thigh, and trunk of one or both legs being possible
with appropriate signal processing. Moreover, the utilization of multiple kinematic sensors
allows one to estimate the kinematics of movement [43,133–135]. However, sufficient
reliability cannot be obtained by solely relying on accelerometers [136]. To date, a consensus
has not been reached on which are the best suited sensors for exoskeleton control. Thus,
additional effort is needed to determine the optimal combination and placement of sensor
for gait and other movement tasks. Furthermore, sensor compatibility relating to which
movement identification task is performed should be analyzed.

Although accelerometers are the most common wearable sensors that are used in gait
analysis [132,137], their usage in exoskeletons is negligible. This might be caused by the
impossibility of determining the direction of movement from acceleration. Thus, analysis
and interpretation of gait data are perhaps easiest when the walking pattern is cyclical,
in a straight line, and the walking speed is steady state [138]. These conditions cannot be
expected in assistive and empowering exoskeletons.

Inspired from other fields of biomedical engineering where wearable sensors are
utilized, e.g., prosthesis control, gait analysis, there are a number of sensors that could be
promising in lower limb exoskeletons but are not employed yet. The ultrasonic imaging
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of dynamic muscle activity, which is known as sonomyography (SMG), could be investi-
gated. In comparison with an EMG, a SMG is able to acquire signals from the muscles at
different depths and avoid cross-talk from adjacent muscles. A SMG is less influenced by
disturbance from fat or surface skin impedance, as shown in our previous studies [139,140].
Moreover, as a SMG could provide a safe and non-invasive approach to track superficial
muscle activity [141], it seems to be a suitable method for sensing operator movement
for exoskeleton control. A SMG has already been proposed for controlling upper-limb-
powered prostheses [142]. Relating to gait analysis, there is insufficient research focused on
SMG in lower-limb muscles [141,143].

An exoskeleton should identify and adequately respond to operator fatigue via a
level of provided assistance. Although research in the field of muscle fatigue detection
shows promising results, there is very little research carried out on the prediction and
detection of fatigue while wearing a stand-alone exoskeleton [144]. Various sensors that
are already used in exoskeletons provide concerned signals, e.g., joint angles [145,146],
EMG [147,148]. Besides MMG [149] and SMG sensors, [146], accelerometers [147] or Near
Infrared Spectroscopy (NIRS) sensors [148] can be exerted to acquire source signals for
fatigue assessment.

6.2. Sensors Measuring Physiological and Other Biomedical Data

Physiological state sensors are not used in exoskeletons of the lower extremities, but
they are sometimes used as a complementary means of monitoring the subject’s state of
health. Heart rate sensors and pulse oximetry sensors are used to monitor the patient’s state
while using the exoskeleton to improve functional gain and fitness [100]. Pulse oximetry
sensors, respiratory rate sensors, and heart rate sensors were used to evaluate the effects of
robotic knee exoskeleton on human energy expenditure [150]. Blood pressure, pulse, and
electrocardiography sensors were used to evaluate the safety and tolerance of use of the
ReWalk™ exoskeleton ambulation system.

Electroneurography (ENG) has shown promising results in upper-limb prostheses [151,152].
In the case of ENG, wearers can benefit from the possibility of conveying sensation back to
the wearer.

Beside rehabilitation [153], EEG has found an application in wheelchair [154] and
hand orthosis [155] control. It suggests the potential of being used in empowering and
assistive exoskeletons as well.

6.3. Sensors for Measuring the Physical Characteristics of the State of the Exoskeleton and the
Environment

The exoskeletons do not seem to be fully mature to be adopted for strenuous and non-
programmed tasks. To deal with this shortcoming, different aspects need to be analyzed
and solutions developed. For example, knowledge regarding the environment seems to be
valuable for exoskeleton control. Environmental elements impede an operator’s movement,
e.g., obstacle crossing or circumventing, and force the operator to unexpectedly change
movement direction or to perform a compensatory movement to negotiate. Moreover,
the environment has great influence on the stability, balance, and energy consumption of
the operator [156]. It seems to be worth discerning environment elements by an exoskele-
ton [27]. Gyroscopes together with infrared sensors were used to estimate the slope in a
powered prosthesis [157]. Sonar sensors and digital cameras were applied in wheelchairs
to detect obstacles [158]. In line with obstacles scanners, exoskeletons could be equipped
with a unit to provide a haptic signal to inform operators about obstacles and congestion.

There is a rapidly growing and advancing field of textile sensors. Fabrics which are
equipped with sensing features are called smart fabric sensors. This class of sensors can
be sensitive to multiple physical and chemical stimuli, including temperature, pressure,
force, and electrical current, among others [159,160]. Utilization of such technologies
in an exoskeleton’s perception layer can improve learnability, comfort/acceptance, and
operability of exoskeletons sensors and consequently exoskeletons too.
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7. Conclusions

Sensors are one of the most important parts in exoskeletons, as the data collected by
them decide the start, the intensity, and the end of the support given by mechanical parts,
and with this decide the quality of the whole system. There is a wide range of technical and
not-technical criteria which sensors need to fulfill, to make the product not only technically
secured but also acceptable and useful for a possible customer or patient. Next to general
criteria for sensors such as reliability, safety, and durability, more special criteria for the use
by end customers or patients in everyday life are given. The most important, mentioned
here, are maintenance and repair requirements, the effectiveness of capturing sensed values
without disturbing operators’ movement, and comfort of wearing, as the user will probably
wear the exoskeleton a few hours a day.

The most widely used types of sensors in currently available exoskeletons are kinetic
and kinematic sensors placed under the foot and in the joint regions (ankle, knee, hip).
They are able to reliably detect gait phase, start and end of the movement, and direction of
the movement. The use of biosignal sensors, such as EEG, fNIRS, EMG, MMG, EMG, and
similar, in data collection for exoskeletons can be beneficial from the side of data collection,
as it gives a deeper insight to movement intensions. On the other hand, these sensors
currently have the limitation that they need a direct electrode–body interface, which does
not meet the above-mentioned criteria of low maintenance and wear comfort. Further
biomedical research is necessary to develop measurement methods for the detection of
these signals without direct body contact electrodes. Then, their usage in exoskeletons will
be possible and will improve the performance of them. Sensors detecting environmental
data such as temperature, chemicals, force, etc. are technically ready to use and with the
development of integrating such sensors in fabrics, they might be a further option for data
collection in exoskeletons. Even if they might not be necessary for basic functions of the
supporting system, they will be able to provide additional information to provide a more
complex dataset about inner and outer conditions for exoskeleton tasks.

Sensors for exoskeleton developments should be chosen carefully, checking the criteria
necessary for the intended usage. Developers can choose from a wide range of already
existing sensor types. With ongoing research in the field of medical technology, new
sensors could emerge soon, extending the range of detectable signals and improving the
performance of the exoskeleton.
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64. Alves, N.; Sejdić, E.; Sahota, B.; Chau, T. The effect of accelerometer location on the classification of single-site forearm
mechanomyograms. Biomed. Eng. Online 2010, 9, 23. [CrossRef]

65. Zuniga, J.M.; Housh, T.J.; Camic, C.L.; Hendrix, C.R.; Mielke, M.; Schmidt, R.J.; Johnson, G.O. The effects of accelerometer
placement on mechanomyographic amplitude and mean power frequency during cycle ergometry. J. Electromyogr. Kinesiol. 2010,
20, 719–725. [CrossRef] [PubMed]

http://doi.org/10.1109/TRO.2008.915453
http://doi.org/10.1186/s12984-016-0180-3
http://doi.org/10.3233/THC-1999-7612
http://doi.org/10.1016/0021-9290(90)90033-Y
http://doi.org/10.21236/ada428022
http://doi.org/10.1109/urai.2016.7625785
http://doi.org/10.3390/s120100215
http://www.ncbi.nlm.nih.gov/pubmed/22368465
http://doi.org/10.4172/2168-9695.1000157
http://doi.org/10.3390/s140101705
http://doi.org/10.3390/s110100207
http://doi.org/10.1016/S0021-9290(02)00008-8
http://www.ncbi.nlm.nih.gov/pubmed/11955509
http://doi.org/10.1016/S1350-4533(03)00116-4
http://www.ncbi.nlm.nih.gov/pubmed/14630475
http://doi.org/10.1109/TRO.2008.926860
http://doi.org/10.1016/j.jbiomech.2006.12.006
http://www.ncbi.nlm.nih.gov/pubmed/17275829
http://doi.org/10.1177/1687814015590988
http://doi.org/10.1152/jn.01128.2011
http://www.ncbi.nlm.nih.gov/pubmed/23307949
http://doi.org/10.1186/s12984-017-0235-0
http://www.ncbi.nlm.nih.gov/pubmed/28449684
http://doi.org/10.1007/s12206-013-0837-9
http://doi.org/10.1186/1475-925X-4-67
http://doi.org/10.1371/journal.pone.0058902
http://www.ncbi.nlm.nih.gov/pubmed/23536834
http://doi.org/10.1177/2055668320916116
http://www.ncbi.nlm.nih.gov/pubmed/32313684
http://doi.org/10.1016/0165-0270(93)90024-L
http://doi.org/10.1016/S0006-3495(90)82399-7
http://doi.org/10.1186/1475-925X-9-23
http://doi.org/10.1016/j.jelekin.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20122849


Sensors 2022, 22, 9091 14 of 17

66. Deffieux, T.; Gennisson, J.-L.; Tanter, M.; Fink, M.; Nordez, A. Ultrafast imaging of in vivo muscle contraction using ultrasound.
Appl. Phys. Lett. 2006, 89, 184107. [CrossRef]

67. Vanello, N.; Hartwig, V.; Tesconi, M.; Ricciardi, E.; Tognetti, A.; Zupone, G.; Gassert, R.; Chapuis, D.; Sgambelluri, N.;
Scilingo, E.P.; et al. Sensing Glove for Brain Studies: Design and Assessment of Its Compatibility for fMRI With a Robust
Test. IEEE/ASME Trans. Mechatronics 2008, 13, 345–354. [CrossRef]

68. Lukowicz, P.; Ward, J.A.; Junker, H.; Stäger, M.; Tröster, G.; Atrash, A.; Starner, T. Recognizing Workshop Activity Using
Body Worn Microphones and Accelerometers. In Proceedings of the Pervasive Computing: Second International Conference, PER-
VASIVE 2004, Linz/Vienna, Austria, 18–23 April 2004; Ferscha, A., Mattern, F., Eds.; Springer: Berlin, Germay, 2004; pp. 18–32.
ISBN 978-3-540-21835-7.

69. Moromugi, S.; Koujina, Y.; Ariki, S.; Okamoto, A.; Tanaka, T.; Feng, M.Q.; Ishimatsu, T. Muscle stiffness sensor to control an
assistance device for the disabled. Artif. Life Robot. 2004, 8, 42–45. [CrossRef]

70. Murayama, M.; Nosaka, K.; Yoneda, T.; Minamitani, K. Changes in hardness of the human elbow flexor muscles after eccentric
exercise. Eur. J. Appl. Physiol. 2000, 82, 361–367. [CrossRef]

71. Han, H.; Kim, J. Active muscle stiffness sensor based on piezoelectric resonance for muscle contraction estimation. Sensors
Actuators A Phys. 2013, 194, 212–219. [CrossRef]
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150. Gams, A.; Petrič, T.; Debevec, T.; Babič, J. Effects of Robotic Knee Exoskeleton on Human Energy Expenditure. IEEE Trans. Biomed.
Eng. 2013, 60, 1636–1644. [CrossRef] [PubMed]

151. Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, J.; Tyler, D.J. A neural interface provides long-term stable natural
touch perception. Sci. Transl. Med. 2014, 6, 257ra138. [CrossRef] [PubMed]

152. Raspopovic, S.; Capogrosso, M.; Petrini, F.M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.;
Fernandez, E.; et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 2014,
6, 222ra19. [CrossRef] [PubMed]

153. Romero-Laiseca, M.A.; Delisle-Rodriguez, D.; Cardoso, V.; Gurve, D.; Loterio, F.; Nascimento, J.H.P.; Krishnan, S.; Neto, A.F.;
Bastos-Filho, T. A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients
Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 988–996. [CrossRef]

154. Yuan, W.; Li, Z. Brain Teleoperation Control of a Nonholonomic Mobile Robot Using Quadrupole Potential Function. IEEE Trans.
Cogn. Dev. Syst. 2019, 11, 527–538. [CrossRef]

155. Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, O.; Msc, F.L.B.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.;
Vyziotis, A.; et al. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 2013, 74, 100–108.
[CrossRef] [PubMed]

156. Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [CrossRef]
[PubMed]

157. Scandaroli, G.G.; Borges, G.A.; Ishihara, J.Y.; Terra, M.H.; da Rocha, A.F.; Nascimento, F.A.D.O. Estimation of foot orientation
with respect to ground for an above knee robotic prosthesis. In Proceedings of the 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1112–1117. [CrossRef]

158. Carlson, T.; Millan, J.D.R. Brain-Controlled Wheelchairs: A Robotic Architecture. IEEE Robot. Autom. Mag. 2013, 20, 65–73.
[CrossRef]

159. Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 53001.
[CrossRef]

160. Gonçalves, C.; da Silva, A.F.; Gomes, J.; Simoes, R. Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control
Elements. Inventions 2018, 3, 14. [CrossRef]

http://doi.org/10.3390/s110403545
http://doi.org/10.1007/s004210050210
http://www.ncbi.nlm.nih.gov/pubmed/9243168
http://doi.org/10.1682/JRRD.2007.02.0026
http://www.ncbi.nlm.nih.gov/pubmed/18566937
http://doi.org/10.3390/s140202052
http://doi.org/10.1007/978-1-4419-7756-4_48
http://doi.org/10.1002/mus.10214
http://doi.org/10.1109/TBME.2013.2240682
http://www.ncbi.nlm.nih.gov/pubmed/23340585
http://doi.org/10.1126/scitranslmed.3008669
http://www.ncbi.nlm.nih.gov/pubmed/25298320
http://doi.org/10.1126/scitranslmed.3006820
http://www.ncbi.nlm.nih.gov/pubmed/24500407
http://doi.org/10.1109/TNSRE.2020.2974056
http://doi.org/10.1109/TCDS.2018.2869903
http://doi.org/10.1002/ana.23879
http://www.ncbi.nlm.nih.gov/pubmed/23494615
http://doi.org/10.1016/S0966-6362(01)00162-X
http://www.ncbi.nlm.nih.gov/pubmed/11809579
http://doi.org/10.1109/iros.2009.5354820
http://doi.org/10.1109/MRA.2012.2229936
http://doi.org/10.1088/0964-1726/23/5/053001
http://doi.org/10.3390/inventions3010014

	Introduction 
	Related Works 

	Requirements for Sensor Characteristics 
	Current Sensing Technologies 
	Kinematics Sensors 
	Kinetics Sensors 
	Muscle Activity Sensors 
	Brain Activity Sensors 
	Other Physiological Signal Sensors 

	Methodology 
	Results 
	Discussion 
	Movement Activity Sensors and Sensors Measuring the State of the Musculoskeletal System 
	Sensors Measuring Physiological and Other Biomedical Data 
	Sensors for Measuring the Physical Characteristics of the State of the Exoskeleton and the Environment 

	Conclusions 
	References

