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Abstract: In real-world applications of detecting faults, many factors—such as changes in working
conditions, equipment wear, and environmental causes—can cause a significant mismatch between
the source domain on which classifiers are trained and the target domain to which those classifiers
are applied. As such, existing deep network algorithms perform poorly under different working con-
ditions. To solve this problem, we propose a novel fault diagnosis method named Joint Adversarial
Domain Adaptation (JADA) for fault detection under different working conditions. Our approach
simultaneously aligns marginal distribution and conditional distribution across the source and tar-
get through a unified adversarial learning process. JADA aims to construct domain-invariant and
category-discriminative feature representation that is effective and robust for substantial distribution
difference caused by working conditions. We also introduce a supervision signal, namely center
loss, that penalizes the distances between the deep features and their corresponding class centers.
This makes the learned features better equipped with more discriminative structures and effectively
prevents mode collapse. Twenty-four transfer fault diagnosis tasks based on two experimental plat-
forms were conducted to evaluate the effectiveness of the proposed methods. Extensive experiments
verified that the JADA can significantly outperform several popular methods under different transfer
diagnosis tasks.

Keywords: transfer learning; rolling bearing; intelligent fault diagnosis; joint adversarial domain
adaptation; convolutional neural network

1. Introduction

Rolling bearings are widely used in manufacturing as an important part of rotating
machinery, and their failure directly impacts the performance of the machinery [1]. Cur-
rently, the intelligent fault diagnosis could be driven by deep learning (DL) [2–5]. These
approaches rely on a large amount of labeled data. However, it is expensive and time-
consuming to accumulate many data. Factors such as equipment wear and degradation,
changes in operating conditions, and external noise interference cause inevitable data
distribution differences, making it expensive to mark the health status of the device corre-
sponding to the data. Therefore, many efforts are needed to identify how to use the data
with a known health status to identify the target data subject to different distributions as
well as improve the accuracy of unsupervised health status recognition.

The present study was undertaken with the aim to use rich labeled data in relevant
source domains to complete the identification of the health status of rolling bearings under
unknown operating conditions without shutting down the equipment. Compared with the
existing DL-based methods that depend on conditions such as the consistent distribution
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of source domain data (training data) and target domain data (the data of the actual
deployment model) and a sufficient amount of labeled data, this fault diagnosis method
is consistent with the actual engineering application scenarios. Our approach is more
suitable and has the following characteristics: (1) the ability to use existing fault diagnosis
knowledge to assist the learning of fault information under different working conditions;
(2) the ability to suppress the impact of the difference in data distribution caused by factors
such as variable working conditions and equipment wear to diagnose the model, and the
performance is applicable to a wide range of scenarios; (3) pre-training on source domain
data improves the diagnosis efficiency of the model, and the diagnosis results are more
time-sensitive.

In recent years, the intelligent fault diagnosis method based on deep transfer learn-
ing has rapidly developed in order to deal with the problem of negligible or no data
annotation in actual engineering scenarios [6–8]. The basic process of this method is to
learn the information obtained from easily accessible fault data (source domain), and to
help identify costly failures (target domains) in data annotation. To solve the problem
of the availability of only a small amount of labeled data [9], Fine-Tune is the most com-
monly used method [10]. Many researchers [11–13] used relevant data to complete the
pre-training of deep convolutional networks and using only a small amount of labeled data
to fine-tune the last layers. However, there are bottlenecks in the diagnostic accuracy of
the aforementioned methods, and fine-tuning cannot adapt to the influence of changes
in data distribution in different fields, and cannot solve the problem of no labeled data
availability. The difference in data distribution is the main obstacle for the intelligent
fault diagnosis model to adapt to the target task. In order to alleviate its impact on the
diagnosis performance, domain adaptation (DA) has been proposed as a cross-domain
transfer learning method [14–16]. This implies learning a new feature space, establishing
connection between the source and target domains, and reducing the difference between
the domains; it is applied to the situation where the source domain label is available and
the target domain label is not available. Lei et al. [17] combined the residual network with
the maximum mean difference (MMD) term and pseudo-label learning, and proposed an
unsupervised domain adaptive method. In addition, they also proposed an approach based
on adversarial learning and MMD. Domain adaptive networks are used for knowledge
transfer in different directions [18]. Wen et al. [19] realized the distribution matching of the
source domain and target domain data by adding a DA layer in the autoencoder model.
In addition, some researchers constructed an intelligent fault diagnosis model based on
migration component analysis [20] and joint distributed adaptation [21]. However, the
aforementioned domain-adaptive methods only matched the feature distributions of the
source and target domains [22], ignoring the relationship between the sample categories in
different domains.

With the aim to mitigate the aforementioned shortcomings, here, we propose a joint
adversarial domain adaptation (JADA) fault diagnosis method to realize the intelligent
fault diagnosis of rolling bearings under variable operating conditions. First, the labeled
source domain data are used to perform supervised learning on the source domain feature
extractor and classifier. Next, adversarial learning is employed to optimize the target
domain feature extractor and simultaneously adapt the edge distribution and conditional
distribution across domains. Finally, the accurate identification of the health status of
the samples in the target domain is achieved. The experimental results showed that the
JADA method is significantly advantageous for the learning of cross-domain diagnostic
information, compared to the commonly used transfer learning methods. The rest of this
paper is organized as follows. In Section 2, we begin by describing the domain adaptation
tasks of this study. Section 3 details the proposed JADA model including three stages.
Furthermore, its implementation details are presented. Section 4.1 conducts two domain
adaptation cases and the corresponding analyses. The conclusions are drawn in Section 5.
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2. Preliminaries

In this part, several related definitions for the mechanical fault diagnosis with DA and
JADA techniques are introduced in detail.

Suppose that domain data are composed of data space X and a marginal probability
distribution P(X), e.g., D = {X , P(X)}, where X ∈ X . The task refers to the goal of
fault diagnosis learning, which is defined as T = {Y , f (X)}, where Y is the label space
corresponding to the feature, and f (·) denotes the prediction function. In addition, f (X) =
Q(Y | X) is the conditional probability distribution, and Y ∈ Y . The main challenge of the
unsupervised DA are summarized below.

(1) The labeled data only exist in the source domain, and there are no labeled data
in the target domain. We denote the source domain as Ds =

{(
xs

i , ys
i
)}ns

i=1, and the target
domain asDt =

{
xt

i
}nt

i=1, where ns and nt indicate the number of source and target samples,
respectively, xi represent the i-th data example, and yi is the corresponding category label
for xi.

(2) The source and target domains are different in both the marginal and conditional
distributions, e.g., Ps(Xs) 6= Pt(Xt), Qs(Ys | Xs) 6= Qt(Yt | Xt).

The objective of JADA is to obtain a feature extractor f (·) which can learn the domain-
invariant and category-discriminative features, and then generate a target distribution that
can maximize the performance of classifying the samples in Dt without accessing its label,
in the feature space.

3. The Proposed Method

In this paper, we propose the JADA method, which is an intelligent diagnosis ap-
proach that can capture global information as well as category-wise intrinsic information
to enhance the distribution matching between the source and target domains. Generally,
the proposed framework contains three stages: classifier pre-training, JADA, and fault
identification, as displayed in Figure 1. The steps of each stage are introduced as elaborated
below.
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Figure 1. Fault diagnosis process of JADA.

Classifier pre-training stage: Use the labeled data in the source domain to complete
the supervised training of the source domain feature extractor and classifier. First, input
the source domain samples into the feature extractor to obtain the feature representation
of each sample; then, use the classifier to classify the sample features and calculate the
cross-entropy loss of the classification result; finally, the feature extractor and classifier
are continuously optimized through back propagation. The parameters enable the feature
extractor to extract the effective features, and the classifier can accurately classify the
extracted features.

JADA stage: Training the target domain feature extractor and domain discriminator
through joint adversarial learning. First, alternately optimize the domain discriminator
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and feature extractor while improving the domain discrimination ability of the domain
discriminator as well as the ability of the feature extractor to extract domain invariant
features; simultaneously, use the source samples to optimize the category-wise distinction
of the features extracted by the feature extractor; ultimately reduce the marginal distribution
and conditional distribution difference between the source domain and the target domain.

Fault identification stage: Use the target feature extractor and classifier to diagnose
faults in the target domain. First, fix the parameters of the target domain feature extractor
and the classifier constructed in the two above stages; second, use the target feature
extractor to extract the target sample to obtain the feature representation; finally, use the
classifier to identify the feature of the sample fault type, and complete the diagnosis of the
unsupervised cross-domain fault samples. The implementation details of the above stages
are described in the following sections.

3.1. Classifier Pre-Training

The proposed method learns the domain invariant features of the source and target
domains while minimizing the distribution distance of the features extracted from both
these domains, such that only the source classifier can be directly applied to the target do-
main, eliminating the need to learn a separate target classifier, i.e., θc = θs

c = θt
c. Therefore,

we first complete the construction of the classifier in this stage. To effectively extract the
features, a convolutional neural network (CNN) is designed as the feature extractor θs

f , and
the classifier module θc is composed of fully connected layers, as shown in Figure 2.

Batch 

Normalization

Max-pooling 

layer

Convolutional 

layer

Full-connnected 

layer

Classifier
Time-frequency

Images
Feature extractor

Softmax

Figure 2. Feature extractor and classifier model.

From the network structure shown in Figure 2 and the classifier pre-training stage
illustrated in Figure 1, it can be seen that the feature extractor θs

f takes three-channel
time–frequency images xs as the input, and the convolution is initially conducted to
optimize the features. Then, a nonlinear activation function is added to enhance the
fitting ability of the module, and batch normalization is performed to make the results
of each convolutional layer conform to the standard normal distribution, eliminating
the magnitude difference between the hidden layers; this can prevent the problem of
gradient disappearance to a certain extent. Then, in the process of feature map down-
sampling, max-pooling is performed to reduce the number of trained parameters while
retaining more texture information. The fully connected layer adequately outputs the
feature representation f s of the source samples, which is expressed as follows.

f s = θs
f (xs) (1)

In terms of classification, the classifier θc is composed of fully connected layers, which
take the features f s expressed in Equation (1) as the input, and the softmax function is used
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in the classifier to predict the labels ŷs
c of the linear prediction result output by the fully

connected layer, which is expressed as follows.

ŷs
c = arg max

i

 exp
((

wθc
i

)T
f s+bθc

)
∑m

j=1 exp
((

wθc
j

)T
f s+bθc

)
,

i = 1, . . . , m

(2)

where wθc
j and bθc represent the classifier weights and the classifier bias. To enhance the

discriminative power of the extracted features and reduce intra-class variations, cross-
entropy loss and center loss [23] are used to train the feature extractor and classifier for
feature learning in a joint supervision method. The loss formulation is given in Equation (3).

Lcls = Lce + κLC

= −
m

∑
i=1

ys
i log ŷs

i +
κ

2

m

∑
i=1

∥∥ f s
i − cyi

∥∥2
2

(3)

where cyi denotes the yith class center of the features. To improve the computational
efficiency and avoid large perturbations caused by a few mislabeled samples, we update
the centers with respect to the mini-batch and use a scalar α to control the learning rate of
the centers, which is expressed as follows:

∆cj =
∑m

i=1 δ(yi = j) ·
(
cj − xi

)
1 + ∑m

i=1 δ(yi = j)

ct+1
j = ct

j − α · ∆ct
j

(4)

where δ(yi = j) = 1 if the condition yi = j is satisfied, and δ(yi = j) = 0 if not, and α is
restricted in [0, 1]. Moreover, the formulation introduces a scalar κ to balance the cross-
entropy loss and center loss; when κ is taken as 0, the loss function Lcls is equivalent to the
cross-entropy loss. A different κ leads to a different feature distribution of the samples.

In general, this stage completes the joint supervised learning of the feature extractor
and classifier on the labeled source samples and fixes the parameters of the modules,
obtained by training, for the subsequent stages of the proposed method.

3.2. Joint Adversarial Domain Adaptation

The goal of this stage is to make sure the target feature extractor is set to minimize the
distance of the marginal and conditional distributions between the source and target do-
mains under their respective mappings, while maintaining the category discriminativeness
to some extent in the target domain.

The details of this stage are shown in Figure 1. First, the parameters of the source
feature extractor θs

f are used in this stage to initialize the target feature extractor θt
f , because

the target samples have no available labels. This may cause the gradient disappearance of
the target feature extractor in the joint adversarial process, and thus, a degenerate solution
may be learned. The domain discriminator θd is composed of three fully connected layers,
and takes the feature representations f s and f t as the inputs, as shown in Figure 1. Because
predicting the domain label is a two-class classification problem, the sigmoid function is
used to map θd( f ) between (0, 1). Then, the probability of domain samples belonging to a
particular domain discriminator is obtained, and the specific calculation is as follows:

p(ŷd) =
1

1 + exp(−θd( f ))
(5)

Second, the target feature extractor is also used to extract the features of the source
samples and predict their specific category ŷs

c to supervise the category-wise separability
of the extracted features. We set up the confusion optimization goals of the target fea-
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ture extractor and domain discriminator separately to align the marginal and conditional
distributions simultaneously.

In the training process, the domain discriminator θd is optimized to minimize the
domain classification loss, whereas the feature extractor θt

f is optimized to minimize the
label prediction loss of the source samples and maximize the domain classification loss. We
perform joint adversarial adaptation by learning θt

f such that the domain discriminator
that sees the encoded source and target examples cannot reliably predict their domain label.
Hyperparameter λ controls the trade-off between the two objectives that shape the features
during the learning. The overall objective of the joint adversarial network is described as
follows:

L f = L f
adv + λL f

cls

= − log
(

p
(
ŷt

d
))
− λ

m

∑
i=1

ys
i log ŷs

i
(6)

Ld
adv = − log(p(ŷs

d))− log
(
1− p

(
ŷt

d
))

(7)

where Ladv is the loss for the domain classification and Lcls is the loss for label prediction.
The joint adversarial network searches for θt

f and θd which generates a saddle point of L f

and Ld
adv during the learning process, which can be described as follows:

θt
f = arg min

θt
f

L f (8)

θd = arg min
θd

Ld
adv (9)

Based on the above Equations (6) and (7), training is performed using the stochastic
gradient descent (SGD) algorithm and the saddle point (8) and (9) can be found via updating
as follows:

θt
f ← θt

f − η

(
∂L f

adv
∂θt

f
+ λ

∂L f
cls

∂θt
f

)
(10)

θd ← θd − η

(
∂Ld

adv
∂θd

)
(11)

where η represents the learning rate, which can vary over iterations.
Reviewing the whole process of the JADA stage, it can be found that no labeled

samples in the target domain participate in the network training. The feature extractors θs
f

and θt
f have the same network structure, but they do not share weights. For many previous

joint adversarial adaptation methods [24], all layers are constrained, thus enforcing the exact
source and target mapping consistency. However, this may make the optimization poorly
conditioned, since the same network must handle samples from two separate domains.
The proposed method has favored untying weights between the two domains, allowing
models to learn parameters for each domain individually. Furthermore, it adapts both the
marginal and conditional distributions between the source and target domains, and finally
learns more separable domain-invariant features. In the following section, we diagnose the
fault instances in the target domain.

3.3. Fault Identification

When diagnosing samples in the target domain, we first fix the parameters of the target
feature extractor θt

f and classifier θc that were trained, and then input the time–frequency
images xt of the target samples into the target feature extractor θt

f to obtain its feature
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representation f t. Finally, we use the classifier to predict its category ŷt
c. This part of the

calculation process is shown in Equation (12).

ŷt
c = arg max

i

 exp
(

θc

(
θt

f (xt)
)

i

)
∑m

j=1 exp
(

θc

(
θt

f (xt)
)

j

)
,

i = 1, . . . , m

(12)

4. Experiment and Result Analysis

In this section, we evaluate the efficacy of the JADA method on the benchmark rolling
bearing dataset obtained from the Case Western Reserve University (CWRU) [25] and the
unpublished rolling bearings dataset collected from the Drivetrain Diagnostics Simulator
(DDS). We also perform an extensive empirical evaluation of the proposed approach with
several popular DA methods.

4.1. Experiments on DDS Dataset
4.1.1. Data Description

The dataset was collected from the DDS designed by Spectra Quest, as shown in
Figure 3. This drivetrain consists of a two-stage planetary gearbox, two-stage parallel shaft
gearbox with rolling bearings, bearing loader, and programmable magnetic brake.

Variable speed drive

Parallel shaft gearbox

Programmable magnetic brake

Parallel shaft gearbox

(Inside)

Rolling bearing

2 stage planetary gearbox

Signal acquisition card

Figure 3. Drivetrain diagnostics simulator.

Based on this drivetrain, we constructed four bearing health conditions by replacing
the rolling bearings in the gearbox to simulate the industrial transmission system, as shown
in Figure 4, including health (normal), inner race damage (inner), ball damage (ball), and
outer race damage (outer). We applied a torsional load by controlling the 3HP variable
frequency AC drive, and the experiments were carried out under 0, 4, 6, and 8 V.

BALL INNER OUTER NORMAL

Figure 4. Four bearing health conditions.

The vibration data were acquired by using SQI608A11-3F unidirectional acceleration
sensors which were mounted on both ends of the fixed shaft of the gearbox through bolt
connection under different working conditions and at a sampling frequency of 20 kHz.
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The samples drawn from four different working conditions are: A, B, C, and D, as listed
in Table 1. There were four categories under each domain, and each category had 410,624
data points. We applied a sliding window with a length of 2048 and 50% overlapping for
the pre-processing, and 400 samples were assigned in each category.

Table 1. Data description of the DDS dataset.

Fault Class
Domain

A(0V) B(4V) C(6V) D(8V)

Normal Normal_0 Normal_4 Normal_4 Normal_4
Inner race Inner_0 Inner_4 Inner_4 Inner_4

Ball Ball_0 Ball_4 Ball_4 Ball_4
Outer race Outer_0 Outer_4 Outer_4 Outer_4

As one of the frequently used time–frequency analysis techniques, short-time Fourier
transform (STFT) was applied to all the samples to obtain the corresponding time-varying
frequency spectrum information. The Hamming window was used as the window function,
the length of the window function was pre-set to 120, and the window overlap was 50%.
After converting the time-domain raw vibration signals into time–frequency images by
STFT, we acquired images with a size of 64 × 64 × 3, which were input into the feature
extractor to train the model.

4.1.2. Transfer Diagnosis Tasks Settings

Because different operating conditions lead to an inconsistent distribution of the
vibration data, twelve transfer diagnosis tasks under different scenarios can be constructed
by the DDS dataset as listed in Table 2, e.g., TBA denotes that B is the source domain and
A is the target domain. In any transfer diagnosis task, the training dataset comprises
every labeled sample from the source domain and 75% of the unlabeled samples from the
target domain, while the remaining unlabeled samples from the target domain are utilized
for testing.

Table 2. Description of the transfer diagnosis tasks for the DDS dataset.

Transfer Tasks TAB TAC TAD TBA TBC TBD TCA TCB TCD TDA TDB TDC

Source domain A A A B B B C C C D D D
Target domain B C D A C D A B D A B C

4.1.3. Parameters of the Proposed Method

To achieve the best possible result, the parameters and implementation details of
the JADA method are mainly determined based on the experiment results and relevant
literature. The network is built according to the JADA fault diagnosis model structure
described in Section 3, and the detailed architecture of JADA is listed in Table 3, which
divides the model into four modules according to the functions of each part of the model,
i.e., the source feature extractor, target feature extractor, classifier, and discriminator. The
source and target feature extractors share the same architecture, which consists of two
convolutional layers, two max-pooling layers and two fully connected layers. The input
of the feature extractor is time–frequency images as mentioned before, and the output is
a feature vector with a size 1 × 128. In addition, both the classifier and discriminator are
composed of fully connected layers, and both take the feature vector, output by the feature
extractor, as the input.
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Table 3. Hyperparameters of JADA.

Module Layer Type Activation Function Kernel Size Stride Output Size

Feature extractor

Conv_1 relu 3 × 3 1 (64, 64, 16)
Batch Norm / / / (64, 64, 16)
Max-pooling / 3 × 3 2 (32, 32, 16)

Conv_2 relu 3 × 3 1 (32, 32, 64)
Batch Norm / / / (32, 32, 64)
Max-pooling / 3 × 3 2 (16, 16, 64)

Flatten / / / (1, 16 × 16 × 64)
FC_1 relu / / (1, 256)
FC_2 tanh / / (1, 128)

Classifier FC_3 softmax / / (1, 4)

Discriminator
FC_4 Leaky Relu / / (1, 128)
FC_5 Leaky Relu / / (1, 128)
FC_6 sigmoid / / (1, 1)

To improve the efficiency of model optimization, the hyperparameters are set as
elaborated below based on the results of multiple experiments.

(1) Classifier pre-training stage: The Adam algorithm is selected as the optimizer,
which dynamically adjusts the learning rate via first-order and second-order moment
estimations. The initial learning rate is 0.0001, whereas the exponential decay rates of the
first-order and second-order moment estimations are 0.9 and 0.999, respectively. Scalar α is
selected by searching {0, 0.01, 0.05, 0.1, 0.5, 1} and fixed as α = 0.5.

(2) Joint adversarial adaptation stage: The Adam algorithm is selected to optimize
the parameters of the target feature extractor and domain discriminator, where the initial
learning rates of the target feature extractor and domain discriminator are 0.0001 and 0.0005,
respectively. The exponential decay rates of the first-order and second-order moment
estimations are set to 0.9 and 0.999, respectively.

In addition, the batch size is set as 64 for both the above-mentioned stages, whereas
the classifier pre-training stage and joint adversarial adaptation stage trained 200 and 1000
iterations, respectively.

The hyperparameter κ in Equation (3) dominates the intra-class variations, and λ in
Equation (8) is a trade-off parameter to balance the discrepancy between the marginal
distribution and conditional distribution across the domains. Because both of them
seriously affect the transfer performance of the JADA, we conducted two experiments to
investigate their sensitivities.

In the first experiment, we fixed λ = 0.5 and varied κ to evaluate the performance of
the learned models. The average classification accuracies of these models on twelve transfer
diagnosis tasks are shown in Figure 5. It is obvious that simply using the cross-entropy loss
(in this case, κ = 0) results in a poor transfer performance. Properly choosing the value
of κ can improve the classification accuracies of the JADA. We can observe that the model
reaches its peak accuracy when κ is set to 5× 10−3.

In the second experiment, we fixed K = 5× 10−3 and varied λ from 0 to 1 to evaluate
the performance of the learned models. It is obvious that only adapting the marginal
distribution (in this case, λ = 0) results in poor classification accuracy, which indicates that
the class-wise distribution of the learned features is under-adapted. On the contrary, the
model reaches its peak accuracy when λ is set to 0.5. Moreover, the transfer performance of
JADA remains largely stable across a wide range of λ, which indicates that λ can balance
the contributions of the marginal distribution and conditional distribution adaptations in
the loss function.

To achieve the best transfer performance of the JADA, we set κ and λ to 5× 10−3 and
0.5, respectively, based on the aforementioned analysis.
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（a）

（b）

Figure 5. Diagnosis accuracies for the DDS dataset, respectively, achieved by (a) models with different
κ and fixed λ = 0.5. (b) models with different λ and fixed K = 5× 10−3.

4.1.4. Comparison Methods

To verify the effectiveness of the proposed method, we compared the classification
accuracy and transfer performance of the proposed method with those of the other methods,
including CNN, Transfer Component Analysis (TCA) [26], Joint Distribution Adaptation
(JDA) [27], Domain Adversarial Neural Network (DANN) [28], and Adversarial Discrimi-
native Domain Adaptation (ADDA) [29]:

(1) CNN: As a benchmark for evaluating the domain-invariant feature learning ca-
pabilities of the DA methods, CNN is trained on only the source samples, and then, the
trained model is directly applied to the target data. The architecture of the CNN is the same
as the backbone of JADA.

(2) TCA: TCA maps the source and target samples into reproducing a kernel Hilbert
space using the kernel function to minimize the difference in marginal distribution be-
tween the source and target domains while retaining their internal attributes. The optimal
subspace dimension is set by searching 4, 8, 16, 32, 64, 128, and the trade-off parameter is
searched from 0.01, 0.1, 1, 10, 100, while using the linear kernel [30].

(3) JDA: JDA can adapt the marginal distribution and conditional distribution between
the source and target domains simultaneously, and its hyperparameters are consistent with
those of the TCA.

(4) DANN: DANN first leverages the adversarial learning between the domain dis-
criminator and feature extractor to achieve domain-invariant representations, while the
gradient reversal layer is introduced to automatically reverse the gradient direction of the
domain classification loss during the back propagation process. The backbone architecture
of the DANN is the same as that of the proposed method.

(5) ADDA: Tzeng et al. [28] summarized a general adversarial adaptation (GAN)
framework, then proposed ADDA with a GAN-based loss, which learns the feature ex-
tractor through adversarial training and realizes the classification of the target samples by
sharing the classifier.

For a fair comparison, the hyperparameters of all the aforementioned methods are
determined based on experiments and reported literature to obtain the best classification
accuracy for each transfer diagnosis task. Every experiment is repeated ten times to report
the results for reducing the randomness and singularity. In addition, the network optimiza-
tion part of the above-mentioned methods uses the Adam algorithm as the optimizer with
a set learning rate of 0.0001.
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4.1.5. Result Analysis

The classification accuracies for twelve transfer diagnosis tasks derived the DDS
dataset are illustrated in Figure 6 and Table 4.

Figure 6. Classification accuracies of the different methods for the DDS dataset.

Table 4. Classification accuracies of the different methods for transfer diagnosis tasks (%).

Method TAB TAC TAD TBA TBC TBD TCA TCB TCD TDA TDB TDC Avg

CNN 74.32 62.45 63.19 81.87 73.29 77.11 67.32 71.93 88.26 67.95 72.80 77.41 73.16
TCA 56.87 43.20 52.31 44.70 74.73 65.47 49.43 54.62 58.93 47.52 49.10 55.06 54.33
JDA 75.76 71.38 70.02 63.48 90.10 78.25 76.28 76.16 78.97 65.76 71.59 70.85 74.05

DANN 99.76 91.38 87.66 99.23 93.48 94.11 87.74 91.03 98.42 93.23 89.45 92.21 93.14
ADDA 98.25 92.82 91.92 99.73 97.16 93.87 89.49 94.70 97.53 90.18 91.44 95.13 94.35
JADA 99.35 99.50 99.35 99.61 99.23 99.92 99.61 99.13 99.47 99.84 99.65 99.49 99.51

As evident from the result of the experiment shown in Figure 6 and Table 4, the
performance of the CNN is poor in every transfer diagnosis task. This indicates that
changing the working loads produces a certain effect on the data distribution between the
source and target domains.

The traditional transfer learning methods, i.e., TCA and JDA, have poor performance
in each transfer diagnosis task with average accuracies of approximately 54.33% and
74.05%, respectively. This indicates that the traditional transfer learning methods may
be unable to extract the high-level features from the samples and may be unsuitable for
dealing with complex transfer diagnosis tasks owing to the lack of a corresponding domain
adaptation layer and only considering the probability distribution between the source and
target domains.

The adversarial domain adaptation-based methods are superior to the CNN, TCA,
and JDA, indicating that the adversarial domain adaptation is significant for practical
diagnostic requirements. Among the three adversarial domain adaptation methods, i.e.,
DANN, ADDA, and JADA, it can be seen that the proposed method achieves the best
classification performance according to the average classification accuracy. Although the
other comparison methods obtain a higher accuracy compared to the proposed method
in several tasks, e.g., ADDA achieves 99.73% in the transfer diagnosis task TBA, there are
large differences in different tasks for these methods. In contrast, JADA can obtain robust
results in various transfer diagnosis tasks.

In summary, the proposed method can effectively deal with the transfer diagnosis
tasks under varying working conditions.

For a detailed analysis of the classification accuracy of each category, we take the
transfer diagnosis task TDA as an example and calculate the confusion matrix corresponding
to adversarial domain adaptation methods with a higher average classification accuracy, as
shown in Figure 7.
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Figure 7. Confusion matrices of different methods (a) DANN, (b) ADDA, and (c) JADA.

Figure 7a shows that in addition to the normal category, DANN exhibits different
degrees of misclassifications for the other three categories. Among them, the error classifi-
cation of the outer race damage is the most serious. Twenty-three samples are misclassified
as inner race damages and one sample is misclassified as ball damages. The classification
accuracy of the ADDA for the outer race damage is higher than that of the DANN, as
shown in Figure 7b. The ADDA method incorrectly categorizes the two samples as inner
race damages. However, the ADDA method exhibits a large error when classifying the
inner race damages, as shown in Figure 7b. Only fifty-nine samples are correctly classified,
among the total one hundred samples. Consequently, according to the confusion matrix
shown in Figure 7c, the proposed JADA method can correctly classify the categories of
normal, inner, and outer. Furthermore, there is only one misclassification in the sample,
whose category is ball. In general, the classification accuracy of the JADA method in each
category is close to or reaches 100%, and the number of misclassification samples is far
lower than those in the DANN and ADDA methods; this result verifies the superiority of
the JADA over these other methods.

For a visual analysis of the DA and fault diagnosis performance of the DANN, ADDA,
and the proposed method, the t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm [31] is introduced to reduce the dimension of the learned features and plot their
distribution into a two-dimensional space according to the similarity. In this part, the
feature extractor of the trained DANN, ADDA, and JADA methods are fixed, and then the
target samples are used as the inputs. The learned features are shown in Figure 8a–c, where
blue represents the source samples and red represents the target samples. Four different
shapes are used to distinguish between the different categories of the samples.

The results shown in Figure 8a indicate that the features learned by the DANN exhibit
good distinguishability in the source samples, however, there is a certain difference in
the distribution of the target and source domains. Moreover, the features in the target
domain are not well separated, and there are a few misclassifications, as shown in the red
dashed circle in Figure 8a. The visualization results of the ADDA are shown in Figure 8b,
where the boundary between the source domain features is clear, but there are several
confusion and misclassifications in the target domain, as shown in the red dashed circle in
Figure 8b. In addition, there is a huge discrepancy in the feature distribution between the
source and target domains, possibly because the ADDA method ignores the discrepancy
in the conditional distribution between the source and target samples. Figure 8c indicates
that the learned transferable features are subject to smaller distribution discrepancies
compared to those shown in Figure 8a,b, and the features of the source and target domains
from the same category are densely clustered, which indicates that the proposed JADA
can correct the distribution discrepancy between the features that are learned from the
different domains. The result visually proves that the JADA method has a better transfer
performance compared to the other methods.
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Figure 8. Feature visualization of the different methods for the DDS dataset: (a) DANN, (b) ADDA,
and (c) JADA.

4.2. Experiments on the CWRU Dataset
4.2.1. Data Descriptions

Considering that the open source dataset is of great significance for the evaluation and
comparison of intelligent fault diagnosis methods, we selected the public rolling bearing
dataset from CWRU as the second validation dataset. The vibration data of the CWRU
dataset were collected using accelerometers, which were attached to the housing. As shown
in Figure 9, the test stand consists of a motor, a torque transducer/encoder, a dynamometer,
and control electronics.

Fan end bearing Driver end bearing

Torque transducer & encoder

Dynamometer

Electric motor

Figure 9. Experimental setup of motor bearing.

The CWRU dataset is divided into normal data and faulty data. The fault data are
generated by single-point damage at the inner raceway (IR), ball (B), and outer raceway
(OR) of SKF6205 bearings. The single-point faults were introduced to the bearings using
electro-discharge machining with fault diameters of 0.007, 0.014, and 0.021 in (1′′ = 2.54 cm).
In addition, the vibration data were recorded for motor loads of 0, 1, 2, and 3 horsepower
(hp, 1 hp = 746 W), and the digital data were collected at 12,000 samples per second.
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According to different fault locations and fault diameters, we selected 10 types of data for
experiments under four motor loads, as listed in Table 5; taking ‘IR007_1’ as an example, ‘IR’
denotes that the fault location of this category of fault is the inner raceway, ‘007’ indicates
that the fault diameters of this fault is 0.007 in, and ‘_1’ indicates that the workload is 1 hp.
Moreover, for each motor load, there are ten categories, and each category has 235 samples
with a length 1024. During the experiment, these samples were subjected to STFT, and the
specific transform setting were the same as those mentioned in Section 4.1.1. Furthermore,
a total of 9400 time–frequency images in the CWRU dataset were obtained.

Table 5. Data description of the CWRU dataset.

Fault Locations
Motor Loads

0 hp 1 hp 2 hp 3 hp
Normal Nor_0 Nor_1 Nor_2 Nor_3

IR
IR007_0 IR007_1 IR007_2 IR007_3
IR014_0 IR014_1 IR014_2 IR014_3
IR021_0 IR021_1 IR021_2 IR021_3

B
B007_0 B007_1 B007_2 B007_3
B014_0 B014_1 B014_2 B014_3
B021_0 B021_1 B021_2 B021_3

OR
OR007_0 OR007_1 OR007_2 OR007_3
OR014_0 OR014_1 OR014_2 OR014_3
OR021_0 OR021_1 OR021_2 OR021_3

4.2.2. Transfer Diagnosis Tasks Settings

In this part, twelve transfer diagnosis tasks under different scenarios can be con-
structed by the CWRU dataset, namely T01, T02, T03, T10, T12, T13, T20, T21, T23, T30, T31, and
T32, where Tij denotes that all the samples under i hp are used as the source domain, and
all samples under jhp are used as the target domain. The source data are labeled while the
target domain data are unlabeled.

4.2.3. Result Analysis

In the above comparative experiments, the accuracy of the three adversarial domain
adaptation methods, i.e., DANN, ADDA, and JADA, is significantly higher than other
methods. Therefore, we only compare the classification accuracy and transfer performance
of the proposed method with those of the adversarial DA methods for the twelve transfer
diagnosis tasks of the CWRU dataset, as illustrated in Figure 10 and Table 6.

Figure 10. Classification accuracies of the different methods for the CWRU dataset.
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Table 6. Diagnosis results for the cross-domain bearing datasets (%).

Transfer Diagnosis Tasks DANN ADDA JADA
T01 99.03 99.81 99.87
T02 90.61 97.95 99.80
T03 82.86 94.46 99.40
T10 89.37 97.29 99.62
T12 99.22 99.66 99.92
T13 93.58 96.65 99.84
T20 97.39 95.71 99.59
T21 91.24 97.68 99.35
T23 96.49 98.81 99.80
T30 75.23 89.27 99.16
T31 86.41 93.13 99.73
T32 94.18 97.21 99.91
Avg 91.30 96.46 99.67

It can be seen that the average accuracy of the adversarial-based methods participating
in the comparison is higher than 90%. Compared with twelve transfer tasks horizontally,
the classification accuracy of the proposed method is better than that of the other two
methods, and we can see that the proposed method is superior to the competing methods
in most scenarios, as shown in Figure 10. The average accuracy of the proposed method is
99.67%, which is higher than those reported in [7,32] (99.2% and 99.3%). In these reported
studies [7,31], the transfer diagnosis task settings were the same as those used in our
experiment. This result further verifies the superiority of the proposed JADA method.

Furthermore, we take the transfer diagnosis task T30 as an example, and visualize the
learned features of the three methods using the t-SNE algorithm, as shown in Figure 11.
In the figure, the source samples are represented by blue and the target samples are
represented by red.

Figure 11. Feature visualization of different methods for the CWRU dataset: (a) DANN, (b) ADDA,
and (c) JADA.
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We can make intuitive observations: (1) Figure 11a shows that the learned features are
mixed, implying that the DANN cannot discriminate both the source and target samples
very well. (2) Figure 11b shows that the ADDA discriminate the source domain well, but the
learned features of most target samples are away from the right source class and are even
close to the wrong source classes. This reveals that the ADDA method cannot effectively
align the marginal distribution and conditional distribution across the source and target
domains. (3) Figure 11c demonstrates that the JADA can discriminate between different
classes in both the source and target domains when the target samples are close to the right
source classes. These results demonstrate the efficacy of joint adversarial adaptation and
the category center constraint.

5. Conclusions

This paper presents a novel JADA method for cross-condition fault diagnosis. Unlike
the previous adversarial adaptation methods that ignored the class-wise mismatch across
domains and resulted in inaccurate distribution alignments, the proposed JADA method
can align the marginal distribution and conditional distribution across the source and
target domains simultaneously through a unified adversarial learning process and promotes
positive transfer by minimizing the distance within each category in the shared feature
space. The proposed method successfully achieves accurate classification results and a
satisfactory domain adaptation ability.
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