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Abstract

:

This article introduces a systematic review on arousal classification based on electrodermal activity (EDA) and machine learning (ML). From a first set of 284 articles searched for in six scientific databases, fifty-nine were finally selected according to various criteria established. The systematic review has made it possible to analyse all the steps to which the EDA signals are subjected: acquisition, pre-processing, processing and feature extraction. Finally, all ML techniques applied to the features of these signals for arousal classification have been studied. It has been found that support vector machines and artificial neural networks stand out within the supervised learning methods given their high-performance values. In contrast, it has been shown that unsupervised learning is not present in the detection of arousal through EDA. This systematic review concludes that the use of EDA for the detection of arousal is widely spread, with particularly good results in classification with the ML methods found.
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1. Introduction


Arousal is a general physiological and psychological activation of an organism, varying on a continuum from deep sleep to intense excitation. Performing a systematic review of arousal-related papers is challenging, as arousal encompasses a wide terminology. The construct arousal is a term that corresponds to the level of cortical activation that is regulated by the ascending reticular activation system. Arousal varies from a level of over-activation, as in the case of intense emotions or alert states, to a best attentional level for intentional action, or to levels of under-activation, as in the case of relaxation or sleep states. For example, the term stress is closely related to arousal in many works. Hence, it is possible to use the terms distress (negative stress) and eustress (positive stress) [1]. Another number of important papers study the change in arousal for the detection and classification of emotions. Indeed, according to Russel’s model of emotions, arousal is one of the variables that writes down the state of excitement towards a situation or event that provokes an emotional change [2]. In addition, variations in arousal are at the heart of experimenting with task-oriented activities such as driving [3] or figuring out mental workload at work.



There is a growing interest in developing methods for processing changes in arousal and using them in a variety of daily-living situations [4]. The most widely used technologies focus on the adoption of wearable devices. Such technologies usually work with the physiological conditions of the human body, using various variables to determine the activation state [5,6]. In fact, many researchers agree that variation in arousal correlates with increases in many physiological variables such as heart rate, electrodermal activity (EDA), breath intervals and skin temperature, among others [7,8]. Acquisition, processing and monitoring of physiological variables allow the creation of a map of the physical, mental and cognitive state of a subject [9,10]. Such a map is difficult to set up in many cases due to the origin of the physiological signals [11]. In any case, there are numerous physiological variables that are being used for arousal detection and its applications. We will focus on the analysis of EDA since it has been shown to be highly effective in the estimation of this excitement level.



EDA is considered especially useful in assessment of the arousal level due to its connection with the sympathetic nervous system (SNS) through the sudomotor system [12]. Alterations in the state of activation are unequivocally reflected as variations in skin perspiration, which affects the conductivity (conductance) of the skin. The measurement of these changes is excellent for estimating the psycho-physical state. In this respect, many causal models are used to infer sympathetic activation (arousal) from EDA signals such as curve fitting, inverse filtering, general linear model for evoked skin conductance response (SCR), non-negative deconvolution, continuous deconvolution, dynamic causal model (DCM) for anticipated SCR and DCM for spontaneous fluctuations [13].



We are not solely interested in EDA-based arousal detection in this systematic review, but the focus will be on the different machine learning (ML) methods used so far to classify excitement (arousal). Moreover, the review includes works using EDA alone or together with other physiological variables. Due to the substantial number of ML techniques and the proper nature of arousal, the present review is centred in classifying low versus high arousal (calm versus high excitement states), although considering both binary and multi-class methods. Moreover, given the diversity of the experiments found and the disparity in aims and design, our intention is to delve deeper into the possible connections among all the papers selected and to create a map of the most used techniques and their performance. In this sense, this review intends to create a conceptual map of the techniques used for EDA signal processing to help researchers find the best technique for processing such signals, allowing them to focus on fine tuning and optimisation of the different models. This map will contribute to the development of new processing and classification techniques.



The remainder of the article is as follows. Section 2 provides a brief explanation about the methods followed to perform the review. Section 3 introduces a summary on the status of the topic addressed in the review. Section 4 describes the most relevant results and a discussion about the studies found. Finally, Section 5 offers the conclusions of this work.




2. Review Protocol


2.1. Search Strategy


The reporting of this systematic review was guided by the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement [14]. A total of five scientific databases were selected for a wide search of ML and EDA in arousal detection. The selected databases were Scopus, IEEE Xplore, PubMed, ScienceDirect and ACM Digital Library. The selected papers were sought based on three distinct categories in the search criteria. The first focused on searching EDA-related terms like “skin conductance”, “electrodermal activity”, “galvanic skin response”. The second was centred on finding all the terms associated with arousal detection, such as “detection”, “identification” and “recognition” in conjunction with “stress”, “arousal”, “activation”, “agitation”, “excitement”, “emotion”, “mental workload”, “cognitive workload” and “pain” terms. Finally, the third term that completed the search chain aimed to look for classification methods in the field of Artificial Intelligence: “machine learning” and “deep learning”. The systematic review was conducted from the time records are kept in each of the databases until June 2022.



The consultations were refined by successive searches to get as small a set of search terms as possible without losing the scope of the review. This allowed us to keep a manageable number of keywords without losing the perspective and focus of the systematic review. A series of inclusion and exclusion criteria were established to filter the desired information:




	
Inclusion criteria



	–

	
Publications implementing and evaluating the performance of ML-based methods and algorithms for low/high arousal level detection, identification and recognition using EDA as basis.




	–

	
Articles written in English.












	
Exclusion criteria



	–

	
Literature with an unclear peer review process (grey literature): tutorials, toolkits, editorials, extended abstracts, PhD symposium papers, keynotes, research summaries and technical reports.




	–

	
Systematic reviews (including meta-analyses) and survey documents.




	–

	
Conference papers and book chapters.




	–

	
Articles published after 30 June 2022.




	–

	
Articles posted on a preprint database.










Figure 1 details the scheme followed to obtain the final selection of the articles in the systematic review. The identification stage resulted in a total of 308 papers, of which 77 papers were obtained in Scopus, 32 in IEEE Xplore, 81 in ScienceDirect, 6 in PubMed and 112 in ACM Digital Library. The papers were selected and eliminated according to the inclusion and exclusion criteria mentioned above during the screening stage. A total of 105 duplicates were removed from the various databases. In addition, 88 articles were removed after reading their abstract as they were outside the scope of the review. The criterion was to select papers that used EDA signals alone or together with other signals and employing ML techniques. Finally, 40 articles from the remaining 107 articles were removed in the last stage (inclusion) after a thorough reading of the complete content. This way, 67 articles were left for study in this systematic review.




2.2. Paper Classification Categories


Two categories were proposed once all the articles had been examined. The first, shown in Table 1, classified the papers based on their scope of coverage in six groups: arousal, stress, emotion, physical pain, task-oriented and others. The group arousal focuses on those papers that deal with the detection, processing and usage of the EDA signals to determine the arousal level. Stress is centred on articles concerned with the detection and classification of some stress-inducing situations. The emotion group focuses on papers related to any aspect of detection and classification of emotional states. Another group of papers is related to physical pain detection. A fifth group (task-oriented) is dedicated to studies on changes in arousal when performing a single-task-oriented procedure such as driving a car. A sixth category refers to mental or cognitive workload. Lastly, the other classes stand for monitoring other human body states such as sleep and dehydration.



The second categorisation is shown in Figure 2. The first resulting category, Biosignal, is grounded on the different bio-markers used for obtaining the arousal level. The specific bio-signals for the detection of arousal are presented. Dimensionality of the data source is also identified, i.e., whether a sole source or multiple indicators are used for detection. In addition, the type of data used for detection is provided, differentiating between raw data, processed data and two-dimensional matrix. The second category, Application, focuses on applications that employ diverse types of classifiers intended for a specific use. It centres on the goals to be achieved, focusing on the creation of applications for the detection, grouping, diagnosis and future prediction of arousal. Other basic classification principles are whether the application runs with a large or small number of participants and signals and whether the system is used offline or in real time. This category is not dealt with in depth in this article, as it falls beyond the scope of this paper. The last category, Learning Method, is focused on the use and relevance of different learning methods for the detection task. Most analysed works base their learning ability on supervised classification algorithms, while the use of unsupervised classifiers is minor.





3. Methods on Arousal Detection


The human body may be regarded as an electromechanical system composed of perceptual, affective and cognitive processes. Its dynamic changes allow one to take different measurements on various bio-signals. The temporal signals make it possible to establish the physical, psychological and cognitive state of the human being with adequate precision [88,89]. Most biological signals involve electrical activity and conductivity along with changes in flow, temperature, volume, pressure, sound and acceleration [60,90,91,92].



There are many physiological variables which can be collected from the human body. The most common are the following. (a) The electrocardiogram (ECG) measures any change in heartbeat and pattern of beating [93,94]. (b) Electromyography (EMG) monitors changes in neuromuscular activity. (c) Blood volume pressure (BVP) measures changes in blood volume, which affects blood pressure by changing the cardiac output. (d) Electrooculography (EOG) allows monitoring of eye movements. (e) Pupillography or pupillometry (PUP) is based on the measurement of the pupil diameters under basal conditions and after applying different stimuli. (f) Electroencephalography (EEG) measures the variation of electrical signals produced in different areas of the brain. (g) Inter-breath (IBR) measures the rate of breathing. (h) Acceleration (ACC) monitors body movements. (i) Skin temperature (TMP) is used to quantify temperature variations. (j) Electrodermal activity (EDA) is used to check the arousal, this being an important variable for measuring the emotional state of a person. Table 2 describes the main properties of those bio-markers.



3.1. Signal Acquisition and Processing


Signal acquisition is one of the most important stages when using EDA (or any other bio-signal). Most authors referenced in this systematic review agree that a good acquisition process is crucial for the proper functioning of the later recognition system. Figure 3 shows the usual pathway for signal treatment. Here, the first stage is the acquisition of the raw signals by the EDA device. The next stage is pre-processing, which eliminates all the defects that have caused interference during the acquisition process. As part of this operation, artefacts are removed and the signal is filtered, making it softer and eliminating noise. The last stage is signal processing, where a series of features of the signal are obtained as a rule. ML models will later use these features.



3.1.1. Raw Signal Acquisition: Datasets and Experimental Design


According to the outcomes of our systematic review, the authors always choose between two different procedures to acquire the raw signals. The first one is to create an experimental design as shown in Figure 4. A first step is to start the experiment; then begins the physiological baseline recording of the input data. Next, the person is subjected to a sensory stimulus, most commonly visual and auditory and the individual’s reactions are recorded. These stimuli trigger an autonomic response in the different systems [95,96]. The process is repeated as many times as necessary.



An alternative procedure uses several datasets already validated by the scientific community. These datasets usually hold a number of other physiological signals registered in addition to the EDA signal for use in multi-class classifiers. The most common datasets for EDA analysis are MAHNOB [97], DEAP [98], BioVid [66] and UT Dallas Database [99].




3.1.2. Signal Pre-Processing: Normalisation, Artefact Removal and Noise Filtering


Pre-processing cleans, adapts and prepares the signals for further processing. This process is also fundamental to many authors who agree that the effectiveness of a classification system starts at this stage. Usually, pre-processing includes three different steps: signal normalisation, detection and elimination of artefacts and filtering of noise.



The first step aims at eliminating the subject-dependent baseline. This is done to reduce the amplitude of the variance [71,100,101,102]. Then, artefacts that interfere with the signal must be removed. A motion artefact (MAt) degrades signals very quickly and makes them unusable [23]. Artefacts are eliminated by deflecting the signal through various softening filters [103,104]. This procedure causes in most cases a loss of information in EDA signals. In addition, MAt detection consists of identifying each of the signal segments where the artefact removes it at later stages [22,23]. Noise reduction or elimination is strongly associated with the artefact detection and/or removal process. The most worrying noise in EDA signals is the high-frequency noise due to its slow evolution [92]. Therefore, the EDA signals are filtered to remove artefacts and noise recorded during the acquisition period. Two distinct types of filters are usually used; firstly, a low pass filter with a 4 Hz cut-off frequency and secondly, a Gaussian filter to attenuate the signals, artefacts and noise.




3.1.3. Signal Processing: EDA Deconvolution


The measurement of EDA signals is usually conducted in two separate ways. The first manner is the exosomatic one, which is obtained from the variation of the resistance or conductance by injecting a small current into the skin. The second way, the endosomatic, is obtained from the measurement of the potential [105]. These measurements are composed of the convolution of two signals: a first signal that varies slowly, called the electrodermal level (EDL) and a second signal that varies rapidly, the electrodermal response (EDR). The EDL signal sets up the base level of the signal while the EDR is closely related to the activity of the sweat motor system, which is strongly associated with the sympathetic nervous system at the same time [106].



Figure 5 sheds light on this division. In the endosomatic measurement lies the skin potential (SP), which, in turn, is divided into the skin potential response (SPR) as a phasic response and the skin potential level (SPL) as a baseline. On the other hand, exosomatic measurement is composed of two groups, AC and DC, depending on whether alternating or direct current is injected into the skin between the electrodes. For the EDR we have variables SCR, SRR, SYR or SZR related to conductance, resistance, admittance and impedance, while the variables SCL, SRL, SYL and SZL are used to evaluate the EDL.



The deconvolution procedure consists of separating the EDR signal from the EDL. This process minimises external effects such as temperature and humidity on each participant’s baseline. It also mitigates the effects of gender, race, physical condition and age of the participant [107,108,109]. In this sense, it normalises the signal so that the EDR is used as a common indicator for all the participants who have undergone the same stimulus. A process of deconvolution/decomposition is needed to obtain the components needed both for endosomatic and exosomatic measurements. Figure 6 illustrates the deconvolution process of the skin conductance (SC). As can be seen in the figure, the SCR driver is used to detect the level of excitation of the individual.



Mathematically, the sudomotor nerve function may be considered a driver with a train of impulses that evolve over time. This response is embedded in the SCR and SCL signals [110,111]. The outcome is presented by a convolution (“∗” symbol) of the driver with the impulse-response function (IRF), describing the impulse response flowing through time as shown in Equation (1).


  S C = S  C  D r i v e r   ∗ I R F  



(1)







The   S C   signal is formed by the   S C L   and   S C R   signals, as displayed in Equation (2).


  S C = S C L + S C R = S C  L  D r i v e r   ∗ I R F + S C  R  D r i v e r   ∗ I R F  



(2)






  S C = ( S C  L  D r i v e r   + S C  R  D r i v e r   ) ∗ I R F  



(3)







Thus, the tonic signal driver is obtained by deconvolution (“/” symbol) of Equation (3) as:


  S C / I R F = S  C  D r i v e r   = S C  L  D r i v e r   + S C  R  D r i v e r    



(4)







The process can be conducted in two manners. The first, the continuous decomposition analysis, decomposes SC data in continuous tonic and phasic activity. This approach, which is based on standard deconvolution, is fast and robust against artefacts. The second is discrete decomposition analysis, which separates the SC data in a tonic component and discrete phasic components with a no-negative deconvolution. This strategy captures and explores all deviations of the final response form and computes an in-depth full model of all parts within the entire dataset [92,111].



Many authors agree that deconvolution produces a normalisation in the signal, allowing to compare between different captured signals and subjects [49,112].




3.1.4. Other EDA Processing Techniques


Although most of the articles found in the reviewed literature refer to the deconvolution process, there are other techniques that are used for EDA signal processing. Here we will mention some of them.



Complex Optimisation on EDA Signals (cvxEDA)


A novel algorithm for the analysis of EDA signals uses convex optimisation methods. EDA is one of the most widely observed pathways of sympathetic nervous system activity and is expressed as a change in the electrical properties in skin conductance (SC) [17,113]. This model represents the SC as the composite of three terms: the phasic component, the tonic component and an additive white Gaussian noise that incorporates the model’s prediction errors as well as measurement errors and artefacts. The model is physiologically inspired and fully explains EDA using a rigorous method based on Bayesian statistics, convex mathematical optimisation and sparsity. One benefit of this method is its low computational cost and that it can be incorporated into a variety of wearable devices.




Sparse Deconvolution Approach (sparsEDA)


Staying with models that have a low computational cost, the sparse deconvolution-based method called sparsEDA should be mentioned. This fully automated method was proposed for tonic/phase decomposition of EDA data based on non-negative sparse deconvolution and multi-scale modelling of SCRs. This method aims to strike a balance between filtering noise and improving the relevant insights into the EDA signals [113,114]. This lightweight method can also be embedded in a wearable device.




Spectral Analysis on EDA Signals


Spectral analysis is another novel approach for signal processing, motivated in part by advances in the analysis of heart variability (HRV) [115]. This method evaluates the dynamics of the autonomic nervous system by calculating the power spectrum in two main bands, a low frequency band corresponding to the limits [0.08–0.24] Hz and a high frequency band corresponding to the limits [0.25–0.4] Hz. The peak of maximum activity would be around 0.34 Hz for a high arousal activation zone [113]. As this procedure is inspired by the spectral analysis of the HRV, the low frequency band is thought to be related to the activation of the sympathetic and parasympathetic systems, while the upper band is only due to the influence of the parasympathetic system.




Cepstrum Analysis (CA)


This is the discrete-time inverse Fourier transform of the logarithm of the magnitude (X) of the discrete-time Fourier transform (DTFT) of the signal. It is formulated as:


  c  [ n ]  =  1  2 π    ∫  − π   + π   l o g  ( X  (  e  i ω   )    e  i ω n   d ω  



(5)




where   e  i ω    is the DTFT of the signal [86]. CA has successfully been used to isolate the basic waveform and the excitation function of physiological signals such as EDA [71], EEG [116] and ECG [117]. CA might be helpful for analysing overlapping EDA signals given its ability to amplify small amplitude variations. This analysis yields a series of coefficients called Mel-frequency cepstral coefficients (MFCCs) that are used as features introduced into the classification system (see Equation (5)).




Entropy Analysis (EA)


This describes the randomness, uniformity and disorder of a given system. Many features of the entropy domain have been used to analyse EDA signals [118]. EA allows us to detect patterns in the signal by using Shannon entropy [119]:


  H = −  1  l o g N   ∑  p i  l o g  (  p i  )   



(6)




where N is the number of observed events and   p i   is the probability that the i-th event occurs. Since Shannon entropy values differ with respect to the acquired data, it may be used as a feature to measure the characteristics of a signal (see Equation (6)).




Identification of the Dynamics of the Autonomous System


This approach consists of showing the dynamics of the autonomic system across different stimuli exposures [120]. For this purpose, several features are extracted from the EDA signals. A logistic regression (LOC) or receiver operating characteristic (ROC) process is then applied. These indices are concatenated for the different time windows of the signals that will later be processed by the LASSO regulation algorithm. Not all features survive this process, but the remaining ones supply much information about the condition of the participant. This allows for comparison in relation to the different situations or stimuli to which he/she has been exposed.




Models to Extract Pulses from EDA Signals


A systematic and robust approach to extract pulses from EDA data that preserve the statistical structure of physiologically derived data while excluding the noise has been developed [121]. This method exploits a total of seven parameters through four models (inverse Gaussian, log-normal, gamma and exponential) to figure out how to extract pulses. These pulses allow an assessment of the signal-to-noise profile of an entire data companion and the identification of individual subjects. From this emerges a line of analysis that is computationally accurate, statistically rigorous and physiologically based.




Poral Valve Model


This model favours the functioning of the activation of the autonomic system to produce a change of sweating in the skin. So, it models very efficiently the functioning of the different pores of the skin and its sweat activation, adopting a physiological approach to determine the different stages of activation or arousal produced [122].





3.1.5. Feature Extraction


Feature extraction is usually performed using specially designed frameworks and methods. The most used frameworks are Ledalab [92] and cvxEDA [17] and the SparseEDA [112,114] method. Five main groups of features are distinguished: time domain features which refer to all the variables defined in terms of time; frequency domain features which refer to all the parameters defined in or based on frequency; statistical features defined as variables that belong to the statistical field; morphological features that quantify the shape of the signal; time-frequency features that characterise the signal in time and frequency domains simultaneously. Table 3 shows several features that usually characterise the different segments of   S P  ,   S C  , as well as their tonic and phasic components (  S P L  ,   S P R  ,   S C L   and   S C R  ). It should be noted that these features are used to characterise the signals more accurately. It is a good practice to use the best features that are most suited in relation to their contrasting performance.



The following features are commonly used in the time domain: mean amplitude (Mean); amplitude standard deviation (SD), the SD first and second derivative (D1, D2), the SD means (D1M, D2M) and their standard deviations (D1SD and D2SD) [26]; sum rise time (SRT), sum fall time (SFT), rise rate mean (RM), rise rate standard deviation (RRSTD); decay rate mean (DCRM), decay rate standard deviation (DCRSD); phasic value mean (PHVM), phasic value standard deviation (PHVSD); startle time mean (STM), startle time standard deviation (STSD), startle RMS mean (STRMS), startle RMS standard deviation (STRMSSD); startle RMS overall (STRMSOV); electrodermal level (EDL), electrodermal response (EDR); cumulative maximum (CMax), cumulative minimum (CMin); smallest window elements (SWE); dynamic range (DR); root-mean square level (RMS), peak-magnitude-to-RMS ratio (PMRMSR); root-sum-of-squares level (RSSL); peak (P), peak location (PLoc), peak to peak time (PPT), analysis of peaks with a time difference of more than 50 ms (pNN50) [25,29,46,47,65,69].



Distinctive features are available following the morphology of the signals: epoch-capacity (EC) is a relation between the number of epochs and the total number of them; epoch-peak (EP); epoch peak counter (EPC) is a number of epochs in all times; entropy (EN) [80]. On the other hand, there are features that result from different measurements such as arc length (AL), integral area (IN), normalised mean power (AP), root mean square (RMS), perimeter to area ratio (IL) and energy to perimeter ratio (EL) [26]. These parameters are due to the need to understand the morphological differences in the shape of the   S C  R  D r i v e r    . As far as statistical parameters are concerned, let us highlight mean value (M), variance (Var), median value (MedVal), p-value (p-Val), Akaike information criterion (AKAIKE), Log-likelihood (LOG-LIKE), covariance matrix (COVMAT), transition probabilities lag (TPL), number of observations (NO), switching betas (beta-Numb), number of estimated parameters (STP), standard error coefficient (SCE), smoothed probabilities of regimes (SPR), conditional standard deviation (CSTD), four central moment (FCM), five central moments (FVCM), kurtosis (KU), skewness (SKU) and momentum (MO) [59,69].



The following parameters are usually found in the frequency domain: sum spectral components (SSP), spectral power (SP), mean and spectral components (MSSP and SSPMed, respectively), frequency non-specific of skin conductance response (NSSCRs) and fast Fourier transform (FFT) for bandwidths F1 (0.1, 0.2), F2 (0.2, 0.3) and F3 (0.3, 0.4) [26,59,69,123,124,125]. Frequency bands with ranges [0.02–0.25 Hz], [0.25–0.40 Hz] and [0.40–1 Hz] have also been used as a measure of power spectral density (PSD) [113,126].



Finally, for time-frequency features, STFT is a basic principle for characterising the signal simultaneously in both domains. It is an application of the conventional fast Fourier transform applied to successive data segments using a short-time window. The time-frequency flux measure (  T  F  F l u x    ), the time-frequency flatness measure (  T  F  F l a t n e s s    ), the time-frequency energy measure (  T  F  E n e r g y    ) and the mean of time-varying spectral amplitudes in frequency bands (TVSymp) [127] use this approach. Mel-frequency cepstral coefficients (MFCCs) were included to quantify the EDA signals. Lastly, Shannon entropy (  E  S h a n n o n   ) and its logarithmic representation (  E  L o g   ) [49,128] have been found for entropy measures.





3.2. Machine Learning for Arousal Classification


As a rule, signal-based experiments yield a large number of extracted features to classify. ML techniques are used more than purely statistical ones to classify such enormous amount of data. Therefore, a comprehension of existing ML models, their main characteristics and methods of evaluation and their most relevant results is essential.



Evaluation Metrics


According to the literature studied, stress detection, physical pain detection, dehydration sensing and sleep monitoring are limited to a binary classification problem, while multi-class classifiers have been used for emotion detection and task-oriented applications. The different metrics that have been employed to measure performance are the following:




	
Accuracy (ACR): degree of closeness to true value. In terms of   T P   (true positives),   T N   (true negatives),   F P   (false positives) and   F N   (false negatives):


  ACR =   T P + T N   T P + T N + F P + F N    



(7)







	
Precision (P): ratio of successful positive predictions.


  P =   T P   T P + F P    



(8)







	
Recall (R) or Sensitivity (Se): fraction of relevant instances retrieved.


  R = Se =   T P   T P + F N    



(9)







	
Specificity (Sp) or true negative rate (TNR): proportion of negatives that are correctly identified.


  Sp = TNR =   T N   T N + F P    



(10)






  TNR + FPR = 1  



(11)







	
False positive rate (FPR): proportion of negative cases incorrectly identified as positive cases in the data.


  FPR =   F P   F P + T N    



(12)







	
F1-score or F-measure: harmonic mean between precision and recall.


   F 1 − score  =   2 × P × R   P + R   × 100  



(13)







	
Area under the curve (AUC) and receiver operating characteristics (ROC) curve: performance measurements for classification problems at various threshold settings.



	
Precision-recall (PR) curve: this summarises the trade-off between the   T P R   and the positive predictive value for a predictive model using different probability thresholds.



	
Confusion matrix (CM): a specific table disposition that allows one to visualise the performance of an algorithm.



	
Cohen’s kappa-coefficient ( κ ): this is a measure of how closely the instances classified by the ML classifier match the data labelled as ground truth.


  κ =    ACR 0  −  ACR e    1 −  ACR e     



(14)







	
Youden’s index (J): this is used to measure the sensitivity of each classifier.


  J = Se + Sp − 1  



(15)














3.3. Classification Methods


Different classification methods have been found in the papers analysed in this systematic review. These methods can be grouped in relation to distinct categories. In the first place, there is direct classification vs. hierarchical classification. Furthermore, there is long-term vs. short-term when considering the duration of the classification. Finally, we can distinguish between supervised and unsupervised learning methods. Another aspect that must be considered is that ML models have some limitations due to the substantial number of parameters managed. Consequently, it is necessary to know how to implement methods that help us to reduce the number of redundant or irrelevant parameters. Therefore, dimensionality reduction techniques are becoming significant in the areas of ML, data mining and bioinformatics.



The feature reduction methods detailed next are usual to signal processing. Principal component analysis (PCA) is a standard statistical data analysis which tries to explain observable signals as a linear mixture of the orthogonal principal component that optimises the variance between the different components. Linear discriminant analysis (LDA) is typically used to reduce the dimensionality by maximising the space between the different classes. Finally, independent component analysis (ICA) is an analysis and data processing strategy that recovers unobservable signals or sources of monitored mixtures only under the assumption of mutual independence. These feature reduction techniques allow the leverage the computational cost since the resulting classifier is simpler and only attends to the key features of the signal. Many of the papers studied in this overview use such techniques and the results are really good compared to others that do not use them. Below, there is an explanation of the different methods used.



3.3.1. Direct vs. Hierarchical Classification


We found direct and hierarchical classification methods in many articles analysed in this review. A direct classification consists in classifying the arousal of the person in a direct way considering one or more physiological variables. On the other hand, there are two distinct stages when a hierarchical classification is proposed. The arousal is established in a first stage and a more complex emotional state can be classified in a second stage [59].




3.3.2. Long-Term vs. Short-Term Affective State Classification


Whether a classification of the emotional state should consider the duration of the experiment as well as the evolution of the signals over time are other aspects to be considered. The first issue to highlight is the need for a classifier that works quickly and is consistently robust over a long period. In this sense, a classification could be defined as short-term or long-term. The former is aimed at instantaneously finding results, while the latter is oriented towards long-term applications. A long-term classification is usually recommended in the context of stress detection [26].





3.4. Supervised vs. Unsupervised Learning


Within the different learning methodologies, there are (apart from reinforcement learning and stochastic learning) two other main groups, namely supervised and unsupervised learning [129].



3.4.1. Supervised Learning Methods


Supervised learning techniques are based on training a classifier from a dataset that is already labelled. Once the system has learned to identify the different patterns, the classifier is able to effectively distinguish between the different classes. In our case, it must distinguish between low and high arousal, calm and stress and so on. There is a wide range of classifiers with supervised learning found in the papers selected:




	
Support vector machines (SVMs) [130,131]. From the point of view of arousal detection from EDA, this is one of the most used algorithms, more concretely using linear [29,30,43,65], quadratic [29,46,71], polynomial [29,30,46], Gaussian [29,30] and radial [15,18,22,23,25,30,31,42,43,44,45,47,48,49,52,53,54,55,58,61,69,71,73,74,75,79,132,133] kernels.



	
Auto-hidden Markov models (AHMMs) [57,59]. Different approaches have been used to find the status of each person from the EDA signals using AHMM [57,59].



	
Discriminant analysis (DA). There are many classifiers based on DA, with the most common for the detection of arousal in EDA being: linear discriminant analysis (LDA) [25,70]; quadratic discriminant analysis (QDA) [27,30,49,52,81] and Gaussian discriminant analysis (GDA) [29].



	
Decision trees (DTs) [134]. Within this type of classifier, the most used for arousal detection are tree medium, regression tree [27,42,45,61,80,81] and other ensemble methods like random forest and bagged tree [46,80].



	
Naive Bayes. In this study, it has been found that the most used naive Bayes methods are naive–Bayes–Gaussian [42,44,52,61,80] and naive–Bayes–Gaussian with PCA [61,80].



	
Logistic regression (LR). According to the references found, different papers have been published where this method is used as logistic regression [23,27,48,79] and a variant called zero-regression [48].



	
A K-nearest neighbours (KNN) [135]. Within the different configurations that have been found are KNN-Fuzzy [46], KNN-Fine [46], KNN-Cubic [46,70], KNN- Medium [25,27,42,44,45,47,54,57,69,79] and KNN-Weighted [23].



	
Artificial neural networks (ANNs). It should be noted that there are many topologies that have been used for the processing of the obtained features, such as feed-forward NN [69], multi-layer perceptron with back-propagation (MLP) [23,27,43,61,67,75,81], Bayesian probabilistic NN (BPNN) [44], probabilistic NN [61], one-dimensional convolutional NN (1D-CNN) [69,70] and, finally, convolutional NN (CNN) [15,44,49,53,71,73].



	
Long short-term memory (LSTM) and recurrent neural networks (RNNs) [136,137]. In this systematic review, LSTM [34], ensemble-based methods like CNN + LSTM [34] and adaptive neurofuzzy inference system (ANFIS-based short-term) [25] have been used.









3.4.2. Unsupervised Learning Methods


The second group of learning methods addressed is unsupervised learning [138]. This type of methods is based on learning by using an unlabelled dataset. The model obtained is automatically adapted to the observations. The model is created with clustering methods. According to the literature found in the systematic review the following unsupervised methods have been used:




	
K-means is a clustering method, aimed at splitting an unlabelled dataset of n observations into k groups in which every single observation belongs to the group whose mean value is the closest [47].



	
K-medoids is a grouping approach for the partitioning of a dataset into k groups or k-clusters, each group being represented by one of the group data points called cluster medoids [47].



	
A self-organising map (SOM) is a type of ANN that is formed by the use of unsupervised learning to generate a low-dimensional map, typically two-dimensional [139]. In the selected literature we have found the use of SOMs for the detection of arousal [47,52].











4. Results


This section presents the different results obtained along this systematic review. Different analyses of the data obtained are conducted in this type of review as has been mentioned throughout the paper. Firstly, papers have been grouped according to physiological variables used for the determination of arousal. A second analysis focuses on determining which are the most typical classifiers (supervised and unsupervised) for arousal detection. For this purpose, the different classification methods have been grouped according to their similar configurations or topologies. In this way, estimating the most common ML technique is possible through concentrating the efforts on selecting a firm configuration and discarding those techniques that are known beforehand to perform poorly.



4.1. Bio-Markers Used in the Papers


One of the considerations taken during this study was to analyse the number of articles that only use the EDA to perform the different classifications. In addition, we are interested in those in which other bio-markers are used in conjunction with EDA to strengthen the classification results. As can be seen in Table 4, Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10, the publications have been grouped according to the classification shown in Table 1. In the works found, a minimum of 5 participants and a maximum of 260 have been counted, having used other variables besides EDA like BVP, TMP, EEG, EOG, EMG, ECG, ACC, PUP and IBR.



A total of 21 papers have used EDA signals alone [16,17,18,19,21,22,24,25,26,42,48,49,50,51,65,74,78,79,80,132]. The use of deconvolution methods was emphasised to obtain the distinctive features of the EDA signals. Another variable that is used to help determine different emotional states in the participants is BVP, which gets particularly good results in the prediction when combined with EDA [28,32,58,59,70,75,82].



Table 4, Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10 show other physiological variables used. Articles including TMP focus on its integration for stress detection. On the other hand, when adding the EMG signal, the results are slightly improved. This may be since this physiological variable complements itself very well with EDA. Another variable used for stress measurement is EEG mixed with EDA. This type of signal is widely used individually and provides good results in stress detection. Nonetheless, EEG requires very expensive and precise devices and quite specific knowledge to set up the acquisition of the signals. Finally, IBR also supplies additional information to improve the classifiers, but without achieving great improvements.



These physiological variables are excellent complements to the EDA, providing a leap in the quality of the classifier results. It is possible to supply a more realistic map of the physiological state by combining the variables. This is largely because the several variables are regulated by different systems like the SNS, the parasympathetic nervous system or a mixture of both (the autonomous nervous system).




4.2. Time Windows and Intervals in Arousal Detection


One aspect that has received considerable attention in this systematic review is the size of the signal segments that are used to feed each classifier. Many classifiers work better with longer signal segments and therefore more signals are introduced during the learning process. This may be due to the shape of the signal obtained, since the longer the signal, the easier it is to distinguish between the two states [105].



Regarding the minimum time for stress detection, many researchers argue that segments of at least 5 s are needed to achieve a distinction between calm and stress [26]. On the other hand, by looking at how the EDA signals are segmented, some authors use complete segments of the signals acquired in the experiments, while others prefer to use segments of EDA signals divided into smaller fragments and apply overlapping techniques to perform data augmentation and provide more data to feed the classifiers.




4.3. Features Most Commonly Used


Throughout the literature consulted, there is a substantial number of parameters that can be obtained from the EDA raw signals as well as from the deconvoluted signals (phasic and tonic). Due to the normalisation of data that takes place in the process, any classifier using phasic signals has a much better performance than the ones that use the raw signals.



Researchers have preferred to use time-dependent parameters more often than those based on morphology, statistics and frequency domain. Some parameters should be highlighted such as mean (Mean), numeric first and second derivative (D1, D2), standard deviations of the signal and its derivatives (SD, D1SD, D2SD), cumulative maximum (CMax) and cumulative minimum (CMin), electrodermal level (EDL) and sum rise time (SRT) or root-mean square level (RMS). The most used morphological parameters are arc length (AL), integral area (IN), normalised mean power (AP) and energy to perimeter ratio (EL). The statistical parameters used frequently are mean (M), variance (Var), median (MedVal), kurtosis (KU), skewness (SKU) and momentum (MO), in frequency domain the use of spectral power (SP), mean spectral power (MSSP) and fast Fourier transform (FFT) is quite extensive. Finally, it can be noted that Shannon entropy (  E  S h a n n o n   ) is one of the most widely used for time-frequency features.




4.4. Supervised Learning Methods


A considerable number of the papers studied use supervised learning methods (see Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17). Their main performance results are discussed below.



4.4.1. Support Vector Machines


SVMs are beyond any doubt the most widely used classification methods in the papers selected. SVMs with linear, quadratic, cubic, polynomial, Gaussian, radial and radial kernels with/without PCA analysis have been proposed along the present survey.



Within arousal classification (see Table 11), SVMs with radial configuration have an F1-score and precision of 85.20% and 92.0%, respectively [15,20,28]. Furthermore, binary classifiers have an accuracy of 95.67%. In contrast, the accuracy drops to 78.93% when dealing with multi-class classification [22]. For stress classification (see Table 12), there is an F1-score and accuracy value of 92% and 90% for a deep-SVM (ensemble method) and medium-Gaussian kernel configuration, respectively [29,142].



This is closely followed by other results, also based on the radial and quadratic kernel with an accuracy rate of 83% and 81.3% for stress classification [30,45]. It is in emotion classification where the greatest number of configurations are found (see Table 13). It is also the field where the highest variability is detected. The classification results range between 63% and 91.0%, having a mean value of 79.34% accuracy [60]. In addition, it offers an accuracy of 77.6% with a radial kernel and timescale decomposition method [65] for their use in determining physical pain. Finally, the use of SVMs in oriented tasks is reinforced by results of 90.6% for a quadratic kernel and 82.7% for a radial kernel in the task-oriented group [71,75] (see Table 15).



In summary, the most used kernel, the radial kernel, obtains average results of 75.34% when all the areas of application are compared. This result achieves an acceptable performance, because other estimators such as the ROC curve or the sensitivity and specificity values are remarkably high, approaching 1 (maximum achievable level) in many cases. In addition, it should be noted that these classifiers present values higher than 90%, only comparable with the performance of the different topologies and configurations of ANNs [69] (see Section 4.4.8). Finally, when a feature reduction analysis (PCA) is applied to the previous approach, the average result of the classification is 82.24%.




4.4.2. Auto-Hidden Markov Models


There are two types of algorithms within the Markov chains used for emotion and classification as shown in Table 13. On the one hand, the auto-hidden Markov chains have an associated result of 88.6% with an LDA and non-LDA approach [59]. On the other hand, there is a value of 68.7% using the standard Markov chains when considering the baseline, while the accuracy increases to 79.83% for an approach not considering the baseline [57].




4.4.3. Discriminant Analysis


Discriminant analysis has been used in stress detection (see Table 12) and emotion classification (see Table 13). In this first case, the highest detection rate is 95% in accuracy for linear discriminant. As can be seen, a higher order configuration worsens the results. In contrast, the results obtained reveal an accuracy of 71.09% when applying a feature reduction algorithm to the linear discriminant. Moreover, when the discriminant employs a higher order discriminant function (quadratic or Gaussian), the results drop to 71% for stress classification. Furthermore, an accuracy of 84.7% is found in emotion classification [52]. These results suggest that the only method that can be used with acceptable results is the linear discriminant configuration. This is due to the inner workings of the classifier, as well as its ability to eliminate features that do not provide relevant information. In papers where feature removal is performed, such as in the case of LDA, something similar occurs, as will be explained below.




4.4.4. Decision Trees


There are many different decision trees in the papers surveyed. Within arousal (see Table 11) and stress classification (see Table 12), random forest (RF) has been used with an accuracy of 83.58% and 91.1%, respectively [15,33] and decision tree (DT) has reached an accuracy of 96.6% [35]. Moreover, in the realm of emotion classification (see Table 13), different configurations are found with high percentages of accuracy. We have 93.5% and 80.83% accuracy for RF. For instance, we have 78.8% for the ensemble bagged method and 73.30% for the regression tree. Eventually, for classifying bodily states (see Table 17), RF is used. This technique achieves an accuracy of 73.0% using PCA analysis [80]. Lastly, in the task-oriented group (see Table 15), regression tree with 90.16% and 91.3% accuracy, using classification and regression trees (CART) and ID4-5 configurations, respectively [74], should be highlighted.



The implementation of this algorithm used the Matlab library called ”App learner” with standard configurations (Gini criterion) in most articles selected in the systematic review.




4.4.5. Naive Bayes


As for the Bayes classifier in emotion classification, the results obtained for the Gaussian configuration combined with PCA is 70.8% [61]. Generally, results with Bayes classifiers are quite poor because they assume independence in the variables (which is not the case for EDA signals).




4.4.6. Logistic Regression


The use of logistic regression is not widely used in the selected papers. An accuracy of 90.19% is achieved by fusing multiple signals in stress classification [27]. On the other hand, in emotion classification an accuracy of 57.54% is obtained for a zero-regression structure [48]. Finally, for dehydration monitoring, an accuracy of 62% is obtained. Compared to others found in this study, this type of classifier is not widely used with biological signals, so the results are in line with expectations.




4.4.7. K-Nearest Neighbours


KNN is one out of the most frequently adopted classifiers in physiological classification (also for EDA). The most widely used is KNN-Medium according to the reviewed literature. This type of configuration uses a not exceptionally large cluster size, which makes it more immune to noise produced by outlier data. In this sense, for arousal classification (see Table 11), the KNN-Weighted algorithm has a precision of 76.53%. Moreover, KNN-Medium can be found in stress classification with an F1-Score of 84.10% and an accuracy of 77%, respectively [27,29] (see Table 12). Moreover, the different topologies found for emotion classification (see Table 13) are KNN-Fine, KNN-Medium and KNN-Fuzzy with accuracy of 87.7%, 65.0% and 86.6% [43,46]. KNN-Cubic and KNN-Medium have obtained a precision of 87.78% and 91.2%, respectively [79,82], when monitoring dehydration (see Table 17).




4.4.8. Artificial Neural Networks


The perceptron multilayer with backpropagation obtains an F1-score of 82.76% for arousal classification (see Table 11). Three distinct topologies stand out in stress classification (see Table 12), namely, ANFIS networks, recurrent networks (RNN and LSTM) and convolutional networks (CNN-LSTM) with an accuracy of 95%, 95.1% and 91.43%, respectively. Another configuration uses the novel LUCCK method (concave and convex kernel) with a result of 89.23%, in line with those obtained previously. On the other hand, multilayer perceptron is employed in emotion classification (see Table 13). This algorithm varies between 77.3% and 92.8% accuracy [23,53]. In addition, for stress classification (see Table 12), several innovative networks have been used. In this case, a Bayesian network (BPNN) and a probabilistic network (PNN) have been used, yielding results in the same range as more established networks [44,61].



Interesting in the classification of physical pain (see Table 14) is the use of the so-called late-fusion architecture topology [67]; even so, the results are a bit lower than the rest of the convolutional networks, 84.4% against 91.43%. Lastly, let us highlight the use of ANNs in the areas dedicated to monitoring. The LUCKK algorithm is used to monitor sleep and fatigue with a result of 88.3% [81] (see Table 17). In task-oriented applications (see Table 15), Adaboost achieves an accuracy of 99.69%. The three- and five-layer configurations provide a precision of 95.02% and 98.81%, respectively, for multilayer perceptron in the feedforward configuration. One-dimensional convolutional networks (1D-CNN) have also been used with results of 88.74% and 90.54%. Among the less used techniques, extreme gradient boost (XDA), adaptive neurofuzzy approach (ANFIS) and spectro-temporal ResNet have shown results of 94%, 76.7% and 80.0% precision, respectively.




4.4.9. Long Short-Term Memory and Recurrent Neural Networks


In the domain of stress classification, attending to the different configurations, LSTM may be used alone or in other configurations through assembly method. For an LSTM network, the F1-score is 81.4%, while the CNN + LSTM obtains an F1-score of 79.13%. The ANFIS configuration variant gets 95%. Although there is little literature on this type of classifier, it should be regarded as a suitable alternative when using a dataset in the time domain based on the processed electrodermal activity response (  S C R  ).





4.5. Unsupervised Learning Methods


There is truly little literature regarding unsupervised learning methods (see Table 18). Below are the most used methods studied throughout this review and their most important results.



One of the unsupervised learning algorithms used is K-means. This algorithm achieves a precision of 77.5%. The K-medoids approach has also been evaluated to minimise the effects of noise produced in outlier data on a dataset. The result of 75.5% precision is at the same level as those obtained for K-means. Finally, as an alternative method to the previous ones, there are the methods based on self-organising maps (SOMs) within the unsupervised learning techniques. In this case, the results obtained for this classifier are at the same level as the earlier ones (77.5%).





5. Conclusions


This paper has presented a systematic review on the use of physiological signals for arousal detection and classification, focusing on electrodermal activity (EDA) and various machine learning techniques. At first, a total of 228 papers were considered, of which fifty-nine were selected for the in-depth systematic review. These articles provided a global perspective on a specific topic such as the use of EDA, individually or in conjunction with other variables, for the classification of arousal categorisations and related terms using ML techniques.



One aspect that has emerged during this review is the different groups of applications or categorisations found in the search for terms related to arousal detection. The following categories were found: stress detection, emotion classification, physical pain affectation, task-oriented performance, mental/cognitive workload estimation and, finally, a small group of specific applications such as sleep monitoring and dehydration.



Several critical issues have arisen throughout this study that should be kept in mind by researchers interested in signal acquisition in general and EDA processing in particular. The first point to consider is that the classification process must be addressed from the moment the signals are obtained (acquisition process). The signals become useless for further classification without a robust acquisition process. In addition, most of the authors studied in this systematic review underline that this process is not exempt from dealing with signal interference, artefacts and noise. A proper application of the different filters during the pre-processing stage becomes crucial for the following phases. All articles studied on EDA signals emphasise that the signals must go through a deconvolution process for homogenisation and normalisation. The normalisation process makes it possible to use a dataset that has a large amount of data without being affected by race, sex and age. In fact, studies in which there was no deconvolution process have been discarded because of the poor results obtained with any classifier.



Once the signals have been pre-processed, the next important step is to obtain distinctive features. Most authors agree on using different domains, usually the time domain and the frequency domain or a mixture of both in the time-frequency domain. There are also approaches that analyse the shape of the signal (morphological) and others that analyse the signal statistically (statistical features). No one agrees on the number of variables or the minimum number of functions to be used. The general approach is to use several types and fit the model by LDA, PCA or ICA analysis to perform dimensionality reduction.



In addition, two distinct methods have been found for estimating the participant’s emotional state during the review. The first approach aims to use only EDA for detection, while the second is to use EDA signals complemented by other physiological signals such as BVP, ECG and EMG, among others. One of the advantages of using EDA alone is the possibility of incorporating small, non-invasive devices with high autonomy. Another advantage is that the results using only EDA are quite good. In contrast, using more physiological signals offers the advantage of monitoring several types of responses, which provides a better mapping of the subject’s physical, psychological and cognitive state. However, a disadvantage is that the use of different signals makes the system more complex and more difficult to maintain and causes it to have a higher classification computational cost.



Although EDA is a particularly good indicator for the detection of arousal changes in the individual, it has its limitations. As an SNS-dependent variable, several different stimuli can be detected as arousal changes. This is why it should be preferred to use with other physiological signals such as the BVP, among others. Combining the EDA with these signals makes the results more reliable as they respond to various parts of the nervous system.



When considering the classification methods found, most authors favour the use of techniques based on supervised learning. This is largely because the experiments and datasets are labelled for each of the states. For this reason, few articles use unsupervised techniques. Among the supervised learning methods, SVMs and many of the ANN topologies show the best classification results, closely followed by KNN algorithms. For SVMs, those implementing quadratic, cubic and radial kernels outperform with accuracy 85.26%, 82.86% and 82.4%, respectively. ANNs, on the other hand, highlight for their accuracy in different configurations, especially ANN-Adaboost with 99% and different configurations of the multilayer perceptron with 95% and 98% for the three-layer and five-layer sorts, respectively.



The above results would be biased by only looking at the overall results of the classifiers, because the papers used different datasets and experimental conditions. Therefore, we have indicated which classifiers are predominant for each arousal detection category. The most common classifier found is the SVM in the arousal variation detection group. For stress detection, the most used classifier is ANN, closely followed by SVM. The same holds for emotion detection and classification. Similarly, there is a tie between SVM and ANN in the detection and estimation of physical pain. Finally, there is a mix of KNN, SVM, BPNN, LDA and decision trees in the detection of cognitive/mental load, as well as in the rest of the groups.



Our aim has been to acquaint the researcher with the methods of acquiring, processing and extracting features and classifying EDA signals. This gives an overview of the work to be done and the methods that work or do not work successfully. As a conclusion we can state that the use of EDA alone for the detection (and subsequent classification) of arousal is very widespread and very satisfactory results have been achieved. Moreover, its use in combination with other physiological signals and with the help of robust and novel ML techniques has been growing over time. For this reason, arousal classification is being integrated non-invasively into user-centred devices, while at the same time the robustness and accuracy of current systems and applications have been enhanced.
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The following abbreviations are used in this manuscript:



	ACC
	Acceleration



	ACR
	Accuracy



	AHMM
	Auto-hidden Markov Model



	AI
	Artificial Intelligence



	AKAIKE    
	AKAIKE Information Criterion



	AL
	arc length



	ANNs
	Artificial Neural Networks



	AP
	normalised mean power



	AR-HMM
	Auto-Regressive Hidden-Markov Model



	AUC
	Area Under Curve



	BioVid
	BioVid Heat Pain Database



	BPNN
	Bayesian Probabilistic Neural Network



	BVP
	Blood Volume Pressure



	CMax
	Cumulative Maximum



	CMin
	Cumulative Minimum



	CNN
	Convolutional Neural Network



	COVMAT
	Covariance Matrix



	D1
	First Derivative



	D1M
	First Derivative Mean



	D1SD
	First Derivative Standard Deviation



	D2
	Second Derivative



	D2M
	Second Derivative Mean



	D2SD
	Second Derivative Standard Deviation



	DA
	Discriminant Analysis



	DCRM
	Decay Rate Mean



	DCRSD
	Decay Rate Standard Deviation



	DEAP
	Database for Emotion Analysis using Physiological Signal



	DR
	Dynamic Range



	DTs
	Decision Trees



	EC
	Epoch-Capacity



	ECG
	Electrocardiogram



	EDA
	Electrodermal Activity



	EDL
	Electrodermal Level



	EDR
	Electrodermal Response



	EEG
	Electroencephalography



	EL
	Energy to Perimeter Ratio



	EMG
	Electromyography



	EN
	Entropy



	EOG
	Electrooculography



	EP
	Epoch-Peak



	EPC
	Epoch Peak Counter



	FCM
	Four Central Moment



	FFT
	Fast Fourier Transform



	FVCM
	Five Central Moment



	GDA
	Gaussian Discriminant Analysis



	IBR
	Inter-Breath



	IL
	Perimeter to Area Ratio



	IN
	Integral Area



	IRF
	Impulse Response Function



	KNN
	K-nearest Neighbours



	KU
	Kurtosis



	LDA
	Linear Discriminant Analysis



	LOG-LIKE
	Log-likelihood



	LR
	Logistic Regression



	LSTM
	Long Short-Term Memory



	MAHNOB
	Multi-modal Data base for Affect Recognition



	MAt
	Motion Artefact



	Mean
	Mean



	Median-Val
	Median Value



	MedVal
	Median Value



	ML
	Machine Learning



	MLP
	Multilayer Perceptron



	MLT
	Machine Learning Techniques



	MO
	Momentum



	MSSP
	Mean Spectral Components



	NO
	Number of Observation



	NSSCRs
	Frequency Non-Specific of Skin Conductance Response



	P
	Peak



	p-Val
	p-value



	PHVM
	Phasic Value Mean



	PHVSD
	Phasic Value Standard Deviation



	PLoc
	Peak Location



	PMRMSR
	Peak-Magnitude-to-RMS Ratio



	pNN50
	Peaks Intervals Differs 50 ms



	PPT
	Peak to Peak Time



	PUP
	Pupillometry



	QDA
	Quadratic Discriminant Analysis



	RM
	Rise Rate Mean



	RMS
	Root-mean Square Level



	RNN
	Recurrent Neural Network



	ROC
	Receiver Operating Characteristics



	RRSTD
	Rise Rate Standard Deviation



	RSSL
	Root Sum of Squares Level



	SC
	Skin Conductance



	SCL
	Skin conductance Level



	SCR
	Skin Conductance Response



	SD
	Standard Deviation



	SFT
	Sum Fall Time



	SKU
	Skewness



	SOM
	Self-Organising Maps



	SP
	Spectral Power



	SRT
	Sum Rise Time



	SSP
	Sum Spectral Power



	SSPMed
	Median Spectral Power Components



	STM
	Startle Time Mean



	STRMS
	Startle Time Mean



	STRMSOV   
	Startle RMS Overall



	STRMSSD
	Startle RMS Standard Deviation



	STSD
	Startle Time Standard Deviation



	SVM
	Support Vector Machine



	SWE
	Smallest Window Elements



	TMP
	Temperature



	Var
	Variance
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Figure 1. Search strategy. 
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Figure 2. Paper grouping. 
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Figure 3. Usual stages in signal acquisition, pre-processing and processing. 
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Figure 4. Flowchart of the experimental design during raw signal acquisition. 
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Figure 5. Contemporary labelling of electrodermal activity, inspired in [105]. 
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Figure 6. Flowchart of the deconvolution process. 
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Table 1. Paper classification by group.






Table 1. Paper classification by group.





	Arousal
	[15,16,17,18,19,20,21,22,23]



	Stress
	[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]



	Emotion
	[42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64]



	Physical Pain
	[65,66,67,68]



	Task-Oriented
	[69,70,71,72,73,74,75]



	Mental Workload
	[70,76,77]



	Others
	[78,79,80,81,82,83,84,85,86,87]
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Table 2. Bio-signals and their properties.
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	Signal
	Abbrev.
	Ch.
	SF (Hz)
	RF (Hz)
	AL





	Electrocardiogram
	ECG
	1–12
	0.05–150
	250–1K
	0.1–5



	Electromyography
	EMG
	1–32
	25–5K
	512–10K
	0.1–100



	Blood Volume Pressure
	BVP
	1
	0.25–40
	5–500
	−10–10



	Electrooculography
	EOG
	2
	0–100
	1–100
	50–3.5K



	Pupillography
	PUP
	2
	120
	240
	-



	Electroencephalography
	EEG
	1–128
	128–2K
	128–2K
	1–150 mV



	Inter-Breath
	IBR
	1
	1–20
	1–20
	−0.05–0.05



	Acceleration
	Acc
	3
	20–2K
	20–2K
	−1–1



	Skin Temperature
	TMP
	1
	1–200
	2–50K
	−50–50



	Electrodermal Activity
	EDA
	1
	1–16
	16–128
	0–100 μS







Significance Frequency (SF), Channel (Ch), Record Frequency (RF), Amplitude (AL).
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Table 3. Features obtained in the process.
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	Domain
	Features





	Time
	Mean *, SD*, D1*, D2 *, D1M *, D2M *, D1SD *, D2SD *, EDL *



	
	SRT *, SFT, RM, RRSTD, DCRM, DCRSD, RM, PHVM, PHVSD,



	
	RRSTD, DCRM, DCRSD, STM, STSD, STRMS, STRMSSD



	
	STRMSOV, EDL, EDR, CMax *, CMin *, SWE, DR, RMS *,



	
	PMRMSR, RSSL, P, PLoc, PPT, pNN50 *



	Morphological
	NO, EC, EP, EPC, EN, AL *, IN *, AP *, RMS *, IL *, EL *



	Statistical
	M *, Var *, MedVal *, p-Val, AKAIKE, LOG-LIKE, FCM, FVCM



	
	KU *, SKU *, MO *, COVMAT



	Frequency
	SP *, SSP, MSSP *, SSPMed, NSSCRs, FFT *, PSD



	Time-Frequency
	  T  F  F l u x    ,   T  F  F l a t n e s s    ,   T  F  E n e r g y    , TVSymp, MFCC,   E  S h a n n o n  *  ,   E  L o g   







Note: * most used features.
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Table 4. Physiological Signals Used for Arousal Detection.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Chowdhury et al. [15]
	2019
	EDA BVP TMP
	22
	F-score + ML
	



	Greco et al. [16,17,18]
	2014–2019
	EDA
	18–32
	ML Met.
	



	Kelsey et al. [21]
	2018
	EDA
	73
	ML Met.
	



	Khalaf et al. [19]
	2020
	EDA
	260
	ML Met.
	Clustering maps



	Kleckner et al. [20]
	2018
	EDA TMP
	20
	ML Met.
	



	Taylor et al. [22]
	2015
	EDA ECG
	100
	ML Met.
	Wavelet transform



	Zhang et al. [23]
	2017
	EDA BVP TMP
	87
	ML Met.
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Table 5. Physiological signals used for stress detection.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Anusha et al. [24]
	2017
	EDA
	12
	ML Met.
	Stressors in EDA



	Anusha et al. [25]
	2020
	EDA
	41
	ML Met.
	Pre-Surgery stress EDA



	Aristizabal et al. [41] Cho et al. [28]
	2017
	EDA BVP
	12
	ML Met.
	Unsupervised Learning



	Hadi et al. [33]
	2019
	EDA BVP IBR EMG
	59
	ML Met.
	SVM-RBF best perf.



	Jebelli et al. [29]
	2019
	EDA BVP TMP
	10
	ML Met.
	Stress in workers



	Liapis et al. [38]
	2021
	EDA SKT
	–
	ML Met.
	SVM models



	Lee. et al. [40]
	2021
	EDA
	
	ML Met.
	CNN networks



	Martinez et al. [35]
	2019
	EDA BVP IBR
	18
	ML Met.
	Expert system



	Nath et al. [37]
	2021
	EDA + BVP
	41
	ML Met.
	RF, SVM and LR



	Rastgoo et al. [34]
	2019
	EDA ECG
	6
	ML Met.
	LSTM model



	Sanchez-Reolid [26]
	2020
	EDA
	147
	ML Met.
	D-SVM based



	Setz et al. [30]
	2010
	EDA EMG
	33
	ML Met.
	Stress cognitive



	Siddarth et al. [31]
	2020
	EDA BVP EEG
	12
	ML Met.
	LSTM model



	Singh et al. [32]
	2013
	EDA BVP
	19
	ML Met.
	NN topologies



	Wang et al. [39]
	2021
	EDA
	–
	ML Met.
	Ensemble ANN methods



	Zontone et al. [36]
	2022
	EDA+ECG
	18
	ML Met.
	SVM classifier
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Table 6. Physiological signals used for emotion detection.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Al-Machot et al. [42]
	2018
	EDA ECG
	30
	SAM’s + ML
	MAHNOB dataset



	Al-Machot et al. [43]
	2019
	EDA BVP EMG IBR
	30
	SAM’s + ML
	MAHNOB dataset



	Ali et al. [44]
	2018
	EDA BVP TMP
	30
	ML Met.
	MAHNOB dataset



	Anderson et al. [45]
	2017
	EDA BVP EOG
	41
	ML Met.
	Multi-class classifier



	Cavallo et al. [46]
	2019
	EDA BVP EEG
	34
	ML Met.
	Multi-class model



	Fiorini et al. [47]
	2020
	EDA BVP IBR
	50
	SAM + ML
	



	Ganapathy et al. [49]
	2020
	EDA
	32
	ML Met.
	Convolutional Analysis



	Ganapathy et al. [62]
	2021
	EDA
	32
	ML Met.
	CNN multi-scale



	Garcia-Faura et al. [48]
	2019
	EDA
	14
	ML Met.
	



	Greco et al. [50,51]
	2014–2019
	EDA
	18–32
	ML Met.
	



	Jang et al. [52]
	2015
	EDA
	40
	ML Met.
	



	Katsis et al. [73]
	2008
	EDA BVP IBR EMG
	20
	ML Met.
	Automatic method



	Katsis et al. [53]
	2011
	EDA BVP IBR
	5
	ML Met.
	Multi-class classification



	Khezri et al. [54]
	2015
	EDA BVP IBR EMG
	20
	ML Met.
	



	Kim et al. [55]
	2018
	EDA BVP EEG
	30
	ML Met.
	



	Kukolja et al. [56]
	2014
	EDA BVP
	14
	ML Met.
	



	Liu et al. [132]
	2019
	EDA
	21
	ML Met.
	Kappa coefficients



	Liu et al. [57]
	2019
	EDA BVP EMG
	17
	Accuracy
	Markov-Chain Based



	Pinto et al. [58]
	2019
	EDA BVP
	23
	ML Met.
	Multi-class classifier



	Rajendran et al. [64]
	2022
	EDA BVP
	
	ML Met.
	Recurrent NN



	Zhang et al. [60]
	2017
	EDA ACC
	87
	ML Met.
	Unsupervised ML



	Zhao et al. [61]
	2018
	EDA BVP TMP
	32
	ML Met.
	PCA analysis



	Zontone et al. [75]
	2020
	EDA BVP
	18
	ML Met.
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Table 7. Physiological signal used for physical pain detection.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Kong et al. [68]
	2021
	EDA
	10
	ML Met.
	Pain using Heat



	Susam et al. [65]
	2018
	EDA
	34
	ML Met.
	



	Thiam et al. [67]
	2019
	EDA BVP EMG
	87
	ML Met.
	BioVid Database



	Walter et al. [66]
	2013
	EDA ECG EMG EEG
	90
	Statistical
	BioVid Heat Pain Dataset
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Table 8. Physiological signals used in task-oriented experiments.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Bianco et al. [69]
	2019
	EDA BVP IBR
	68
	ML Met.
	Deep classifier



	Ding et al. [70]
	2020
	EDA
	35
	ANOVA + ML
	



	Gjoreski et al. [72]
	2020
	EDA EOG PUPIL
	68
	ML Met.
	



	Momin et al. [74]
	2019
	EDA
	–
	ML Met.
	Task-oriented
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Table 9. Physiological signals used for mental/cognitive workload detection.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Ding et al. [70]
	2020
	EDA
	18
	MLT Met.
	Simulated computed task



	Jimenez-Molina et al. [76]
	2018
	EDA BVP EEG
	61
	MLT Met.
	Web browsing workload



	Lanata et al. [77]
	2017
	EDA IBR ECG
	15
	MLT Met.
	Driving monitoring
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Table 10. Physiological signals used for other physical states detection.
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	Papers
	Year
	Parameters
	Participants
	Evaluation
	Annotations





	Amidei et al. [87]
	2022
	EDA
	9
	ML Met.
	Driver drowsiness



	Chowdhury et al. [140]
	2022
	EDA ACC
	12
	ML Met.
	Epileptic seizure detection



	Hwang et al. [78]
	2017
	EDA
	17
	ML Met.
	Sleep Monitoring



	Hossain et al [84]
	2022
	EDA
	20
	ML Met.
	Artifact detection



	Rizwan et al. [79]
	2020
	EDA
	5
	ML Met.
	Dehydration Detection



	Posada-Quintero [82]
	2019
	EDA ECG
	70
	ML Met.
	Dehydration Detection



	Sadeghi et al. [80]
	2020
	EDA
	41
	ML Met.
	Sleep Monitoring



	Sabeti et al. [81]
	2019
	EDA BVP ACC TMP
	20
	LUCKK
	Sleep Monitoring



	Sandeghi et al. [80]
	2019
	EDA BVP ACC
	20
	ML Met.
	Sleep Monitoring



	Yin. G. et al. [83]
	2022
	EDA
	32
	ML Met.
	Residual Neural Networks
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Table 11. Supervised learning methods for arousal classification.
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	Authors
	MLT
	Type
	Conf.
	Performance *
	Annotations





	Chowdhury et al. [15]
	SL
	SVM
	Radial (RBF)
	   85.20  ( 0 )    3    
	EDA +HR +TMP fusion



	
	SL
	TREE
	RF
	   83.58  ( 0 )    3    
	EDA +HR +TMP fusion



	
	SL
	ANN
	MLP-BP
	   82.76  ( 0 )    3    
	EDA +HR +TMP fusion



	Greco et al. [16,17,18]
	SL
	SVM
	Radial (RBF)
	   69.9  ( 0 )    1    
	EDA + HRV



	Khalaf et al. [19]
	SL
	SVM
	Radial (RBF)
	   76.46  ( 0 )    1    
	



	Kleckner et al. [20]
	SL
	SVM
	–
	   92.0  ( 0 )    1    
	Cohen’s   κ = 0.55  



	Taylor et al. [22]
	SL
	SVM
	Radial (RBF)
	   95.67  ( 0 )    1    
	Binary Artefact detection



	
	SL
	SVM
	Radial (RBF)
	   78.93  ( 0 )    1    
	Multi-class Artifact detection



	Zhang et al. [23]
	SL
	KNN
	Weighted
	   76.53  ( 8.64 )    2    
	ML Met.







Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.
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Table 12. Supervised learning methods for stress classification.
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	Authors
	MLT
	Type
	Config
	Performance *
	Annotations





	Anusha et al. [24]
	SL
	DISC.
	Linear
	   95.1  ( 0 )    1    
	



	Anusha et al. [25]
	SL
	DISC.
	PCA + LDA
	   71.09  ( 0 )    1    
	PCA analysis



	
	SL
	ANN
	ANFIS
	   95  ( 0 )    2    
	ANFIS-Based Short-Term



	Sanchez-Reolid [26]
	SL
	SVM
	Radial
	   83.0  ( 0 )    3    
	



	
	SL
	SVM
	Deep-SVM
	   92.0  ( 0 )    3    
	Deep-SVM ensemble



	Can et al. [27]
	SL
	ANN
	MLP
	   92.15  ( 0 )    3    
	HR + EDA + ACC



	
	SL
	Logistic reg.
	Standard
	   90.19  ( 0 )    3    
	HR + EDA + ACC



	
	SL
	KNN
	–
	   84.10  ( 0 )    3    
	HR + EDA + ACC



	Cho et al. [28]
	SL
	ANN
	K-ELM
	   95.1  ( 0 )    2    
	Feed-forward NN (SLFNs)



	Jebelli et al. [29]
	SL
	SVM
	Medium-Gauss.
	   90  ( 0 )    1    
	



	
	SL
	DISC.
	GDA
	   71  ( 0 )    1    
	Gaussian DA



	
	SL
	KNN.
	Medium
	   77  ( 0 )    1    
	



	Setz et al. [30]
	SL
	SVM
	Quadratic
	   81.3  ( 0 )    1    
	



	
	SL
	DISC.
	Linear
	   82.8  ( 0 )    1    
	



	Siddarth et al. [31]
	SL
	ANN
	CNN-LSTM
	   91.43  ( 5.17 )    1    
	VGG-16 Net + PCA + LSTM



	Singh et al. [32]
	SL
	ANN
	LUCCK
	   89.23  ( 0 )    2    
	Concave and Convex Kernel



	
	SL
	ANN
	LRNN
	   89.23  ( 0 )    2    
	Recurrent NN



	Hadi et al. [33]
	SL
	TREE
	RF
	   91.1  ( 0 )    1    
	



	Rastgoo et al. [34]
	SL
	LSTM
	CNN + LSTM
	   79.13  ( 2.47 )    3    
	Ensemble CNN + LSTM



	
	SL
	LSTM
	LSTM
	   81.4  ( 0 )    3    
	



	Martinez et al. [35]
	SL
	TREE
	DT
	   96.6  ( 0 )    1    
	Decision tree algorithm







Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.













[image: Table] 





Table 13. Supervised learning methods for emotion classification.
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	Authors
	MLT
	Type
	Config
	Performance *
	Annotations





	Al-Machot et al. [42]
	SL
	ANN
	CNN
	   82  ( 0 )    1    
	MAHNOB dataset



	Al-Machot et al. [43]
	SL
	SVM
	Radial
	   63.0  ( 0 )    2    
	Matlab + ML Met.



	
	SL
	KNN
	Medium (k = 3)
	   65  ( 0 )    2    
	Matlab + ML Met.



	Ali et al. [44]
	SL
	ANN
	MLP-BP
	   80.0  ( 0 )    3    
	NN based.



	
	SL
	BPNN
	Bayes
	   89.38  ( 0 )    3    
	Cellular-NN



	Anderson et al. [45]
	SL
	SVM
	Medium-Gauss.
	   83.3  ( 0 )    3    
	Matlab + ML Met.



	
	SL
	TREE
	Bagged
	   78.8  ( 0 )    3    
	Matlab + ML Met.



	Cavallo et al. [46]
	SL
	SVM
	Quadratic
	   89.67  ( 0 )    3    
	Matlab + ML Met.



	
	SL
	SVM
	Radial + PCA
	   82.4  ( 0 )    3    
	Matlab + ML Met.



	
	SL
	KNN
	Fuzzy
	   86.6  ( 0 )    3    
	Matlab + ML Met.



	
	SL
	KNN
	Fine
	   87.7  ( 0 )    3    
	Matlab + ML Met.



	Fiorini et al. [47]
	UL
	K-means
	Standard
	   77.5 ( 2.12 )   
	Standard config.



	
	UL
	K-medoids
	Standard
	   75.5 ( 2.12 )   
	Standard config.



	
	UL
	SOM
	Standard
	   77.5 ( 0.5 )   
	Bi-dimensional map



	Garcia-Faura et al. [48]
	SL
	Logistic Reg.
	ZeroR
	   57.54  ( 0 )    2    
	Zero Regression



	Ganapathy et al. [49]
	SL
	CNN
	MLP-BP
	   71.41  ( 0 )    3    
	NN based.



	Jang et al. [52]
	SL
	DISC.
	DFA
	   84.7  ( 0 )    1    
	Discriminant analysis



	Katsis et al. [53]
	SL
	SVM
	Radial (RBF)
	   78.5  ( 0 )    1    
	10s + 5 emotions



	
	SL
	TREE
	RF
	   80.83  ( 0 )    1    
	10s + 5 emotions



	
	SL
	ANN
	MLP
	   77.33  ( 0 )    1    
	10 s + 5 emotions



	
	SL
	NFS
	Fuzzy Inference
	   84.3  ( 0 )    1    
	10 s + 5 emotions



	Khezri et al. [54]
	SL
	SVM
	Radial
	   82.7  ( 0 )    1    
	



	Kim et al. [55]
	SL
	SVM
	Radial
	   74  ( 0 )    1    
	



	Kukolja et al. [56]
	SL
	ANN
	MLP-BP
	   60.30  ( 0 )    1    
	Baseline EDA



	Liu et al. [57]
	SL
	Markov
	Markov-Chain
	   68.74  ( 7.85 )    1    
	With Baseline



	
	SL
	Markov
	Markov-Chain
	   79.83  ( 5.67 )    1    
	Without Baseline



	Pinto et al. [58]
	SL
	SVM
	Radial
	   69.13  ( 0 )    1    
	



	Patlar et al. [59]
	SL
	Markov
	Auto-Hidden
	   88.6  ( 0 )    1    
	With LDA + Acc.



	
	SL
	Markov
	Auto-Hidden
	   86.6  ( 0 )    1    
	Without LDA +Acc.



	Rajendran et al. [64]
	SL
	LSTM
	
	   99.0  ( 0 )    1    
	



	Zhang et al. [60]
	SL
	SVM
	Radial
	   91.4  ( 0 )    1    
	Motion Artifact



	
	SL
	TREE
	RF
	   93.5  ( 0 )    1    
	Motion Artifact



	
	SL
	ANN
	MLP-BP
	   92.8  ( 0 )    1    
	Motion Artifact



	Zhao et al. [61]
	SL
	TREE
	Regression
	   73.30  ( 2.99 )    2    
	Matlab + ML Met.



	
	SL
	Naïve-Bayes
	Gaussian
	   70.8  ( 0.53 )    1    
	PCA analysis



	
	SL
	PNN
	Probabilistic
	   71.31  ( 0 )    3    
	Probabilistic NN







Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.
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Table 14. Supervised learning methods for physical pain classification.
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	Authors
	MLT
	Type
	Config
	Performance *
	Annotations





	Susam et al. [65]
	SL
	SVM
	Radial
	   77.6  ( 0 )    1    
	Timescale decomposition (TSD)



	Thiam et al. [67]
	SL
	ANN
	CNN-DL
	   84.40  ( 14.43 )    1    
	Convolutional + Late fusion architecture







Note: 1 = accuracy; 2 = precision; 3 = F1-score; * Mean performance and its standard deviation.
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Table 15. Supervised learning methods for task-oriented applications.
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	Authors
	MLT
	Type
	Config
	Performance *
	Annotations





	Bianco et al. [69]
	SL
	ANN
	1D-CNN
	   88.74  ( 0 )    3    
	Convolutional-NN



	
	SL
	ANN
	1D-CNN-E
	   90.54  ( 0 )    3    
	Convolutional ensemble



	
	SL
	ANN
	Adaboost
	   99.69  ( 0 )    1    
	Adaboost Method



	
	SL
	ANN
	3-NN
	   95.02  ( 6.34 )    2    
	



	
	SL
	ANN
	5-NN
	   98.81  ( 0 )    2    
	



	Ding et al. [70]
	SL
	ANN
	1D-CNN
	   96.4  ( 0 )    1    
	Convolutional-NN



	Gharderyan et al. [71]
	SL
	SVM
	Quadratic
	   90.6  ( 0 )    1    
	Wavelet + features



	
	SL
	CNN
	MLP-BP
	   80.2  ( 0 )    1    
	NN based



	Gjoreski et al. [72]
	SL
	ANN
	XDA
	   94.0  ( 0 )    3    
	Extreme Gradient Boost



	
	SL
	ANN
	CNN-LSTM
	   75  ( 0 )    3    
	



	
	SL
	ANN
	STR-Net
	   80  ( 0 )    3    
	SpectroTemporal-ResNet



	Katsis et al. [73]
	SL
	SVM
	Radial
	   79.3  ( 0 )    1    
	



	
	SL
	ANN
	ANFIS
	   76.7  ( 0 )    1    
	Adaptive Neuro-Fuzzy



	Momin et al. [74]
	SL
	SVM
	Radial
	   82.7  ( 8.9 )    1    
	



	
	SL
	TREE
	Regression
	   90.16  ( 4.65 )    1    
	CART config.



	
	SL
	TREE
	DT
	   91.3  ( 0 )    1    
	ID4-5 config.



	Posada-Quintero et al. [141]
	SL
	KNN
	Medium
	   66.0  ( 0 )    1    
	



	Zontone et al. [75]
	SL
	SVM
	Radial
	   76.72  ( 0 )    1    
	



	
	SL
	ANN
	MLP
	   77.15  ( 0 )    1    
	







Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.
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Table 16. Supervised learning methods for classification of mental/cognitive workload.
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	Authors
	MLT
	Type
	Config
	Performance *
	Annotations





	Ding et al. [70]
	SL
	BPNN
	Bayesian
	   77.80  ( 0 )    1    
	Only physiological



	
	SL
	SVM
	Cubic
	   76.33  ( 0 )    1    
	Only physiological



	
	SL
	KNN
	Weighted
	   75.67  ( 0 )    1    
	Only physiological



	
	SL
	Tree
	Fine
	   73.33  ( 0 )    1    
	Only physiological



	
	SL
	LDA
	–
	   61  ( 0 )    1    
	Only physiological



	Jimenez-Molina et al. [76]
	SL
	ANN
	MLP
	   93.7  ( 0 )    1    
	Combined EDA+EEG+BVP



	Lanata et al. [77]
	SL
	MNC
	–
	   91  ( 0 )    1    
	MNC model







Note: 1 = accuracy; 2 = precision; 3 = F1-score; * Mean performance and its standard deviation.
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Table 17. Supervised learning methods for classification of other states.
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	Authors
	MLT
	Type
	Config
	Performance *
	Annotations





	Amidei et al [87]
	SL
	RF
	RF
	   84.1  ( 0 )    1    
	Driver drowsiness



	Chowdhury et al. [140]
	SL
	SVM
	Rbf
	   86.9   
	Driver drowsiness



	
	SL
	DT
	Bagged
	   90.7   
	Driver drowsiness



	Hwang et al. [78]
	SL
	Disc.
	–
	   65.0  ( 0 )    2    
	Sleep time algorithm



	Rizwan et al. [79]
	SL
	KNN
	Medium
	   87.78  ( 0 )    1    
	Dehydration



	
	SL
	Logistic Reg.
	Standard
	   62.0  ( 0 )    1    
	Dehydration



	Sadeghi et al. [80]
	SL
	TREE
	RF
	   73.0  ( 0.53 )    1    
	PCA analysis



	Sabeti et al. [81]
	SL
	ANN
	LUCCK
	   88.38  ( 5.55 )    1    
	LUCCK Config.



	Posada-Quintero et al. [82]
	SL
	KNN
	Cubic
	   91.2  ( 0 )    1    
	Dehydration







Note: 1 = accuracy; 2 = precision; 3 = F1-score; * Mean performance and its standard deviation.
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Table 18. Unsupervised learning methods for emotion classification.






Table 18. Unsupervised learning methods for emotion classification.





	Group
	Type
	Config.
	Papers
	Precision *
	Annotations





	Emotion
	K-means
	Standard
	[47]
	   77.5 ( 2.12 )   
	Standard configuration



	Emotion
	K-medoids
	Standard
	[47]
	   75.5 ( 2.12 )   
	Standard configuration



	Emotion
	SOM
	Standard
	[47,52]
	   77.5 ( 0.5 )   
	Bi-dimensional map







Note: * Mean performance and its standard deviation.
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