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Abstract: Caenorhabditis elegans (C. elegans) exhibits sophisticated chemotaxis behavior with a unique
locomotion pattern using a simple nervous system only and is, therefore, well suited to inspire simple,
cost-effective robotic navigation schemes. Chemotaxis in C. elegans involves two complementary
strategies: klinokinesis, which allows reorientation by sharp turns when moving away from targets;
and klinotaxis, which gradually adjusts the direction of motion toward the preferred side throughout
the movement. In this study, we developed an autonomous search model with undulatory locomo-
tion that combines these two C. elegans chemotaxis strategies with its body undulatory locomotion.
To search for peaks in environmental variables such as chemical concentrations and radiation in
directions close to the steepest gradients, only one sensor is needed. To develop our model, we first
evolved a central pattern generator and designed a minimal network unit with proprioceptive feed-
back to encode and propagate rhythmic signals; hence, we realized realistic undulatory locomotion.
We then constructed adaptive sensory neuron models following real electrophysiological charac-
teristics and incorporated a state-dependent gating mechanism, enabling the model to execute the
two orientation strategies simultaneously according to information from a single sensor. Simulation
results verified the effectiveness, superiority, and realness of the model. Our simply structured model
exploits multiple biological mechanisms to search for the shortest-path concentration peak over a
wide range of gradients and can serve as a theoretical prototype for worm-like navigation robots.

Keywords: bio-inspired model; autonomous search; undulatory locomotion; Caenorhabditis elegans;
chemotaxis

1. Introduction

Biological systems are important inspirational resources for mobile-robot control re-
search. Even the simplest organisms have unique locomotion patterns and remarkable
spatial orientation abilities, which depend on their powerful nervous systems. The ne-
matode Caenorhabditis elegans (C. elegans) has a small, compact anatomy, a fully mapped
nervous system comprising only 302 neurons [1,2], and a rich behavioral repertoire; thus, it
is an ideal organism for linking neural activity to behavior. ‘C. elegans moves in an undula-
tory fashion by generating sinusoidal dorsoventral bends that propagate from anterior to
posterior; the locomotion is involved in most, if not all, of its behavior. Furthermore, C. ele-
gans exhibits chemotaxis toward numerous environmental cues, including salt; chemotaxis
is the ability to move up (or down) a concentration gradient of a chemical attractant (or
repellent). In C. elegans, chemotaxis is performed using two parallel strategies [3]: klinoki-
nesis and klinotaxis. Klinokinesis [4] is a biased random walk in which sharp turns occur
more frequently in response to a declining (or rising) concentration gradient. The klinotaxis
strategy [3] gradually adjusts the movement direction toward the line of steepest ascent (or
descent) within the gradient. These behaviors can also be important functions for mobile
robots. Chemotaxis-inspired navigation methods can control robots to perform specific
tasks, such as chemical leak location [5,6]; radiation measurement [7]; and environment
monitoring [8]. Worm-like undulation robots can be deployed in certain special scenarios,
such as in pipelines [9] and complex terrain [10,11].
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From an engineering perspective, the C. elegans chemotaxis behavior is attractive
for robotic navigation control. First, this is because the two chemotaxis strategies serve
complementary roles to ensure a short search path. Klinokinesis allows the robot to
use temporal gradients of environmental variables to quickly correct its direction away
from the target, while klinotaxis allows the robot to gradually optimize the path using
spatial gradients to align its movement with the steepest gradient direction. Second,
C. elegans performs chemotaxis only by sensing concentration changes at a single point
in its head, suggesting that a robot could mimic the two chemotaxis strategies with a
single sensor. This is reasonable, especially for small or resource-constrained mobile
robots, as it enables them to make precise steering decisions according to temporal and
spatial gradients while carrying a single sensor. Moreover, the clearly delineated nervous
system of C. elegans provides researchers with the opportunity to study the functional
neural circuits [12–14] and mechanisms underlying these behaviors [15–18]. Therefore,
these behaviors can be replicated using simple models with efficient biological neural
mechanisms, and such models could potentially incorporate these biological methods into
robot control applications.

Several studies have explored navigation models inspired by chemotaxis locomotion
in C. elegans. In early works, researchers [19–21] simulated chemotaxis behavior using
recurrent networks; hence, they explored computational rules and behavioral strategies
for chemotaxis in C. elegans. Additionally, Morse et al. [22] designed an autonomous
robot to perform chemotaxis-like phototaxis behavior under the control of a simulated
neural network. Xu et al. [23] trained dynamic neural networks with single or dual
sensory neurons to perform navigation tasks featuring salt attraction and toxin avoidance,
mimicking the klinokinesis or klinotaxis strategy; subsequently, those researchers added a
speed regulation mechanism to their model [24]. Some studies focused on implementing C.
elegans chemotaxis-inspired contour tracking by designing spiking neural networks [25,26]
and utilizing a neuromorphic processor [27]. However, in the above works, each model
was regarded as a point, and the whole-body movement of C. elegans was ignored. Deng
et al. [28] incorporated the body undulatory locomotion of C. elegans into a navigation model
emulating chemotaxis for the first time; however, the wave propagation was modeled using
an added phase lag term, which was unrealistic, and navigation-induced head deflections
could not be propagated. A follow-up study [29] further incorporated the proprioception
mechanism [15,30], which is a biological mechanism responsible for the propagation of
undulatory waves along the body in C. elegans. Demin et al. [31] and Costalago-Meruelo
et al. [32] both trained neural circuit models and combined physics engines to simulate
chemotaxis and body locomotion in C. elegans.

Existing models typically leverage one strategy only. Most (i.e., [19–29,31]) imitate
klinokinesis; the model decides to turn or continue straight based on the temporal gradients
of the environmental variables only and, therefore, a short search path cannot be guaranteed.
Other models (i.e., [23,24,32]) mimic klinotaxis exclusively; they steer in the correct direction
depending on the spatial gradient perpendicular to their current path, but usually under
the assumption that two sensors are spaced at a certain distance to directly determine
the spatial gradient. However, biological studies [14,33] have found that ASEL and ASER
neurons in C. elegans are responsible for sensing salt, and function by sensing concentration
changes at a single point in the head due to proximity. The state-dependent gating neural
mechanism [34,35] indicates that the klinotaxis steering response of C. elegans relies on the
internal state of the nervous system at the time of the sensory stimulus during undulatory
locomotion. Our previous work [17] further identified this mechanism in a neural model
based on the C. elegans connectome.

Thus, owing to the omission of one chemotaxis strategy, current C. elegans-inspired
navigation models are often unable to use the temporal and spatial gradient information
simultaneously to rapidly search for a gradient source in the environment. In particular,
current models typically lack the ability to capture spatial gradient information with a single
sensor. To address this problem, we designed a bio-inspired network model that integrates the
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two strategies (i.e., klinokinesis and klinotaxis) and body undulatory locomotion of C. elegans
in the context of one sensor. The model exploits the advantages of the complete C. elegans
chemotaxis behavior, aiming to provide an efficient robotic autonomous search scheme and
afford a simple network control prototype for worm-like navigation robots. The proposed
model is a multi-joint rigid link system with a network circuit that controls the joint angles. To
implement complex behavior in this simple model, we simplified the network circuit as much
as possible based on the functional neural circuits of C. elegans and incorporated multiple
biological mechanisms. The main contributions of this study are as follows.

First, a central pattern generator (CPG) was evolved using a genetic algorithm (GA) to
spontaneously generate rhythmic oscillatory signals. Furthermore, a repeating minimal net-
work unit with proprioceptive feedback was designed, which is sufficient to propagate the
undulatory wave from anterior to posterior. As such, the model can perform realistic body
undulatory locomotion during both forward and navigation-induced steering movements;
this behavior was verified through simulation experiments.

Second, dynamic adaptive sensory neuron models were constructed based on the
electrophysiological characteristics of the salt sensory neurons in C. elegans, which convert
information from the sensor into the sensory inputs of the network circuit. Moreover, the
state-dependent gating mechanism was incorporated into the model, thereby realizing
klinotaxis behavior in the context of a single sensor. Klinokinesis behavior is implemented
by fitting a logic function. The model can make steering decisions leveraging the klinotaxis
and klinokinesis strategies simultaneously; klinokinesis allows for rapid steering away
from the target, while klinotaxis continuously adjusts the movement direction toward the
side with the higher concentration. The model was tested in simulations, demonstrating its
stable search for environmental variable peaks in directions close to the steepest gradients
over a wide range of gradients. The search path was significantly shorter than those of
the models employing a single strategy. In addition, the quantitative analysis verified the
realness of the two strategies implemented by the proposed model.

The remainder of this paper is organized as follows. Section 2 details the proposed
methodology; the overall model architecture and biological basis are first introduced and
a detailed description of the sub-network circuits controlling the undulatory locomotion
and navigation behavior is then provided. Section 3 presents the experiment results and
corresponding analyses, and comparative discussion. Section 4 summarizes the study and
suggests future research.

2. Methodology
2.1. Overall Model Architecture and Biological Basis

The overall model architecture consists of a multi-joint rigid link system and a simple
network circuit based on the anatomical structure and functional neural circuits of C. elegans,
as shown in Figure 1. C. elegans is approximately 1 mm long and elliptically cylindrical
in shape. It moves on its side on agar and bends in the dorsoventral plane [36], with
this movement being mediated by a neuromuscular circuit. Its 95 body wall muscles are
arranged along the four body quadrants [37]: the dorsal left, dorsal right, ventral left, and
ventral right (DL, DR, VL, and VR, respectively). Each quadrant contains 24 or 23 muscles,
which are staggered in pairs. Based on its muscle structure, C. elegans was typically modeled
with 11 or 12 segments in previous works [28,29]. Similarly, our model contains 12 rigid
rods of length l, with 11 rotatable joints and 13 nodes, as shown in Figure 1a. Joint 1 controls
the head orientation and Node 1 corresponds to the head tip.

The C. elegans neural circuits for navigation locomotion are well understood. The
motoneurons located in the head and along the ventral neural cord (VNC) drive the
dorsoventral muscles to contract and relax rhythmically, generating undulatory locomotion
with sinusoidal body waves. Laser ablation studies [13] have shown that, among the five
types of VNC motoneurons, the cholinergic B-type excitatory motoneurons are essential for
forward locomotion; these include 11 ventral B-type motoneurons (VB neurons) and seven
dorsal B-type motoneurons (DB neurons) that form neuromuscular junctions with ventral
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and dorsal muscle cells, respectively. The four SMB-class and four SMD-class head mo-
toneurons [12] play important roles in regulating the undulatory amplitude and sharp turns,
respectively, and innervate the head and neck muscles. In the salt-sensorimotor pathway of
C. elegans, asymmetric chemosensory neurons (ASEL/R) [14,33] located in the head sense
salt stimuli in the environment and communicate with motoneurons through interneurons,
inducing head steering. Based on this understanding, we designed a simplified network
circuit, the outputs of which control the joint angles of the rigid link system. As shown in
Figure 1b, the circuit consists of a head circuit responsible for generating undulations and
making navigation decisions, and 10 repeating minimal VNC units responsible for wave
propagation. Because this model is two-dimensional, the muscles degenerate to the dorsal
and ventral muscles (DMs and VMs, respectively). In addition, the head circuit contains a
CPG; however, it is still unclear which neurons belong to the CPG in the head of C. elegans.
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represent sensory neurons, oscillatory neurons, motoneurons, and muscle cells, respectively. The
blue and red lines represent excitatory and inhibitory neural connections, respectively, where the
central pattern generator (CPG) connection polarities were determined through evolution and the
rest were specifically designed. The black lines represent neuromuscular connections.

2.2. Definitions

For clarity, some definitions of the kinematics-related terms used in this study are
shown in Figure 2. Unless otherwise specified, the position and locomotion trajectory of
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the model default to those of the head tip (i.e., Node 1 of the rigid link system). Because
the model performs undulatory locomotion, the translation direction is the forward di-
rection of the model during movement for one cycle. The normal direction is that 90◦

counterclockwise to the translation direction. The instantaneous locomotion direction can
be decomposed into a translation component and a perpendicular component (the same
or opposite to the normal direction). The turning bias is the angle between the current
translation direction and the translation direction after one cycle. Sides D and V correspond
to the left and right sides, respectively, and a left/right sweep corresponds to half a cycle of
movement toward the right/left.
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2.3. Undulatory Control Circuit

The key to realizing undulatory locomotion is the generation and propagation of an
undulatory wave, which requires encoding of rhythmic oscillatory signals in both temporal
sequences and spatial patterns. For simplicity, we designed an undulatory control circuit
in accordance with the biological view [15,38] that a single CPG produces head-bending
waves in C. elegans, and that these waves propagate through body from anterior to posterior
via proprioceptive feedback. Note, however, that the existence of multiple oscillators in the
mid-body VNC motor circuit of C. elegans has been suggested [16,39].

2.3.1. CPG

CPGs are neuronal circuits capable of producing rhythmic outputs without rhyth-
mic inputs, typically as a result of reciprocal inhibitory interactions between neurons.
Biomimetic CPG controllers are often used in rhythmic motion robots [40,41]. In the pro-
posed model, the CPG consists of three interconnected dynamic neurons (i.e., C1, C2, and
C3). In previous models [28,29], a sinusoidal voltage was preassigned to a neuron (i.e., as
an oscillator) and the CPG neuron phases were regulated through neuronal interactions. In
contrast, we made no explicit a priori assumption regarding the way neurons generate oscil-
lations and evolved them to spontaneously generate oscillatory voltages. This mechanism
is more in line with biological reality, and from an engineering perspective, the design of a
specialized neuron with sinusoidal oscillations is not required.

The neurons in the CPG have first-order nonlinear dynamics, which are expressed by
the following first-order ordinary differential equation (ODE):

τi ·
dVi(t)

dt
= −

(
Vi − Erest

i
)
+ ∑

j
wi,j · f

(
Vj + bj

)
, (1)

where Vi(t) denotes the voltage of neuron i at time t, τ is the time constant, and Erest is the
resting potential. The second term on the right is the input current from the other neurons,
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where wi,j represents the connection weight from neuron j to i, b is the constant bias, and
f (·) is a sigmoidal function that expresses the nonlinear transmission from the presynaptic
neurons to the postsynaptic neurons.

In the proposed model, a simple evolutionary algorithm known as the genetic algo-
rithm (GA) [42] evolves the CPG parameters. There are 15 parameters to be determined:
τi [0.05, 2]; wi,j [−10, 10]; Erest

i [−10, 10]; bi [−10, 10] (the values in square brackets are
the ranges). The parameters are encoded as a real-valued vector with a range of [−1, 1],
which corresponds to one individual. The initial population is composed of 500 random
individuals and evolves into a new population generation through crossover, mutation, and
selection operations. During crossover, two individuals are randomly selected as parents
and a new individual, the child, is obtained through two-point recombination. The child is
then mutated by adding Gaussian noise with mean zero and a standard deviation (s.d.)
of 0.2 to each element of the vector. During selection, the parent with the lower fitness is
selected and replaced with the child. If 300 generations are obtained, or the fitness of the
best individual exceeds the threshold, the iteration ends.

The goal of this evolution is for the CPG output neuron C3 to generate a sinusoidal
oscillatory voltage with a cycle of Tosc = 4 s (approximating the C. elegans cycle recorded
in biological data [35]). Therefore, the model employs the fitness function F, which is the
product of multiple components: F = F1 · F2 · F3, in terms of VC3(t), and

F1 = 1−
∣∣∣∣ 1
T
·
∫ T

0
VC3(t)dt

∣∣∣∣, (2)

F2 = fN(max(VC3(t)),−min(VC3(t))), (3)

F3 = fN

(
1
T
·
∫ T

0

∣∣∣∣dVC3(t)
dt

∣∣∣∣dt,
4 ·max(VC3(t))

Tosc

)
, (4)

where T is the time length and fN(x, x0) = (x/x0) · exp(1− x/x0) is a normalization
function that reaches a maximum of 1 at x = x0. Here, F1 is combined with F2 to reward
voltage dynamics with zero mean and with the same positive and negative amplitudes.
Hence, the same left–right sweep amplitude is ensured for the undulatory locomotion; that
is, the translation direction is straight. F3 is an oscillatory criterion that encourages the
voltage change rate to match that of the ideal sinusoidal function, with reference to the
criterion used in [43]. The negative values for these functions are set to zero.

The specific amplitude of the voltage is not specified in the evolution, because the
output strength can be tuned by connection weights. In addition, some evolved solutions
may exhibit damped oscillations that must be re-evaluated over a longer period. Finally,
the best individual with stable oscillation is selected from the multiple solutions evolved
by the GA to form the CPG.

2.3.2. Undulation Generation and Propagation

As shown in Figure 1b, the SMBD and SMBV motoneurons receive antiphase oscil-
latory inputs from neuron C3, with the same connection weight strengths but opposite
algebraic signs. For simplicity, SMBD and SMBV are modeled as neurons with a linear
synaptic transfer function, and their voltage dynamics are expressed by the following ODE:

τSMB ·
dVSMBD/V(t)

dt = −
(

VSMBD/V(t)− Erest
SMB

)
+ wSMBD/V,C3 ·VC3(t)+

wSMB,ASEL ·VASEL(t) + wSMB,ASER ·VASER(t)
(5)

The symbols have the same meanings as in Equation (1), except that the subscripts refer
to different neurons; thus, the definitions are not repeated here. wSMBD,C3 = −wSMBV,C3 > 0,
and the other SMBD and SMBV parameters are set to the same values. Here, we default to
zero sensory input from ASEL/R; this setting is discussed below.
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When affected by oscillatory inputs, SMBD and SMBV generate oscillatory voltages with
opposite phases, which are in turn fed to muscles DM0 and VM0, respectively, via excitatory
neuromuscular junctions. The DM0 and VM0 activation states are expressed as follows:

τA0 ·
dADM0(t)

dt
= −ADM0(t) + wm

M0,SMB ·VSMBD(t), (6)

τA0 ·
dAVM0(t)

dt
= −AVM0(t) + wm

M0,SMB ·VSMBV(t) + wm
M0,SMD ·VSMDV(t), (7)

where Ai(t) denotes the activation state of muscle i at time t and wm
M0,SMB > 0 is the

neuromuscular junction weight from SMBD/V to D/VM0. In addition, VM0 also receives
input from SMDV with wm

M0,SMD > 0; this mechanism is related to the navigation function,
as discussed below.

The angle of Joint 1 is controlled by the difference between the nonlinear outputs of
DM0 and VM0:

OD/VM0(t) = f (AD/VM0(t) + bm
0 ), (8)

θ1(t) = ω0 · (ODM0(t)−OVM0(t)), (9)

where Oi(t) and θ1(t) denote the output of muscle i and the angle of Joint 1 at time
t, respectively; and bm

0 and ω0 are the output bias and steering coefficient of D/VM0,
respectively. In this manner, Joint 1 exhibits rhythmic rotation over time under the control
of the network outputs. An increase/decrease in θ1(t) means that Rod 1 is turning left/right
relative to Rod 2 (i.e., counterclockwise/clockwise).

Biologically, local proprioceptive coupling of adjacent body parts in C. elegans converts
rhythmic motion near the head into bending waves along the body through a cascade of
muscle-to-neuron feedback, with B-type motoneurons transducing the proprioceptive sig-
nals [15]. Therefore, in the proposed model, Joints 2–11 are controlled by 10 repeating minimal
VNC units, each containing a pair of B-type motoneurons and a pair of muscles, where
neurons DBi and VBi (i = 1, 2, . . . , 10) receive feedback currents from the muscles of their
own units and the anterior adjacent units. The voltage dynamics of DB and VB are as follows:

τB ·
dVD/VBi(t)

dt
= −

(
VD/VBi(t)− Erest

B
)
− Ishape

D/VBi(t). (10)

The parameters of all units are the same. Further, Ishape
DBi (t) and Ishape

VBi (t) are the propri-
oceptive feedback currents of DBi and VBi, respectively, and are expressed as follows:

Ishape
DBi (t) = ∑

j=0,1
wshape

j · f
(

pj · θi−j+1(t)
)
·
(

VDBi(t)− Eshape
j

)
, (11)

Ishape
VBi (t) = ∑

j=0.1
wshape

j · f
(
−pj · θi−j+1(t)

)
·
(

VVBi(t)− Eshape
j

)
, (12)

where the terms with j = 0, 1 represent the feedback currents from the considered unit and the
anterior adjacent unit, respectively; wshape is the proprioceptive feedback weight; Eshape is the
reversal potential of the B-type neurons to the feedback inputs; and p is a constant coefficient.

Through substitution of Equation (9), Equations (11) and (12) can be rewritten as

Ishape
DBi (t) = ∑

j=0,1
wshape

j · f
(

qi,j ·
(

ODM(i−j)(t)−OVM(i−j)(t)
))
·
(

VDi(t)− Eshape
j

)
, (13)

Ishape
VBi (t) = ∑

j=0,1
wshape

j · f
(

qi,j ·
(

OVM(i−j)(t)−ODM(i−j)(t)
))
·
(

VVi(t)− Eshape
j

)
, (14)

where qi,j = pj ·ω0 for i = 1 and qi,j = pj ·ω1 for i > 1. Here, ω1 is the steering coefficient of
DMi and VMi (i > 1).
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Similar to Equations (6), (8) and (9), the voltages of DBi and VBi (i = 1, 2, . . . , 10) affect
the activation states of DMi and VMi, respectively, and their output differences control the
angle θi+1(t). Thus,

τAmi ·
dAmD/VMi(t)

dt
= −AmD/VMi(t) + wmAmi ,B ·VD/VBi(t), (15)

OD/VMi(t) = f (AD/VMi(t) + bm
1 ), (16)

θi+1(t) = ω1 · (ODMi(t)−OVMi(t)). (17)

The angles of all joints have been determined at this stage. The Joint 1 angle is
determined by the CPG rhythm, and the angles of the other joints are determined by the
outputs of the corresponding VNC units. Influenced by the feedback current, the joint-angle
oscillation controlled by the output of each VNC unit is the same as that of its anterior
joint angle, but with a certain phase lag; therefore, soon after the anterior rod turns, the
posterior rod is forced to turn in the same direction. In this manner, the rigid link system
has a sinusoidal wave shape, and the shape changes with time.

2.4. Navigation Control Circuit

The proposed model simulates chemotaxis behavior in C. elegans, utilizing parallel
strategies (i.e., klinokinesis and klinotaxis) to navigate based on information from a single
sensor. To develop our model, we first constructed sensory neuron models to process the
sensor concentration information. We then designed the navigation control circuit (i.e., the
head circuit) to make steering decisions in accordance with a concentration peak search. In
the designed circuit, the sensory neurons communicate directly with SMBD, SMBV, and
SMDV, which in turn connect to DM0 and VM0. Hereafter, the chemical concentration is
taken as a representative environmental variable.

2.4.1. Adaptive Sensory Neuron Models

Electrophysiological recordings [33] have shown the following characteristics of two
salt sensory neurons in C. elegans: (S1) ASEL and ASER in C. elegans act as ON and OFF
cells, respectively, in response to increases and decreases in salt concentration, respectively.
(S2) The ASEL/R voltage response peak increases with an increase of the up/down step
amplitude of concentration and tends to saturation. Following this characteristic, we
constructed ASEL and ASER models using a simple conductance-based approach.

The ASEL/R dynamics is expressed by the following ODE:

τASE ·
dVASEL/R(t)

dt
= −

(
VASEL/R(t)− Erest

ASE
)
− gASEL/R(t) ·

(
VASEL/R(t)− Eext

ASE
)
, (18)

where Eext
ASE is the ASEL/R reversal potential to the external input. Further, gASEL/R(t)

denotes the ASEL/R conductance at time t, which is determined by the concentration
information. All constant parameters of the ASEL and ASER neurons are equal.

For ASEL, gASEL(t) is derived as follows:gASEL(t) = gmax · tanh
(

a·|∆C(t)|
1+b·CN(t)

)
, i f ∆C(t) > 0

τg · dgASEL(t)
dt = −gASEL(t), otherwise,

(19)

where gmax is the maximum conductance; τg is the delay time constant of the conduc-
tance; a, b > 0 are two constant coefficients; and ∆C(t) = C(t) − C(t− ∆t) represents
the concentration difference between two consecutive samples, where C(t) represents the
instantaneous concentration detected at time t and ∆t represents the sampling interval. The
hyperbolic tangent function (tanh(·)) ensures conductance saturation.

The sensory neurons of C. elegans can change their sensitivities to adapt to an environ-
ment in which they have lived for some time [44]; however, this characteristic has not been
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incorporated into previous navigation models inspired by C. elegans. In the present model,
CN(t), a term representing the historical average absolute concentration difference over the
past N s is introduced, which is expressed as follows:

CN(t) =
1
N
·

t

∑
t′=t−N

∣∣∆C
(
t′
)∣∣. (20)

This term allows sensory neurons to have an adaptive characteristic: (S3) sensory neurons
can adaptively modulate their response sensitivities to gradients according to the local gradient
amplitude detected over a recent period; the sensitivity is high when the amplitudes of the
recently detected gradient are small; and decreases when the recent gradient amplitudes are
large. Thus, the model can operate effectively over a wide range of gradients.

Consequently, when there is no concentration gradient, the ASEL conductance is
zero by default. When a positive gradient is detected, the conductance becomes positive,
activating ASEL; after the gradient disappears, the conductance value gradually returns to
zero and the ASEL voltage gradually returns to the resting potential (Eext

ASE = 0 mV here).
As regards ASER, the dynamic equations of its conductance gASER(t) obey a set of similar

equations to Equations (19) and (20), with the replacements L→ R and ∆C(t) > 0→ ∆C(t) < 0;
hence, ASER responds only to concentration decreases.

2.4.2. Klinotaxis Control Circuit

According to the state-dependent gating mechanism [17,34,35], klinotaxis in C. elegans
may depend on the alternating sensitivities to sensory inputs of neural outputs responsible
for controlling dorsal and ventral turns during sinusoidal locomotion. We designed the
klinotaxis control circuit based on this neural mechanism, in which SMBD and SMBV
receive sensory inputs and coordinate with DM0 and VM0 to regulate steering.

A negative bias bm
0 with a large absolute value is set for DM0 and VM0, and shifts

their outputs toward the lower saturation region owing to the nonlinear sigmoidal function
(see Equation (8)). Figure 3 shows the dynamics of the klinotaxis control circuit in the
absence of a sensory input. The antiphase voltages of SMBD and SMBV drive the activation
states of DM0 and VM0 to undergo antiphase oscillations, and the outputs of DM0 and
VM0 alternately saturate. During the half period when the SMBD/V voltage is small, the
D/VM0 output is saturated to zero, where the output is insensitive to the input. As such,
DM0 and VM0 form a state-dependent gating.
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solid-colored curves are the projections of three-dimensional (3D) curves onto each plane.

In the presence of sensory input and when a concentration increase/decrease is
detected during undulatory locomotion, the perpendicular component direction relative
to the instantaneous locomotion direction is the side with higher/lower concentration.
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Therefore, the model should steer in the same/opposite direction to the perpendicular
component of the instantaneous direction. This suggests that ASEL and ASER should
have antagonistic effects on the neural output; therefore, we set wSMB,ASEL < 0 and
wSMB,ASER > 0.

The above two designs ensure two key features of the klinotaxis behavior, respectively:
(f1) When the same concentration change is detected during the right and left sweeps,
opposite steering is induced (i.e., state dependence), and (f2) when concentration changes
with opposite polarity are detected at the same locomotion phase, opposite steering is
induced (i.e., sensory dependence).

Figure 4 shows how the control circuit yields a steering decision corresponding to
klinotaxis behavior when a concentration increase or decrease (an up or down step, re-
spectively) is detected at two different locomotion phases. The up/down step evokes a
continuous voltage response from ASEL/R over a certain timescale, which is transmitted by
motoneurons; this response yields a subsequent significant decrease/increase in the output
of the sensitive muscle and an almost constant output of the saturated muscle. Therefore,
the difference between the dorsal and ventral output decreases/increases, causing a de-
crease/increase in the bending angle of the subsequent undulatory locomotion, which has
a duration of approximately half a cycle. As a result, the trajectories are biased toward
the same/opposite side of the perpendicular component. Figure 5 shows the cumulative
changes in the subsequent outputs of DM0 and VM0 induced by applying an up or down
step at each locomotion phase. When a concentration step is detected at a phase with a
larger perpendicular component (such as phases c and e), the difference between the result-
ing cumulative differences of the dorsal and ventral muscle outputs is larger, indicating
that the steering amplitude is larger. For phases where the perpendicular component is
zero (phases d and f ), the difference between the resulting cumulative differences of the
dorsal and ventral muscle outputs is approximately zero; therefore, almost no steering is
induced. Furthermore, for the right sweep (phases between 0.5π and 1.5π), the change in
amplitude of ODM0 exceeds that of OVM0, and the reverse for the left sweep; that is, the
steering is reversed for the right and left sweeps. Consequently, the circuit can correct the
model direction according to gradients in the normal direction throughout the locomotion;
hence, the model steers to the side with the higher concentration.
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Figure 5. Cumulative differences in D/VM0 output induced by application of an up (a); or down
(b) step at each locomotion phase, where phase points c and e, respectively, correspond to phases c
and e in Figure 4. The black dashed lines represent the shape of the locomotion trajectory.

2.4.3. Klinokinesis Control Circuit

In the proposed model, steering mimicking klinokinesis behavior is mediated by an
SMDV motoneuron, the dynamic equation of which is shown below.

τSMDV ·
dVSMDV(t)

dt
= −

(
VSMDV(t)− Erest

SMDV
)
− wSMDV,ASER · f (VASER(t)) · (VSMDV − ESMDV,ASER), (21)

where wSMDV,ASER and ESMDV,ASER are the connection weight from ASER to SMDV and
the corresponding reversal potential, respectively.

In this study, the SMDV response voltage was designed to fit the logic function shown in
Figure 6 through the parameter settings. This approach is similar to that in the literature [29].
The klinokinesis-related steering depends on the negative temporal gradient; therefore, the
SMDV response voltage is a function of the ASER voltage. When a positive gradient is
detected, ASER has no sensory response (VASER = 0 mV). This implies that the model
is moving toward the increased concentrations and the model therefore does not need to
turn. Therefore, SMDV does not generate a voltage response (VSMDV = 0 mV) and does not
transmit a turning signal to VM0. However, when a negative gradient is detected, the ASER
response voltage activates SMDV, which in turn increases the activation state and output
of VM0 (see Equation (7)); thus, the model turns right. The greater the deviation between
the movement direction and direction of the concentration peak, the larger would be the
amplitude of the negative gradient detected and the stronger would be the extent to which
the model should correct the direction; accordingly, the SMDV voltage response should be
large to send a large turning signal. Therefore, the SMDV voltage amplitude is proportional to
that of the ASER voltage and tends to be saturated, enabling the model to correct the direction
according to the deviations from the peak direction while preventing oversteering.
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3. Simulation Results and Discussion

To verify the effectiveness of the proposed model, we tested its undulatory locomotion
behavior without sensory input and its autonomous search behavior under simulated
scenarios with concentration gradients. Then, we observed the shape of the link system
during the steering behavior and quantitatively analyzed the search trajectories. In the
simulation experiments, the model was assumed to have l = 0.1 mm and a constant-
velocity v = 0.25 mm/s based on data for real C. elegans. Except for the CPG parameters,
the parameters in the network circuit were determined by trial and error. All experiments
were conducted using Python 3. 8, and the ODEs were solved by Euler integration with a
0.01-s step.

3.1. Rhythmic Patterns of CPG and Joint Angles

Figure 7 shows the voltage dynamics of the CPG neurons, obtained from our sim-
ulations. Through the neuron interactions, the C3 neuron, as the CPG output neuron,
generated an approximate sinusoidal oscillatory voltage with a 4-s period and the same
positive and negative amplitudes. In the absence of sensory input, the oscillatory voltage
of C3 (processed and transmitted by the head network circuit) caused the Joint-1 angle
to vary periodically, being centered at zero with the same period, as shown in Figure 8a.
Figure 8b shows the changes in all joint angles over time. All joint angles exhibited the
same rhythmic oscillation pattern, but the oscillation of each joint (except Joint 1) had a time
lag of approximately Tosc/10 compared with that of its anterior adjacent joint. Through
backward propagation, the oscillation of the Joint-11 angle was almost synchronized with
that of Joint 1.
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3.2. Forward Undulatory Locomotion Behavior of Model

We observed the behavior of the model under the rhythmic pattern shown in Figure 8.
Figure 9a shows the positions and shapes of the rigid link system at 1-s intervals during
the first period. We initialized the t = 0 s position as (0, 0) and ϕ1(0) = 150◦. In terms
of spatial mode, θ1(0) = 0◦ and the joint angles from front to back increased, decreased,
and increased again, thereby shaping the link system as a sinusoidal wave, similar to the
real-world behavior of C. elegans. As time progressed, Joint 1 rotated periodically and
the model moved forward in a fluctuating pattern, forming a sinusoidal trajectory. The
posterior joints and, hence, the shape of the link system, varied accordingly. For example,
the model was transformed from the left sweep at t = 0 s to the right sweep at t = 1 s and
2 s. After one period (at t = 4 s), the trajectory drew a sine curve with a complete period
and the system shape returned to that at t = 0 s. The system wavelength during locomotion
was approximately 0.83 times the system length (measurements of real C. elegans on agar
fall in the range of 0.4 to 0.9 [43]). Additionally, from the trajectory in Figure 9b, the model
traveled straight with an undulating pattern in the absence of sensory input, because the
positive and negative swing amplitudes of θ1 were consistent (Figure 8a).
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3.3. Adaptive Responses of Sensory Neuron Models

ASEL was selected as an example to verify whether the responses of the sensory
neuron model met the desired characteristics given in Section 2.4.1. As shown in Figure 4a,
a concentration up step evoked ASEL depolarization, and its voltage trace exhibited a rapid
increase and subsequent slow decay. According to the design of sensory neuron models, the
ASEL response amplitude is influenced by the concentration difference ∆C(t) and historical
average absolute concentration difference CN(t) (refer to Equations (19) and (20)). Figure 10
shows the ASEL response voltage peak as a function of ∆C(t) and CN(t), from which the
following observations can be drawn:

• ASEL responded to concentration increases (∆C(t) > 0) only, as required in S1;
• When positive ∆C(t) was small, the ASEL response amplitude was small. The ASEL

voltage peak increased with the increase in ∆C(t) for any given CN(t) (Figure 10b,c).
This indicates that for the local scenario or the scenario with small gradient differences
(i.e., the model did not need to re-adapt to the new gradient range), the ASEL response
amplitude was proportional to the detected temporal gradient, as required in S2. On
this basis, the model can control the steering amplitude by comparing magnitudes of
the same-polarity gradients;
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• When CN(t) was small, the ASEL response amplitude was large, implying that ASEL
was highly sensitive to the gradient. The ASEL voltage peak decreased with the
increase in CN(t) for any positive ∆C(t) (Figure 10b,d). This indicates that the ASEL
response was adaptive to the local environment. When exposed to large concentration
gradients for a period, the sensory neurons became less sensitive to the gradients.
Thus, the characteristic in S3 was satisfied, allowing the model to operate effectively
across a wide range of gradients.
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In conclusion, the response dynamics of ASEL satisfied the desired characteristics.
Similar characteristics were observed for ASER, except that the sensory neuron responded
to concentration decreases as designed; these results are not reported here.

The responses of sensory neurons reflect only the temporal gradients scaled by CN(t).
Klinokinesis-related steering depends solely on the scaled temporal gradient, according to
the ASER response. Meanwhile, klinotaxis-related steering depends on the normal gradient,
i.e., gradients in the normal direction (Figure 2), according to the ASEL and ASER responses.
This is achieved via the state-dependent gating mechanism, that is, the klinotaxis control
circuit combines the network internal state with the sensory neuron responses to implicitly
extract the normal gradient information corresponding to the current locomotion phase
(see Section 2.4.2 for details).

3.4. Autonomous Search Behavior of Model

To verify that the proposed model can search for a concentration peak in a direction
close to the steepest gradient, we performed simulations with concentrations having
Gaussian distributions.
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First, we observed the model trajectories in a scenario where the concentration peak
position was (0, 0) and the maximum concentration was 50 mM. The model began moving
from different initial positions and with different initial orientations. For comparison, we
eliminated one strategy (klinokinesis or klinotaxis) from the proposed model, and the same
experiments were also performed for models utilizing a single strategy. The navigation
method of the model with klinotaxis eliminated is similar to that of the previous mod-
els [29]. Figure 11 shows several trajectories for the three models (two parallel strategies,
klinokinesis only, and klinotaxis only) obtained for the same initial conditions. Comparison
of these trajectories yielded the following observations:

• For various initial conditions, the three models moved forward in a sinusoidal fashion
and successfully reached the concentration peak; however, their search trajectories varied;

• As regards the search trajectories of the klinokinesis-only model (Figure 11b), for the
positive gradient direction, the model did not steer, even if there was a deviation from
the peak direction. The model corrected the locomotion direction by right turns only
when negative gradients were encountered; this behavior is consistent with that of the
previous models [29]. In other words, the model could only ensure that it was moving
close to the peak, but not that it was using a short search path. In such cases, a large
locomotion undulation is advantageous, because a large swing facilitates detection of
a negative gradient and adjustment to a more favorable direction. However, a large
swing also yields a longer path and may increase the search time;

• As regards the search trajectories of the klinotaxis-only model (Figure 11c), this model
continuously and gradually veered toward the side with higher concentration through-
out the undulatory locomotion. The orientation adjustment of the model was slightly
slower than that of the klinokinesis-only model for negative gradients (compare the
beginnings of trajectories whose beginning position are (20, −10) in Figure 11b,c).
Because the ASEL responses reduced the Joint-1 oscillation amplitude when the model
moved toward positive gradients, the model swing amplitude decreased; hence, the
search paths were shortened;

• Our model, which integrates both strategies, yielded significantly shortened search
paths (Figure 11a). Regardless of the initial position and orientation, the model reached
a peak in a direction close to the steepest gradient. If the search began in a direction
away from the peak, the klinokinesis strategy allowed the model to make sharp turns
to rapidly correct the direction. Meanwhile, the klinotaxis strategy allowed the model
to gradually optimize the locomotion direction according to the deviation between the
instantaneous and peak directions.
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Figure 11. Search trajectories of three models in a given scenario: (a) the model exploiting parallel
(klinokinesis and klinotaxis) strategies; (b) the klinokinesis-only model; and (c) the klinotaxis-only
model. The four trajectories of each model have different initial positions and orientations, and the
initial conditions were the same for all models. The color of each position in the scenario represents
the concentration of that position (marked by the color bar in (a)).
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Two metrics were used to measure the model search performance: the arrival rate and
SSR. The arrival rate is the ratio of the number of times the model reached the concentration
peak to the total number of experiments, where the peak point is defined as a circular area
within 1 mm of the maximum concentration point in the simulations. The SSR is the ratio of
the model search time to reach the concentration peak to that corresponding to the shortest
path (i.e., the linear distance from the initial position to the concentration peak position).

We then tested the three models in 10 scenarios with different gradient ranges. The
maximum concentration for each scenario varied from 50 to 1400 mM. In each scenario,
the models began moving from four different initial positions with 10 different initial
orientations; that is, each model was run 40 times per scenario for a total of 400 times across
all scenarios. Figure 12 shows the average search performance results obtained for the
three models in each scenario, and Table 1 lists the average results for the models across all
experiments. The following conclusions were drawn:

• The arrival rates of all three models were 1, indicating that the models reached the
concentration peaks in all experiments regardless of whether they used single or
parallel strategies. In addition, the standard deviations of the SSRs for all models were
very small, indicating that the models had robust search performance for different
scenarios and initial conditions;

• Compared with the models using a single strategy, the average SSR of the model using
parallel strategies was the smallest and close to 1, indicating that the search paths were
effectively shortened by simultaneous use of the two complementary strategies, and
that the search paths were approximated to the optimal paths although the model
moved along a waveform path instead of a straight line;

• The average SSR of the klinokinesis-only model was much larger; this was because
it did not optimize the path in the direction of the positive gradients and the swing
amplitude of the undulatory locomotion was large (see Figure 11b).
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Each point represents the average SSR for the model searches, where the model started from different
initial positions and orientations.

Table 1. Search performance results for different models across all experiments (±standard deviation).

Strategies Arrival Rate Average SSR

Klinokinesis only 1.0 1.4922 ± 0.07309
Klinotaxis only 1.0 1.1642 ± 0.09253

Parallel
(klinokinesis &

klinotaxis)

Adaptive 1.0 1.0964 ± 0.05162
Non-adaptive (a = 15) 0.8 1.2474 ± 0.32701
Non-adaptive (a = 30) 1.0 1.4388 ± 0.36184
Non-adaptive (a = 45) 1.0 1.5720 ± 0.43820
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Additionally, to verify the role of dynamic adaptation in the sensory neuron models, we
conducted the same experiments on a non-adaptive model. In that case, the sensory neuron
models did not contain the normalization term with respect to CN(t). That is, the ASEL con-
ductance activation term in Equation (19) was modified to gASEL(t) = gmax · tanh(a · |∆C(t)|) ,
and the corresponding ASER term was similarly modified. The coefficient, a, took on three
different values. Comparison of the results presented in Figure 12 and Table 1 reveals that
the non-adaptive models had comparable search performance to that of the adaptive model
within a narrow gradient range, and that the search performance deteriorated seriously beyond
this range. For small a in particular, the response amplitudes of the sensory neurons in the
small-gradient scenario were too small, which may have caused a model search failure (i.e.,
the arrival rate was not 1). In contrast, the adaptive sensory neuron models could dynamically
adjust their response sensitivities to the gradient according to the gradient amplitude in the
preceding time period, so that the model maintained stable search performance in all scenarios.

3.5. Analysis of Search Behavior

The shape of the rigid link system during the steering induced by the navigation
behavior was observed. Figure 13 shows shapes at five different stages as the model
underwent an Ω turn (a sharp turn performed by C. elegans). When the head turned, the
rigid link system bent accordingly (i.e., at times t2, t3, and t4). The link system shape at
each stage was close to the corresponding trajectory shape. After the head returned to a
normal swing, the entire link system returned to the normal sinusoidal undulation (i.e., at
time t5). This suggests that the rigid link system could be shaped similarly to the body of a
real worm during steering.
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Figure 13. Shape of rigid link system during steering. The upper left diagram shows the model
trajectory, and the shapes of the rigid link system at the position indicated by the five colored points
are shown in the similarly colored sub-graphs. The pentagram represents the head tip (i.e., Node 1 of
the system).

Additionally, to verify that the navigation decisions generated by the model conformed
to the two chemotaxis strategies of C. elegans, we performed a quantitative analysis of all
trajectories of the models using klinokinesis only and klinotaxis only. First, we calculated
and statistically analyzed the relationship between the turning biases and normal con-
centration gradients in the klinotaxis-only trajectories; the result are shown in Figure 14a.
The average turning bias was positively correlated with the normal gradient, which is
consistent with the statistical results of biological experiments [3]. This suggests that the
proposed model mimicked the klinotaxis behavior of real-world C. elegans, steering to the
side with the higher concentration. We then calculated the relationship between the turning
bias and the temporal gradient of the concentration in the klinokinesis-only trajectories,
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as shown in Figure 14b. For positive gradients, the turning bias was almost zero. For
negative gradients, the turning bias was negative (i.e., the model turned right) and the
amplitude was proportional to the gradient amplitude. These results have the same trend
as biological results [3,4]. In addition, comparing Figure 14a,b, the steering amplitude
obtained for the klinokinesis behavior was greater than that for the klinotaxis behavior;
this is also consistent with biological findings [3].
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3.6. Discussion

This section highlights the differences and advantages of our study compared with
previous related research. Most existing navigation models inspired by C. elegans chemo-
taxis aim to realize the chemotaxis behavior and, on this premise, explore the underlying
mechanisms from the biological perspective; therefore, less attention is paid on the search
performance of models from an engineering perspective. In contrast, the purpose of this
study is to replicate the complete chemotaxis behavior of C. elegans, including parallel
chemotaxis strategies and body movement, in the context of one sensor, and to provide an
easy-to-implement and good-performance model for worm-like robot navigation control.
Table 2 lists the capabilities and properties of related navigation models in the literature
and those of the proposed model, which are summarized as follows:

(1) Previous models typically adopted one strategy to perform navigation tasks. In
contrast, our model combines two strategies to improve the search performance;

(2) Our model can realize the klinotaxis behavior with a single sensor by incorporating the
state-dependent gating mechanism, whereas previous models that mimic klinotaxis
typically require two sensors to obtain the required spatial gradient;

(3) Our model can realize body undulatory locomotion during steering by incorporating
a proprioceptive mechanism, similar to the model in [29]. However, the structure of
our model is simpler;

(4) Our model exhibits adaptive sensitivity to the concentration gradient to cope with sce-
narios with various gradient ranges, a function which is absent in the previous models.
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Table 2. Comparison of capabilities and properties of models in the literature and in our study (
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similar to that of this model. We reproduced the model in [29] using the original logic 
function and parameters. We tested our model against this model according to the sce-
nario used in [29]; the peak concentration and diffusion range in this scenario are very 
small. Figure 15a,b show the search trajectories of our model and the model from [29], 
respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
respectively. Multiple experiments were conducted with four different initial positions 
and 10 different initial orientations; the average SSRs were 1.961 for the reproduced model 
and 1.486 for our model. The ratio of average SSR of the reproduced model to that of our 
model was 1.32, which was close to the results in Section 3.4; as shown in Table 1, the ratio 
of average SSR of the klinokinesis-only model to that of our model was 1.36. In addition, 
the reproduced model needed to normalize the concentration gradient in the scenario in 
advance, while, in practice, it is difficult to obtain a priori knowledge of the gradient range 
of an unknown scenario. 
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of average SSR of the klinokinesis-only model to that of our model was 1.36. In addition, 
the reproduced model needed to normalize the concentration gradient in the scenario in 
advance, while, in practice, it is difficult to obtain a priori knowledge of the gradient range 
of an unknown scenario. 
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similar to that of this model. We reproduced the model in [29] using the original logic 
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small. Figure 15a,b show the search trajectories of our model and the model from [29], 
respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
respectively. Multiple experiments were conducted with four different initial positions 
and 10 different initial orientations; the average SSRs were 1.961 for the reproduced model 
and 1.486 for our model. The ratio of average SSR of the reproduced model to that of our 
model was 1.32, which was close to the results in Section 3.4; as shown in Table 1, the ratio 
of average SSR of the klinokinesis-only model to that of our model was 1.36. In addition, 
the reproduced model needed to normalize the concentration gradient in the scenario in 
advance, while, in practice, it is difficult to obtain a priori knowledge of the gradient range 
of an unknown scenario. 
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small. Figure 15a,b show the search trajectories of our model and the model from [29], 
respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
respectively. Multiple experiments were conducted with four different initial positions 
and 10 different initial orientations; the average SSRs were 1.961 for the reproduced model 
and 1.486 for our model. The ratio of average SSR of the reproduced model to that of our 
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of average SSR of the klinokinesis-only model to that of our model was 1.36. In addition, 
the reproduced model needed to normalize the concentration gradient in the scenario in 
advance, while, in practice, it is difficult to obtain a priori knowledge of the gradient range 
of an unknown scenario. 
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For further comparison, we conducted a comparative experiment between our model 
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locomotion of the body, and the implementation approach of klinokinesis in our model is 
similar to that of this model. We reproduced the model in [29] using the original logic 
function and parameters. We tested our model against this model according to the sce-
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small. Figure 15a,b show the search trajectories of our model and the model from [29], 
respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
respectively. Multiple experiments were conducted with four different initial positions 
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of average SSR of the klinokinesis-only model to that of our model was 1.36. In addition, 
the reproduced model needed to normalize the concentration gradient in the scenario in 
advance, while, in practice, it is difficult to obtain a priori knowledge of the gradient range 
of an unknown scenario. 
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respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
respectively. Multiple experiments were conducted with four different initial positions 
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advance, while, in practice, it is difficult to obtain a priori knowledge of the gradient range 
of an unknown scenario. 
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respectively. Multiple experiments were conducted with four different initial positions 
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of an unknown scenario. 

  
(a) (b) 

Costalago-Meruelo et al. [32]

Sensors 2022, 22, x FOR PEER REVIEW 20 of 23 
 

 

Table 2. Comparison of capabilities and properties of models in the literature and in our study (  ᤰᤱ 
represents the presence of this capability or property in the model). 

Articles 

Capabilities Properties 

Klinokinesis Klinotaxis 
Body Undu-
latory Loco-

motion 

Single Sen-
sor 

Adaptive 
Sensitivity 

to Gradients 

Xu et al. [23,24] 
Model 1  ᤰᤱ    ᤰᤱ  
Model 2   ᤰᤱ    

Santurkar et al. [25]  ᤰᤱ    ᤰᤱ  
Shukla et al. [26]  ᤰᤱ    ᤰᤱ  
Kishore et al. [27]  ᤰᤱ    ᤰᤱ  

Costalago-Meruelo et al. [32]   ᤰᤱ  ᤰᤱ   
Deng et al. [28]  ᤰᤱ   ᤰᤱ  ᤰᤱ  
Deng et al. [29]  ᤰᤱ   ᤰᤱ  ᤰᤱ  

Our study  ᤰᤱ  ᤰᤱ  ᤰᤱ  ᤰᤱ  ᤰᤱ 

Additionally, in simulations, the proposed model exhibited realistic undulatory lo-
comotion and a stable search for the shortest-path concentration peak over a wide range 
of gradients. Moreover, the simulation results have demonstrated that the search perfor-
mance of our model combining two strategies is significantly better than that of models 
using a single strategy. 

For further comparison, we conducted a comparative experiment between our model 
and the model in [29]; this model also uses a single sensor and incorporates undulatory 
locomotion of the body, and the implementation approach of klinokinesis in our model is 
similar to that of this model. We reproduced the model in [29] using the original logic 
function and parameters. We tested our model against this model according to the sce-
nario used in [29]; the peak concentration and diffusion range in this scenario are very 
small. Figure 15a,b show the search trajectories of our model and the model from [29], 
respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
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respectively. The trajectory patterns were consistent with those shown in Figure 11a,b, 
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4. Conclusions

To incorporate new biological methods into mobile-robot control, a neural network-
based autonomous search model with undulatory locomotion inspired by C. elegans was
proposed in this study. The developed model is the first to simultaneously mimic the body
locomotion and the klinokinesis and klinotaxis strategies of C. elegans with a single sensor,
to search for environmental variable peaks in directions close to the steepest gradients.
Multiple biological outcomes are incorporated into the model so that the simple structure
is sufficient to achieve complex C. elegans-like behavior. Specifically, the CPG and pro-
prioceptive mechanism of C. elegans are incorporated in the model to achieve undulatory
locomotion, as well as the electrophysiological characteristics of salt-sensory neurons and
the state-dependent gating mechanism; the latter is included to achieve klinotaxis behavior
in the case of a single sensor. In addition, klinokinesis behavior is realized by fitting a logic
function. In this study, the effectiveness and realness of the proposed model were demon-
strated through simulation experiments. The model exhibited stable search performance
across a wide range of gradients and outperformed models using a single strategy, while
exhibiting realistic body undulation.

In summary, the developed model constitutes a simple bio-inspired network control
prototype for worm-like navigation robots. In future work, extending the model by includ-
ing more navigation strategies will contribute to addressing possible problems in complex
scenarios, such as lack of gradient or local extremum. Additionally, the developed model
will be considered for application in actual robots.
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