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Abstract: Robust and automated image segmentation in high-throughput image-based plant phe-
notyping has received considerable attention in the last decade. The possibility of this approach
has not been well studied due to the time-consuming manual segmentation and lack of appropriate
datasets. Segmenting images of greenhouse and open-field grown crops from the background is a
challenging task linked to various factors such as complex background (presence of humans, equip-
ment, devices, and machinery for crop management practices), environmental conditions (humidity,
cloudy/sunny, fog, rain), occlusion, low-contrast and variability in crops and pose over time. This
paper presents a new ubiquitous deep learning architecture ThelR547v1 (Thermal RGB 547 layers
version 1) that segmented each pixel as crop or crop canopy from the background (non-crop) in real
time by abstracting multi-scale contextual information with reduced memory cost. By evaluating over
37,328 augmented images (aug1: thermal RGB and RGB), our method achieves mean IoU of 0.94
and 0.87 for leaves and background and mean Bf scores of 0.93 and 0.86, respectively. ThelR547v1
has a training accuracy of 96.27%, a training loss of 0.09, a validation accuracy of 96.15%, and a
validation loss of 0.10. Qualitative analysis further shows that despite the low resolution of training
data, ThelR547v1 successfully distinguishes leaf/canopy pixels from complex and noisy background
pixels, enabling it to be used for real-time semantic segmentation of horticultural crops.

Keywords: dilated convolution; multi-branch; asymmetric; semantic segmentation

1. Introduction

Traditional horticultural crop monitoring requires manual observation, which is time-
consuming and labor-intensive. The measurement process is also prone to errors due to
subjective perceptions of crop variety, shape, texture, color, etc. [1,2]. However, timely
monitoring of the growth, water stress status, nutrient or health status of cultivated crops is
necessary to increase crop yields, reduce production costs, and reduce environmental impact.

Pixel-level image classification techniques based on semantic segmentation help to ob-
tain information and locations of object boundaries in images for precise applications [3,4].
Although multiple authors have reported multiple successes, manual image labelling for
semantic segmentation is a challenging task in agriculture, and the core constraints can
be listed as follows. (1) Crop varieties, colors, and shapes vary at different growth stages.
(2) The inter-row space of field crops is sometimes filled with weeds or non-crop-related
elements, leading to additional problems in image segmentation tasks. (3) The presence
of diverse spatial patterns of background (soil, floor coverings) or scenes in greenhouses
and open fields due to farmers’ agricultural practices, wetting and drying, and other fac-
tors. (4) Diverse and dynamic environmental conditions (summer, winter, dry, wet, fog),
geographic location (highlands, lowlands, plains), uncontrolled lighting (sunny, cloudy,
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daytime, night), and shadows contribute significant challenges to image acquisition and of-
ten produce noisy images. This situation we can observe in thermal images; when adjacent
pixels between the crop and background are too similar, it is difficult to extract vegetation
from the background. (5) The pixel imbalance between the target crop and the background
in the image is challenging for automatic segmentation of different objects.

We propose an encoder–decoder architecture based on multi-branch dilated convo-
lutions with traditional convolution and pooling layers as means to address the above
constraints. Dilated convolution improves feature extraction performance by maintain-
ing spatial resolution during down sampling tasks [5]. The depth of the network allows
the extraction of low-level and high-level features at different depths of the network,
thereby improving the accuracy of segmentation with noisy images [6]. The designed net-
work is evaluated on classic pretrained networks such as deeplabv3plusInceptionResNetv2,
deeplabv3plusXceptionNet, deeplabv3plusResNet50, and deeplabv3plusMobilenetv2, which
have been considered as references. The main contributions of this study are listed as fol-
lows. (1) A new CNN architecture is organized into multi-branch parallel blocks for
abstracting low-level, medium-level, and high-level features. Furthermore, we concatenate
these low-level and high-level features to enrich semantic information, thereby improving
segmentation accuracy. (2) The concatenation of dilated convolutional layers with different
dilation rates placed in parallel expands the receptivity of multi-scale CNNs by maximizing
the spatial feature information, preventing gridding issues, and extracting small regions
of the input image more accurately. (3) The network can leverage contextual information
and perform semantic segmentation in real time at 60 frames per second (fps) by using
minimum GPU memory.

2. Related Works

Recently, pixel-level image classification tasks such as scene recognition and semantic
segmentation continued to develop and great progress has been made inspired by the
combination of deep convolution layers with dilated convolution and pooling layers and
substituting fully connected layers [7]. However, training deep learning is associated with
various problems, such as gradient instability problems (requiring hyperparameter optimiz-
ing), the trend of deep networks that converge with network accuracy beginning to drop
significantly, and training error increases [8,9]. A deeper residual-based network, ResNet,
identifies low-resolution, high-level features, compensates for the vanishing gradient issue,
and demonstrates excellent training results learned from shallow-depth, high-resolution,
low-level features [10,11]. MobileNetV2 uses depthwise-separable convolutions and a lin-
ear bottleneck with an inverted residual structure, which reduces computational complexity
and allows its use in mobile devices [12]. It has been reported that resampling an input
image with multiple filters can capture useful image features at multi-level scales with
complementary effective fields of view [8]. DeepLabV3plus introduces variable dilation
rate-based dilated convolutions to increase receptive field, preserve resolution, and extract
multi-scale information. Furthermore, concatenating low-level and high-level feature maps
can achieve excellent semantic results [13]. Others utilize data augmentation techniques
to preserve the geometry and physical appearance of plants in images and improve leaf
segmentation accuracy results [14]. Inception-Resnet-v2 combines convolutional filters of
multiple sizes through residual connections, achieving very good performance at relatively
low computational cost, without the degradation problems caused by deep structures [15].
XceptionNet achieves even better results on larger datasets, inspired by the inverse se-
quence of operations in the depthwise-separable convolution (spatial convolution carried
out separately over each input channel) preceded by a point-specific convolution and the
removal of nonlinearity between convolutional layers [11,16].

3. Materials and Methods

This section describes the method proposed in this paper. Section 3.1 describes image
acquisition and data strategy. Section 3.2 introduces asymmetric multi-branch module of the
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ThelR547v1. Section 3.3 presents the dilated (atrous) convolution and overall architecture
of ThelR547v1. Section 3.4 details the network’s training parameters. Section 3.5 describes
the evaluation metrics for comparative analysis.

3.1. Image Acquisition and Dataset Preparation

In this study, Tomato, and lettuce leaves were photographed from several platforms
(random—handheld, fixed, aerial—DJI Mini 2, DJI Inspire 2, Da-Jiang Innovations Science
and Technology Co., Shenzhen, China), RGB mobile devices (Samsung SCV33, Samsung
SCV36, Suwon, Korea; Apple iPhone SE, iPhone 8, Cupertino, CA, USA), RGB cameras,
namely Sony (ILCE-6000, DSC-RX100M6, Tokyo, Japan), Nikon Corporation (Nikon D200,
Nikon D300, Nikon D700, Nikon D7100, Tokyo, Japan), and LWIR (spectral range 8~14 µm)
thermal cameras (Thermo FLEX F50B-ONL, RX450, Nippon Avionics Co., Ltd., Yokohama,
Japan). All thermal RGB images were stored with an emissivity of 0.98 98 [17]. All images
(thermal RGB, RGB) taken from top and back, close-up full viewing angle, distance (from
0.2 m to 20 m), and simulating the real situation to the greatest extent. The specification
and diverse spatial pattern of collected images for dataset preparation are shown in Table 1
and Figure 1, respectively.

Table 1. Specification of collected images.

Type of Imaging Platform Aspect Ratio Pixel Resolution Imaging Condition

RGB 1:1, 16:9, 4:3

6000 × 4000, 4928 × 3264,
4288 × 2848, 4256 × 2832,
4032 × 1960, 3872 × 2592,
3648 × 3648, 3024 × 4032,
3024 × 3024, 2160 × 2160,

1960 × 4032, 720 × 720

Heterogeneous illumination
and background variation

Thermal RGB 1:1 240 × 240, 480 × 360
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experiments, we collected color and monochrome thermal image datasets (Figure 1), as 
some thermal cameras use a monochrome filter to visualize noisy images, but sometimes 
there is still noise on some monochrome thermal images. We then denoised them by ther-
mal image processing software (InfReC Analyzer NS9500STD for F50, Nippon Avionics 

Figure 1. Diverse spatial patterns of input images.

A total of 18,664 images (thermal RGB, RGB) resized to 240 × 240 × 3 pixels to confirm
the desired network input image size, with a thermal RGB to RGB ratio of 95:5. For our
experiments, we collected color and monochrome thermal image datasets (Figure 1), as
some thermal cameras use a monochrome filter to visualize noisy images, but sometimes
there is still noise on some monochrome thermal images. We then denoised them by
thermal image processing software (InfReC Analyzer NS9500STD for F50, Nippon Avionics
Co., Ltd.). A time consuming and tedious manual image labeling was performed with
a large number of datasets. Image Segmenter (Image Processing and Computer Vision
Toolbox, MATLAB R2022a, MathWorks, Natick, MA, USA) was used to classify the pixels
of each image into two classes: leaf/leaves/canopy (255) and background (0) and stored
in a binary image. A schematic diagram of image dataset preparation and analysis (from
dataset preparation to network training, model evaluation, and prediction) is shown in
Figure 2a. As shown in Figure 2b, the frequency levels (ratio of leaf to background) of
leaf and background pixels in the total image dataset are 70% and 30%, respectively. In
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this experiment, we use 60% of randomly selected images (images and binary images) for
training, 20% for validation, and 20% for testing purposes.
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Figure 2. Image dataset preparation approach: (a) schematic diagram and (b) frequency level of the
annotated classes.

We randomly augment the training dataset to expand the collected dataset and increase
the type of variations to avoid model overfitting, reduce sensitivity, improve robustness, and
enhance generality and performance. Tables 2 and 3 show the property of the augmented
images and number of image datasets used for deep learning analysis. We augment the
training image dataset for performance studies (Aug1) and comparative analysis (Aug2),
as shown in Table 3.

Table 2. Augmentation option for comparative analysis.

Augmentation Option

Aug1 Aug2

RandXreflection: 1 RandXreflection: 1
RandYreflection: 1 RandYreflection: 1

RandRotation: [−10 10]
RandScale: [1 1]

RandXScale: [1 1.2]
RandYScale: [1 1.2]
RandXShare: [−2 2]
RandYShare: [−2 2]

RandXTranslation: [−3 3]
RandYTranslation: [−3 3]
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Table 3. The number of image datasets for deep learning analysis.

Original Dataset Image Dataset Binary Dataset Total Number of Images
Augmented Dataset

Aug1 Aug2

Training 18,664 18,664 37,328 111,984 410,608
validation 6221 6221 12,442 - -

Test 6221 6221 12,442 - -

We further investigated ThelR547v1 segmentation performance using an independent
public dataset of 512 potted Arabidopsis thaliana images with 2 classes (leaf and background)
downloaded from the IPPN plant phenotype dataset (leaf segmentation challenge compo-
nent of the CVPPP workshop: CVPPP2017LSC-2017 and CVPPP2017LCC-2017 [2].

3.2. Asymmetric Multi-Branch Module

The proposed network is based on asymmetric multi-branch modular type (Figure 3a–d)
for achieving high accuracy with less inference time and low latency in real-time scenarios
and is shown in Figure 1. We use standard convolution, dilated convolution (standard
convolution in the encoding layer), transpose convolution (standard convolution in the
decoding layer), and standard convolution in the classification layer. The output of these
layers normalizes using Batch (BN), Group (GN), and Instance (IN) layers for channel
shuffling. Furthermore, these activate using ReLU and Swish activation layers throughout
the network for achieving high accuracy with less inference time and low latency in real-
time scenarios. The advantage of these types of structures is that we can add or remove
these modules depend on data size, computing capability, and semantic goal complexity.
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3.3. Image Acquisition and Dataset Preparation

Standard convolution with dilation rate dr = 1 is described in Equation (1) [18], as
shown in Figure 4a. Dilated convolution is a technique that involves pixel skipping while
expanding the kernel (input) by inserting gaps between its consecutive pixels (Chen et al.,
2017). Figure 4b,c illustrate the dilated convolution with dr = 2 and dr = 3, as explained in
Equation (2) (modified from Yu and Koltun [18]). It allows us to view the larger receptive
field and maintain high resolution of the output image with less computational cost.

Cxp = ∑
s+t=p

(( f (s)× k(t)) + b) (1)

Dxp = ∑
s+tr=p

(( f (s)× k(tr)) + b) (2)
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Here f is a discrete function, t is the discrete filter of size (2r + 1)2 of the kernel k,
p represents the position, f(s) is the input, r is the dilation rate (r = 1, 2, 3, . . . ), tr denotes the
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kernel size (2rxdr + 1)2, Cxp denotes output from convolution operation, Dxp is the output
from dilated convolutional operation, and b is the bias.

The concatenation layer based on depth, concatenates different level of feature maps
along the channel dimensions [19] to increase the feature maps depth information. The
concatenation layer based on addition and multiplication add or multiply multiple fea-
ture inputs from multiple layers into an element, respectively. Concatenation of dilated
convolution using depth function, multiplication function, and add function is defined in
Equations (3)–(5).

Cd,p = Contact
[(

Dxp
)

1,
(

Dxp
)

2,
(

Dxp
)

3, . . . . . .
]

(3)

Cm,p = Contact
[(

Dxp
)

1 ×
(

Dxp
)

2 ×
(

Dxp
)

3, . . . . . .
]

(4)

Ca,p = Contact
[(

Dxp
)

1 +
(

Dxp
)

2 +
(

Dxp
)

3, . . . . . .
]

(5)

Transposed convolution operation is described below (modified from Dumoulin and
Visin [20])

TrCxp = ∑
s+t=p

((
f (s) + 2Pad − k(t)

s
+ 1
)
+ b
)

(6)

Here Pad is the padding (same), s denotes the stride (s = 1, 2, 3, 5), TrCxp is the size of
output.

We employ max pooling to reduce network parameters, ensure feature locations,
reduce rotation invariance, and overfitting problems [21,22]. The max pooling layer follows
the depth-based and addition-based concatenation layer. This layer extracts the maximum
value from the outputs of the depth (Equation (3)) and addition-based (Equation (5))
concatenation layers using pooling window sizes of 3 × 3 and 5 × 5, respectively. It can be
defined as:

Maxp = maxW(t)× Cd,p (7)

Maxp = maxW(t)× Ca,p (8)

where Max denotes the max pooling layer, and W(t) is the pooling size.
We place a normalization layer (Batch, Group, Instance) between the standard convo-

lution/group convolution/dilated convolution/transposed convolution/addition-based
concatenation layer and the ReLU/Swish layer, aiming to achieve the following advan-
tages: (1) channel shuffling that stabilizes and increases the learning process by reducing
the intra-network covariate shift (ICS); (2) reducing the number of epochs to converge in
fewer epochs; (3) learning more non-linear information from the feature map, resulting in
qualitative prediction result; and (4) allowing smaller batch sizes to run them on computers
with lower computing power and memory.

The most used activation function in this network is ReLU. However, considering the
weakness of the ReLU due to the neuron death problem (when ReLU converts the value of
each input element less than zero to zero, weights cannot be updated by backpropagation),
we placed the Swish layer [23] in the shallow, middle and deep depths of the network.
These non-linear activation functions (ReLU, Swish) are applied to the output of the
normalization layer (Batch, Group, Instance) and addition-based concatenation layer. This
has the following advantages: (1) ReLU prevents the vanishing gradient problem in deep
depth of the network layers, allowing the model to learn faster with higher accuracy [24].
(2) It prevents neuron dead issues and introduces strong regularization effects to speed up
network convergence, effective for optimization, and generalization.

A 2D crop layer [25] cropping feature maps at a rectangle scale size of [1 1]. The
output of this layer then goes through a dropout layer, which randomly turns off 20% of
dead neurons to prevent the network from overfitting. We randomly turn off 20% of dead
neurons in the middle depth of the encoding and decoding layers to optimize the model
learning efficiency. The last convolution layer has two sparse feature maps, each with a
pixel size of 240 × 240. The output of the last convolution layer is fed to the Softmax layer
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through a ReLU activation layer. The output of the Softmax function is a probability score
between 0 and 1 for each pixel mapped to the crop and background, respectively. The final
layer of the classification layer is binary cross-entropy, which produces a categorical label
(leaf/canopy or background) for each pixel and computes the prediction error rate as a loss
function. The characteristics of the ThelR547v1 architecture are shown in Table 4.

Table 4. Characteristics of the ThelR547v1 network architecture.

Layers Name Number of Layers Layers Name Number of Layers

Image input 1 ReLU 143
Convolution 92 Swish 23

Group convolution 2 Concatenation (depth) 16
Dilated convolution 15 Concatenation (addition) 19

Transposed convolution 59 Concatenation (multiplication) 2
Batch normalization 157 Dropout 3
Group normalization 4 Crop 2D 1

Instance normalization 4 Softmax 1
Max pooling 4 Binary-cross entropy 1

The network has dived into four layers: encoding layer (shallow depth: step 1 to
step 7; middle depth: step 1 to step 8), decoding layer (middle depth: step 9 to step 11;
deep depth: step 1 to 8), classification layer (deep depth: step 9 to 12), and output layer
(deep depth: step 13 to 14), as shown in Figure 5. In shallow depth (marked in light grey
color), middle depth (marked in light red color), and deep depth (marked in light green
color) network extracts low-level, medium-level, and high-level features. Summary of the
ThelR547v1 configuration is presented in Table 5.
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Figure 5. Layer spatial size-based approach of the proposed ThelR547v1 network.

Table 5. Summary of the ThelR547v1 configuration.

Network Depth Network Layers Filter Size Dilate Rate Stride Rate Max Pooling Size

Shallow depth Encoding 3 × 3; 1 × 3; 3 × 1; 2 × 3 1,1; 2,2 1,1;1,2; 2,1; 2,2 3 × 3
Middle depth Decoding 3 × 3; 1 × 3; 2 × 2; 3 × 2; 2 × 3 1,1; 2,2; 3,3 1,1; 2,1; 1,2; 2,2 5 × 5

Deep depth Decoding 3 × 3; 2 × 2; 3 × 1; 2 × 3 1,1 1,1; 2,2; 5,5; 1,5;
5,1; 1,2; 2,1; 3,3 -

Classification 3 × 3 1,1 1,1 -
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3.4. Network Training Parameters

The network was trained on a computer environment MATLAB(R) R2022a with Image
Processing Toolbox, Computer Vision Toolbox, Statistics and Machine Learning Toolbox,
Deep Learning Toolbox, and Parallel Computing Toolbox. Table 6 presents the hardware
and software configuration for deep learning tasks.

Table 6. Configuration parameters.

Configuration Item Parameter Value

CPU Intel(R) CPU Core (TM) i9-10850K CPU @ 3.60 GHz (Cores 10) × 20 processors
GPU NVIDIA GeForce RTX 3060 PCI-E with GDDR6 (1.78 GHz), 2 × 12 GB

Compute Unified Device Architecture (CUDA) 3584 cores, 12.74 TFLOPS
Software acceleration Nvidia CUDA 11.2

Memory 128 GB
Hard disk Samsung SSD 970 EVO Plus (500 GB)

Operating system Windows 10 pro (64-bit)

The network weight used optimized by an adaptive moment estimation (ADAM)
optimizer to solve sparse gradients on noisy datasets [26]. The training parameters applied
to train ThelR547v1 were validation frequency: 50; validation patience: inf; mini-batch size:
30/50; batch normalization statistics: population; maximum epoch: 5/10/15/20/25/30;
mini-batch size: 12/22/32/42/52; learn rate schedule: piecewise; shuffle: every epoch;
initial learn rate: 1 × 10−3; learn rate drop period: 10; learn rate drop factor: 0.1; L2
regularization: 1 × 10−4; epsilon: 1× 10−8; squared gradient decay factor: 0.999; gradient
decay factor: 0.9; gradient threshold method: l2norm; gradient threshold: inf; sequence
length: longest; sequence padding value: 0; sequence padding direction: right; dispatch
in background:0; reset input normalization:1; and output network: last iteration. Due to
insufficient computing power, we limit the maximum size of mini-batch to 52.

3.5. Evaluation Metrics for Comparative Analysis

There are several performance metrics such as training and validation accuracy (TA
and VA show the percentage of correctly classified pixels, %), global accuracy
(GA—measuring ratio of correctly classified pixels to the total number of pixels, 1—best
value), mean accuracy (MA—measuring the percentage of correctly identified pixels for
each class, 1—best value), confusion metrics, loss (TL for training loss and VL for validation
loss, 0—best value), pixel/object-wise mean intersection over union index (mean IoU
measures the amount of overlap per predicted class, 1—best value), mean weighted IoU
(measure the average IoU of each class, 1—best value), BF score (Boundary F1 measures
the quality of the predicted boundary with the ground truth boundary, 1—best value), etc.
which are used for quantifying ThelR547v1 prediction efficiency. The same performance
metrics were evaluated on modified pretrained Deeplabv3plus networks (InceptionRes-
Netv2, XceptionNet, ResNet50, and MobileNetv2) for transfer learning efficiency analysis.
However, we visualize network activations to demonstrate how the network transforms the
input information to detect features such as colors, edges in shallow layers, and complex
features in deep layers. To do this, we compute the network layer activations and visualize
the activations at different depths of the network layer. In addition, we use the gradient-
weighted class activation mapping (Grad-CAM) proposed by Selvaraju et al. [27] that
sums the weights of each feature map from the last convolution layer, assigns each neuron
a probability score by computing the gradient (Equation (9)), and produces a heatmap
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(Equation (10)) with the same size as the feature map to visualize the location of the largest
gradient as the output for a given input class.

wc
k =

Global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂Yc

∂Ak
i,j︸ ︷︷ ︸

Gradients via
backpropagation

(9)

where c is the target class. Ak
i,j represents the activation map. i,j denote spatial location. w

is the class weight. Yc represents probability of the target class c. Z is the total number of
pixels in the feature map.

Heatmapc
Grad−Cam = ReLU

(
∑
k

wc
k × Ak

i,j

)
︸ ︷︷ ︸
linear combination

(10)

Here ReLU captures features with positive contributions to the target class and output
is a heatmap.

4. Results
4.1. Quantitative Evaluation

The effect of mini-batch size on ThelR547v1 accuracy and loss is investigated, as shown
in Figure 6. The maximum value for training and validation accuracy was obtained when
the mini-batch size was 52. The minimum value for training and validation loss was also
obtained with mini-batch size 52. Hence, the 52nd mini-batch size is chosen as the optimal
training parameter. From Figure 6a,b, it is clear that as the mini-batch size increases from
12 to 32, the network performance increases at a higher rate. However, as the mini-batch
size increases from 32 to 52, the network performance increases at a lower rate or barely
improves.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 22 
 

 

a heatmap (Equation (10)) with the same size as the feature map to visualize the location 
of the largest gradient as the output for a given input class. 

𝑤 = 1𝑍 𝜕𝑌𝜕𝐴 ,   
   (9)

where c is the target class. 𝐴 ,  represents the activation map. i,j denote spatial location. 
w is the class weight. Yc represents probability of the target class c. Z is the total number 
of pixels in the feature map. 𝐻𝑒𝑎𝑡𝑚𝑎𝑝 = ReLU 𝑤 × 𝐴 ,

 
 (10)

Here ReLU captures features with positive contributions to the target class and out-
put is a heatmap. 

4. Results 
4.1. Quantitative Evaluation 

The effect of mini-batch size on ThelR547v1 accuracy and loss is investigated, as 
shown in Figure 6. The maximum value for training and validation accuracy was obtained 
when the mini-batch size was 52. The minimum value for training and validation loss was 
also obtained with mini-batch size 52. Hence, the 52nd mini-batch size is chosen as the 
optimal training parameter. From Figure 6a,b, it is clear that as the mini-batch size in-
creases from 12 to 32, the network performance increases at a higher rate. However, as the 
mini-batch size increases from 32 to 52, the network performance increases at a lower rate 
or barely improves. 

  
(a) (b) 

Figure 6. Relationship between mini-batch and network performance. (a) Mini-batch size vs. 
accuracy. (b) Mini-batch size vs. loss. 

Next, we investigate the effect of the number of epochs on pixel-level classification 
of thermal RGB and RGB images by ThelR547v1, Deeplabv3plusInceptionResNetv2, 
Deeplabv3plusXceptionNet, Deeplabv3plusResNet50, and Deeplabv3plusMobileNetv2 
networks. ThelR547v1 achieves a maximum training accuracy of 96.27% and 94.43% using 
the aug1 and aug2 datasets, respectively, with a mini-batch size of 52 and a maximum 
epoch of 30, as shown in Figure 7a (aug1) and 7b (aug2). Under the same conditions, 
Deeplabv3plusInceptionResNetv2 achieves the nearest training accuracy of 96.15% and 
94.00% using aug1 and aug2 datasets, respectively. ThelR547v1 also achieves maximum 
validation accuracy of 95.88% and 95.31%, respectively, as shown in Figure 7c (aug1) and 
7d (aug2). 

Figure 6. Relationship between mini-batch and network performance. (a) Mini-batch size vs. accuracy.
(b) Mini-batch size vs. loss.

Next, we investigate the effect of the number of epochs on pixel-level classifica-
tion of thermal RGB and RGB images by ThelR547v1, Deeplabv3plusInceptionResNetv2,
Deeplabv3plusXceptionNet, Deeplabv3plusResNet50, and Deeplabv3plusMobileNetv2
networks. ThelR547v1 achieves a maximum training accuracy of 96.27% and 94.43% using
the aug1 and aug2 datasets, respectively, with a mini-batch size of 52 and a maximum
epoch of 30, as shown in Figure 7a (aug1) and 7b (aug2). Under the same conditions,
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Deeplabv3plusInceptionResNetv2 achieves the nearest training accuracy of 96.15% and
94.00% using aug1 and aug2 datasets, respectively. ThelR547v1 also achieves maximum
validation accuracy of 95.88% and 95.31%, respectively, as shown in Figure 7c (aug1) and 7d
(aug2).

ThelR547v1 shows higher mini-batch accuracy of 96.27% and 95.52% using aug1
(Figure 7e) and aug2 (Figure 7f) datasets, respectively. Deeplabv3plusInceptionResNetv2
demonstrated the closest mini-batch accuracy of 96.15% and 95.20% using aug1
(Figure 7e) and aug2 (Figure 7f) datasets, respectively. From Figure 7g (aug1), we can
see that both ThelR547v1 and Deeplabv3plusInceptionResNetv2 achieve a minimum
training loss of 0.09. However, for the aug2 dataset (Figure 7h), ThelR547v1 achieves
a minimal training loss of 0.13, but Deeplabv3plusInceptionResNetv2 achieves a slightly
higher training loss of 0.14 under the same conditions. The minimum validation losses
of 0.10 (Figure 7i) and 0.11 (Figure 7j) are observed on the aug1 and aug2 datasets of
ThelR547v1 and Deeplabv3plusInceptionResNetv2, respectively. In addition, ThelR547v1
and Deeplabv3plusInceptionResNetv2 achieve minimum mini-batch losses of 0.90 and 0.10
using aug1 (Figure 7k) and aug2 (Figure 7l) datasets, respectively.
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However, Figure 7a,c,e,g,i,k and Figure 7b,d,f,h,j,l indicate that network performance
degrades with the aug2 dataset. This response is due to the addition of noise by increasing
dataset through augmentation, as described in Table 3. Finally, it is concluded that the aug1
dataset with a mini-batch size of 52 and a maximum epoch of 30 is effective for network
training.

The order of error rate for each class (leaf and background) is shown in Figure 8
and Appendix A. It can be seen from the confusion chart in Figure 8a that ThelR547v1
achieves higher classification accuracies of 97.99%, 97.98%, and 98.01% for leaf with train-
ing (Figure 8a(i)), validation (Figure 8a(ii)), and test (Figure 8a(iii)) datasets. However,
Deeplabv3plusInceptionResNetv2 has a slightly higher classification accuracy of 98.08% for
leaf with training (Figure 8b(i)), validation (Figure 8b(ii)), and test (Figure 8b(iii)) datasets.
Furthermore, ThelR547v1 exhibits the highest classification accuracy during training
(Figure 8a(i)), validation (Figure 8a(ii)), and test (Figure 8a(iii)) background class, with
91.37%, 91.17%, and 91.20%, respectively.
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Figure 9 shows that ThelR547v1 achieved the highest GA (0.96), MA (0.95), meanIoU
(0.91), weightedIoU (0.92), and meanBFScore (0.89) using a test dataset
(12,442 images). Deeplabv3plusInceptionresnetv2 demonstrates similar meanBFScore
(0.89). Deeplabv3plusXceptionnet and Deeplabv3plusResNet50 score the lowest meanIoU
(0.89). A higher value indicates better network performance.
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Table 7 shows the test results of GA, IoU, and meanBFScore against each individual
class (leaf and background).

ThelR547v1 has a minimum training parameters of 5.4 M and a moderate network
size of 15.4 Mb (Table 8), thus making ThelR547v1 easy to deploy in real-time applications
for autonomous semantic segmentation tasks.
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Table 7. Network overall performance for each individual class prediction (leaf and background).

Network Name
Leaf Background

GA IoU Mean BfScore GA IoU Mean BfScore

ThelR547v1 0.98 0.94 0.93 0.91 0.87 0.86
Deeplabv3plusInceptionresnetv2 0.98 0.94 0.93 0.90 0.86 0.85

Deeplabv3plusXceptionNet 0.97 0.93 0.92 0.89 0.84 0.83
Deeplabv3plusResNet50 0.97 0.93 0.92 0.89 0.85 0.83

Deeplabv3plusMobilenetv2 0.95 0.93 0.92 0.90 0.85 0.84

Table 8. Comparison between the proposed ThelR547v1 and other pretrained networks.

Network Name Network Size, Mb Number of Layers Number of
Parameters, M

Total Number of
Connections

ThelR547v1 15.5 547 5.4 1222
Deeplabv3plusInceptionResNetv2 204 853 71.1 1912

Deeplabv3plusXceptionNet 60.2 205 27.6 444
Deeplabv3plusResNet50 104 206 43.9 454

Deeplabv3plusMobileNetv2 7.4 186 6.7 402

4.2. Qualitative Evaluation

In Figures 10 and 11, we show some examples of qualitative results based on semantic
challenges. The first row in Figures 10a and 11a shows independently collected thermal
color and monochrome RGB (tomato) and RGB test image (tomato, lettuce) datasets under
various conditions (day/night time), respectively. The second to fourth row in Figures 10b–f
and 11b–f display the networks’ (ThelR547v1, Deeplabv3plusInceptionresnetv2,
Deeplabv3plusXceptionNet, Deeplabv3plusResNet50, and Deeplabv3plusMobilenetv2)
predicted ground truth data (binary). These results show that ThelR547v1 is capable of cor-
rectly estimating class boundaries and excluding different types of background noise (soil,
plant factory ground, windows, cover sheet, humans, narrow-leaf grass, etc.) better than
Deeplabv3plusInceptionresnetv2, Deeplabv3plusXceptionNet, Deeplabv3plusResNet50,
and Deeplabv3plusMobilenetv2. This experiment shows that ThelR547v1 can predict any
combination of images with higher accuracy. Therefore, this enables the network to be used
with any type of thermal imaging camera in a real-world environment.

4.2.1. Transfer Learning Performance Evaluation

In this experiment, we show the transfer learning performance of ThelR547v1,
Deeplabv3plusInceptionresnetv2, Deeplabv3plusXceptionNet, Deeplabv3plusResNet50,
and Deeplabv3plusMobilenetv2 trained with the aug1 dataset. Figure 12a(i),b(i),c(i),d(i)
display a low-resolution RGB image from broad-sized to narrow-sized leaves. Manual
ground truth data (binary) in Figure 12a(ii),b(ii),c(ii),d(ii) show two semantic classes (leaf
and background). The differences in ground truth data (binary) predicted by the network
before and after training with the IPPN plant phenotype RGB image dataset are shown in
Figure 12a(iii,v,vii,ix,xi),b(iii,v,vii,ix,xi),c(iii,v,vii,ix,xi),d(iii,v,vii,ix,xi) and Figure 12a(vi,viii,x,xii),
b(vi,viii,x,xii),c(vi,viii,x,xii),d(vi,viii,x,xii), respectively. From Figure 12a(iii,v,vii,ix,xi),
b(iii,v,vii,ix,xi),c(iii,v,vii,ix,xi),d(iii,v,vii,ix,xi), it is clear that before training
Deeplabv3plusInceptionresnetv2, Deeplabv3plusXceptionNet, Deeplabv3plusResNet50,
and Deeplabv3plusMobilenetv2 networks misclassified leaf and background more than
ThelR547v1 network. However, ThelR547v1, after training, classifies and splits both
broad-sized and narrow-sized leaves from their background with higher accuracy, as
shown in Figure 12a(iv),b(iv),c(iv),d(iv) compared with Deeplabv3plusInceptionresnetv2,
Deeplabv3plusXceptionNet, Deeplabv3plusResNet50, and Deeplabv3plusMobilenetv2 in
Figure 12a(vi,viii,x,xii),b(vi,viii,x,xii),c(vi,viii,x,xii),d(vi,viii,x,xii), respectively.
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(d) Deeplabv3plusXceptionNet predicted ground truth image; (e) Deeplabv3plusResNet50 predicted
ground truth image; (f) Deeplabv3plusMobilenetv2 predicted ground truth image.
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Figure 12. Visualized semantic segmentation error using CVPPP2017LCC/LSC-2017 data: (a) broad-
sized leaves of Arabidopsis thaliana; (b) medium-sized leaves of Arabidopsis thaliana; (c) narrow-leaves
of Arabidopsis thaliana; (d) narrowest-leaves of Arabidopsis thaliana.

4.2.2. Activated Feature Map Visualization

Examples of activation feature maps of ThelR547v1 at different depths (shallow,
middle, and deep) for a test image (lettuce, RGB) are shown in Figure 13. The weight
(3 × 3 × 3 × 64) and bias (1 × 1 × 64) as learnable parameters of the first convolution layer
(standard) in shallow depth has a feature map size of 240 × 240 with 64 filters (Figure 13a).
After that, the feature map size is divided into two groups: 30 × 15 and 64 filters, as shown
in Figure 13b (weights and biases are 3 × 3 × 32 × 64 and 1 × 1 × 64, respectively) and
15 × 30, with 64 filters (weights and biases are 2 × 3 × 32 × 64 and 1 × 1 × 64, respec-
tively), as shown in Figure 13c and feed them to standard convolution layers. As shown in
Figure 13d, in the encoding layer at middle depth, the feature map size of the first dilated
convolution layer is 240 × 240, where 16 filters with learnable parameter weights and
biases are 3× 3 × 64 × 16 and 1 × 1 × 16, respectively. The feature map size (15 × 15 × 64),
weights (3 × 2 × 64 × 64), and biases (1 × 1 × 64) of the middle depth dilated convolution
layer are shown in Figure 13e. The last dilated convolution layer in the middle depth
(Figure 13f) has a feature map of size 2 × 2 with 32 filters and weights and biases of
3 × 2 × 32 × 32 and 1 × 1 × 32, respectively.

In the decoding layer of the middle depth, as shown in Figure 13g, the feature map size
of the first transposed convolution layer is 2 × 2 with 64 filters, and the weights and biases
of the learnable parameters are 2 × 2 × 64 × 192 and 1 × 1 × 64, respectively. In deep
depth, as shown in Figure 13h, the feature map produced by the transposed convolution
layer is 8 × 8 in size with 64 filters, and the weights and biases of the learnable parameters
are 3 × 3 × 64 × 128 and 1 × 1 × 128, respectively. The last transposed convolution at the
deep depth of the decoding layer produced a feature map size of 240 × 240 with 32 filters
(Figure 13i) with the weight and bias of learnable parameters being 3 × 3 × 32 × 64 and
1 × 1 × 32, respectively.

Furthermore, in the deeper depth of the classification layer (Figure 13j), the feature
map produced by the standard convolution is 240 x 240 with 64 filters with the weight
and bias of 3 × 3 × 152 × 64 and 1 × 1 × 64, respectively. The output feature map
(240 × 240 × 2) of the final standard convolution of the deep depth classification layer is
shown in Figure 13k. The weights and biases of this layer are 3 × 3 × 16 × 2 and 1 × 1 × 2,
respectively. The softmax in the classification layer shows probability outputs ranging
from 0 (black) to 1 (white), as shown in Figure 13l. The pixel classification layer uses a
cross-entropy loss function to predict the output, which shows the highest and lowest
learnable features in white (leaf) and black (background), as shown in Figure 13m.
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For the RGB image shown in Figure 15a, the shallow depth of the ThelR547v1 mainly 
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Figure 13. Visualization of the network activated feature maps. (a) Shallow depth. (b) Middle depth.
(c) Deep depth. (d) Shallow depth. (e) Middle depth. (f) Middle depth. (g) Middle depth. (h) Deep
depth. (i) Deep depth. (j) Deep depth. (k) Deep depth. (l) Deep depth. (m) Deep depth.

4.2.3. Gradient-Based Class Activation Heatmap (Grad-CAM) Visualization in the
Different Layers

The gradient-weighted class activation mapping (Grad-CAM) technique captures
more abstract and low-level features, such as edges, as shown in Figure 14 (thermal RGB)
and Figure 15 (RGB). At shallow depths (Figure 14b), ThelR547v1 mainly focuses on
background regions (yellow) associated with leaf class and lightly focuses on leaf (light
sky-blue color) associated with background class. In middle depth (Figure 14c), the network
focuses on image regions that are related to the leaf and background classes but does not
necessarily belong to it, but the network in the deep depth, as shown in Figure 14d, mostly
focuses on the ground truth of the leaf and background classes. Finally, in the classification
layer shown in Figure 14e, the network produces a deep depth coarse localization map that
focuses on high-level features such as patterns, thereby representing the most important
ground truth regions of the leaf and background classes in the image.
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Figure 14. Visualization of the Grad-CAM in different depth of the network: (a) monochrome thermal
RGB image; (b) Grad-CAM visualization at shallow depth of the encoding layer; (c) Grad-CAM
visualization at middle depth of the encoding layer; (d) Grad-CAM visualization at deep depth of the
decoding layer; (e) Grad-CAM visualization at deep depth of the classification layer.

For the RGB image shown in Figure 15a, the shallow depth of the ThelR547v1 mainly
focuses on the image regions related to leaf but not on the background class (Figure 15b).
In the middle depth, as shown in Figure 15c, the network focuses on image regions that are
related to the leaf and background classes but do not necessarily belong to it. As shown in
Figure 15d, network in deep depth mostly focuses on leaf and background classes. Finally,
in the classification layer shown in Figure 15e, the network produces a deep depth coarse
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localization map that focuses on high-level features such as patterns, thereby representing
the most important ground truth regions of the leaf and background classes in the image.
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The minimum temperature predicted by ThelR547v1 is absolute correlated (R2 = 
0.9998) with data extracted from the artificial ground truth (binary) images and shown in 
Figure 17a. Figure 17b exhibits almost similar performance (R2 = 0.9487) for estimating 
leaf/leaf canopy maximum temperature. However, the reason for this achievement is as 
follows: The plant factory located at Ehime prefecture, Japan had a stable night-time min-
imum temperature in October. However, due to the dynamic weather conditions in Octo-
ber (sunny, cloudy, rainy), the daytime maximum temperature changes rapidly. This may 

Figure 15. Visualization of the Grad-CAM in different depth of the network: (a) RGB image;
(b) Grad-CAM visualization at shallow depth of the encoding layer; (c) Grad-CAM visualization at
middle depth of the encoding layer; (d) Grad-CAM visualization at deep depth of the decoding layer;
(e) Grad-CAM visualization at deep depth of the classification layer.

4.3. Crop Monitoring Performance

For this experiment, we collected 250 independent datasets of thermal RGB and RGB
images between October 2021 and October 2022. As shown in Figure 16a, in the case of
thermal images, the total pixels predicted by ThelR547v1 for leaf/canopy regions are highly
correlated (R2 = 0.8607) with data extracted from manual grand truth (binary) images, but
in the case of RGB images, this correlation represents 0.9598 (R2), as shown in Figure 16b.
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Figure 16. Comparative analysis of leaf/canopy pixel monitoring: (a) thermal RGB and (b) RGB.

The minimum temperature predicted by ThelR547v1 is absolute correlated
(R2 = 0.9998) with data extracted from the artificial ground truth (binary) images and
shown in Figure 17a. Figure 17b exhibits almost similar performance (R2 = 0.9487) for esti-
mating leaf/leaf canopy maximum temperature. However, the reason for this achievement
is as follows: The plant factory located at Ehime prefecture, Japan had a stable night-time
minimum temperature in October. However, due to the dynamic weather conditions in Oc-
tober (sunny, cloudy, rainy), the daytime maximum temperature changes rapidly. This may
be behind thermal image noise, which makes predictions difficult, resulting in a slightly
poorer correlation of leaf/canopy maximum temperatures predicted by ThelR547v1 with
data extracted from manual large real (binary) images.
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5. Discussion

In our study, we propose a combination of standard convolutions and dilated convo-
lutions with different dilation rates to achieve high-quality local and global segmentation
results in real-time scenes. Since manual segmentation of low-resolution images is a chal-
lenging task, inconsistencies appear on the boundaries of leaves or thin sections of leaves
when they overlap with something other than the target plant. Despite test images with
various complexities such as shadows, diffuse light, high contrast, low contrast, thinner
leaves, presence of people, machines or other devices/machines, or different interpretations
of plant parts, the overall mean accuracy, mean IoU and mean BF scores of TheRnet547v1
are over 0.90, and the overall difference in metrics is small. The remaining limitations and
future research directions that we will continue to use are as follows:

1. The training time of ThelR547v1 is 4 times that of Deeplabv3plusInceptionResNetv2,
9.5 times that of Deeplabv3plusXceptionNet, 9.2 times that of Deeplabv3plusResNet50,
and 12.2 times that of Deeplabv3plusMobilenetv2. In our future work, we plan to
optimize the number of dilations rate of the of the dilated convolution layer and
optimize the network hyperparameters.

2. Due to the lack of large datasets, the proposed network is sometimes unable to
distinguish the boundaries between the leaves/canopy and background in some cases.
To solve this, we plan to continue the collection of more challenging datasets (complex
background, environmental noise, various stages of plant growth, cultivation media
such as soil and hydroponic conditions such as greenhouses or open fields) and
extensive development of manual ground truth (binary) data for training the network.

6. Conclusions

We have presented ThelR547v1 by aiming at the problem of separation of target
class (leaf) from their background under any environment condition throughout the year.
The highly compact network produces high-quality ground truth data that can poten-
tially eliminate manual post-processing steps for separating leaves/canopy from the back-
ground. Even with imbalanced data per class, ThelR547v1 can accurately localize object
boundaries (leaf and background) with balanced accuracy compared to other state-of-
the-art models, such as Deeplabv3plusInceptionResNetv2, Deeplabv3plusXceptionNet,
Deeplabv3plusResNet50, and Deeplabv3plusMobilenetv2. This paper also investigated
the end-to-end practical semantic segmentation of both thermal RGB and RGB images col-
lected randomly from a plant factory and open field conditions and found that ThelR547v1
performs well with the manually segmented dataset for measuring the pixel area of the
leaf/canopy and temperature stress of the crops.
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