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Abstract: Negative and positive emotions are the risk and protective factors for the cause and prog-
nosis of hypertension. This study aimed to use five photoplethysmography (PPG) waveform indices
and affective computing (AC) to discriminate the emotional states in patients with hypertension.
Forty-three patients with essential hypertension were measured for blood pressure and PPG signals
under baseline and four emotional conditions (neutral, anger, happiness, and sadness), and the PPG
signals were transformed into the mean standard deviation of five PPG waveform indices. A support
vector machine was used as a classifier. The performance of the classifier was verified by using
resubstitution and six-fold cross-validation (CV) methods. Feature selectors, including full search
and genetic algorithm (GA), were used to select effective feature combinations. Traditional statistical
analyses only differentiated between the emotional states and baseline, whereas AC achieved 100%
accuracy in distinguishing between the emotional states and baseline by using the resubstitution
method. AC showed high accuracy rates when used with 10 waveform features in distinguishing the
records into two, three, and four classes by applying a six-fold CV. The GA feature selector further
boosted the accuracy to 78.97%, 74.22%, and 67.35% in two-, three-, and four-class differentiation,
respectively. The proposed AC achieved high accuracy in categorizing PPG records into distinct
emotional states with features extracted from only five waveform indices. The results demonstrated
the effectiveness of the five indices and the proposed AC in patients with hypertension.

Keywords: photoplethysmography (PPG); artificial intelligence (AI); affective computing (AC);
hypertension

1. Introduction

A bidirectionality of emotion and disease was found in hypertension [1]. Specific
emotions (e.g., anger, sadness, and depression) were linked to the psychopathological
mechanisms and associated with the cause and prognosis of hypertension. For example,
early studies focused on suppressed anger as a psychological risk factor for hypertension
and carotid arterial stiffness in older adults [2], and later studies identified the association of
anger-out and depressive symptoms with an increased risk of blood pressure (BP) progres-
sion after adjusting for other risk factors [3]. Studies reported that 4–37.1% of hypertension
is comorbid with depressive symptoms [4,5]. A systematic review and meta-analysis of
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41 studies revealed a 26.8% prevalence of depression in patients with hypertension, and
the prevalence of depression determined through self-report questionnaires was slightly
higher (29.8%) than through clinical interviews (21.3%) [6]. Studies reported that depres-
sive symptoms were positively related to perceived stress, trait anger, state anger, and
social conflict, and negatively related to ego resilience and health-promoting behaviors in
patients with hypertension [5,7]. Positive emotions were associated with reduced BP after
adjusting for relevant risk factors, and a one-point increase in positive emotion score on a
four-item index of positive emotion from the Center for Epidemiologic Studies–Depression
was associated with 3% and 9% decreased odds for BP in patients using and not using
hypertension medication, respectively [8].

The results indicate that negative emotion is not only a risk factor for the development
of hypertension but also increases the probability of cardiovascular disease and causes a
poor prognosis among patients with hypertension. In contrast, numerous studies have
confirmed that sustained and stable positive emotions lower blood pressure, lower physio-
logical reactivity, accelerate cardiovascular recovery, stabilize body balance, and reduce the
risk of incidents of hypertension and mortality in the long run [1,8,9]. However, emotional
screening is not a routine procedure in clinical settings; moreover, several patients do
not recognize their own emotions. Thus, evaluating negative emotions in patients with
hypertension is the first step toward understanding the effect of diseases and preventing
adverse prognoses.

Owing to the rapid developments in digital signal processing and artificial intelligence
(AI) in AC in recent years, several related technologies using physiological signals have
been applied in studies on AC or emotional recognition [10]. Picard et al. [11] extracted
temporal characteristics from facial electromyography (EMG), electrocardiogram (ECG),
electrodermal activity (EDA), and respiration to identify eight different emotions (normal,
anger, hate, grief, platonic love, romantic love, joy, and reverence). They recruited only
one subject, achieving a recognition rate of 81.25%. Kim et al. [12] proposed the use of
three physiological signals, namely ECG, EDA, and skin temperature, to identify four types
of emotions (stress, anger, sadness, and surprise) with a support vector machine (SVM)
classifier; the emotional recognition rate was 61.8% for 50 subjects. Wiem et al. [13] used
four physiological signals, namely ECG, EDA, skin temperature, and respiration, to identify
20 types of emotions. They applied a feature selection approach to improve the effectiveness
of the SVM classifier; the accuracy rate was 69.47% by using a combination of ECG and
respiratory features. Udovičić et al. [14] calculated time- and frequency-domain features
by using photoplethysmography (PPG) and EDA signals, and the accuracy rate was 67%
by using an SVM classifier to differentiate two types of emotions (positive and negative).
Pollreisz et al. [15] employed statistical features calculated based on the changes detected in
the PPG, EDA, and skin temperature waveforms using a decision tree classifier to achieve
64.66% accuracy in differentiating four types of emotions (happiness, anger, sadness, and
pain). Shahid et al. [16] proposed a fusion architecture to combine frequency transforms
and statistical measures calculated based on ECG and PPG signals and tested them on nine
classifiers. The accuracy in differentiating among four emotional states (sadness, disgust,
fear, and happiness) ranged between 34% and 85.7%; among them, the ensemble bagging
trees attained the highest accuracy.

In the studies on affective computing, researchers attempted to extract adequate fea-
tures from multimodal (multiple) physiological signals related to human emotions and
applied the AC approach to different emotional states. However, in real-world applications,
the use of multimodal signals complicates the system. Very few studies have focused on
using a single signal for affective computing. PPG sensors, which are already utilized
widely in wearable devices, are believed to be the most accessible and suitable for collecting
profound emotion-relevant information. PPG has various advantages, such as easy imple-
mentation, portability, non-invasive collection of bio-signals, and detection of blood volume
changes in the microvascular tissue bed or peripheral circulation [17]. The PPG shape
is detected by illuminating the skin with infrared light from a light-emitting diode and
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capturing reflected light absorption in the skin of the fingertip, earlobe, or forehead. Each
cardiac cycle appears as a pulse in the ECG, which can also be seen in the PPG as a distinct
waveform. PPG signals include cardiac constriction and peripheral vessel pressure and are
influenced by BP, the autonomic nervous system, and vascular compliance. During cardiac
dilation, vascular pressure is reduced. Lin [18] pinpointed the relationship between the
ECG and PPG waveform, where the systolic upstroke time (ST) indicates a direct pressure
wave traveling from the left ventricle to the finger or ventricular rapid ejection time and
left ventricular release of large blood. The PPG amplitude is influenced by cardiac output,
ventricular ejection speed, arterial resistance, and blood-vessel-wall elasticity and reflects
the blood volume change in the blood vessel underneath the PPG sensor [18]. The emo-
tional and respiratory factors can lead to changes in waveform, frequency, and amplitude
of PPG signals due to the neural regulation of the cardiovascular system on both macro-
and microcirculatory levels [19].

Park et al. [20] tested the accuracy of identifying two types of emotions (happiness and
sadness) using only the PPG signal and SVM classifier, and the accuracy rate was 63.67%
for five subjects. Lee et al. [21] used a one-dimensional convolutional neural network (1D
CNN) to extract PPG signal features for emotion classification; the emotion recognition
accuracy was 75.3% in the valence (positive and negative) based on the Database for
Emotion Analysis using Physiological Signals (DEAP database). Lu et al. [22] attempted to
recognize the pulse of love at first sight based on PPG signals. A total of 26 features were
calculated, and several classifiers were used for classification. The best accuracy achieved
for the binary classification task before feature selection was 68.18%, which improved to
71.09% with the eXtreme Gradient Boosting (XGBoost) classifier after feature selection.

PPG captures not only the activities during the heart’s systolic and diastolic periods
but also the hemodynamic, hemorheological, and network information of the peripheral
microcirculation system [10,23]. Teng and Zhang [24] and Kurylyak et al. [25] defined the
rising phase of the PPG waveform as ST or t1 and the falling phase as diastolic time (DT
or t2). DT is the time duration between the diastolic peak of the pressure wave from the
arteries of the lower body back to the finger [18,22]. Li [26] measured ST and DT values
during happy and sad films (7 min) in 50 healthy participants and found longer DT and
total time in the happiness feeling periods compared with the sadness feelings periods.
However, there was no significant difference in ST between the happy and sad films. The
researchers found that there was a lower blood volume amplitude (BVA) at the anger recall
stage compared to the neutral recall stage and the baseline in patients with coronary artery
disease [17,27].

The arterial wave propagation theory and PPG morphological theory have explored
the relationship between PPG and BP [28]. Mitsutake et al. [29] performed a logistic
regression analysis and found that a longer ST predicted a higher score in coronary artery
calcification, which indicates a high risk of cardiovascular disease. Nakashima et al. [30]
reported that ST was prolonged in patients with peripheral artery disease due to reduced
blood flow when measured through angiography. Thus, the waveform of a pulse wave,
such as ST, may be used as an index to diagnose the severity of coronary artery calcification,
peripheral stiffness, or arterial narrowing. Teng and Zhang [24] recorded 18 s of ECG and
PPG data during resting, 109-step climbing exercise, and recovery, and then analyzed four
PPG characteristics. The results showed higher correlations among DT, systolic BP (SBP),
and diastolic BP (DBP) compared to the width of the 1/2 pulse amplitude, width of the
2/3 pulse amplitude, and ST in 15 healthy subjects. Yoon [31] enrolled five healthy male
adults and measured their BP and PPG during the resting baseline and a 100-step climbing
exercise for five consecutive days. The results showed slightly higher correlations between
ST and SBP than between DT and SPB (r (ST-SBP) = −0.6049 and r (DT-SBP) = −0.6046);
moreover, the correlation between DT and DBP (r = −0.764) was higher compared with
that between ST and DBP (r = −0.663). The DT showed a higher correlation with SBP
and DBP compared with ST. Kurylyak et al. [25] examined the PPG and BP values and
found that DT was negatively related to SBP and DBP. Similarly, Samria et al. [32] explored
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the relationships between PPG and BP and found a negative correlation between DT and
DBP (r = −0.811) among 18–25-year-old healthy subjects, as well as a negative correlation
between DT and SBP (r = −0.869) among 26–50-year-old healthy subjects.

Considering PPG and BP in clinical populations, Kiuchi et al. [33] enrolled
3912 participants and divided them into peripheral artery disease (PAD) and non-PAD
based on the ankle-brachial index (ABI) measurement. The results showed that patients
with PAD had higher SBP, mean BP, pulse pressure, ST, and percentage of mean arterial
pressure (%MAP) than patients without PAD. Shoji et al. [34] measured ABI and con-
ducted invasive coronary angiography for patients with suspected coronary artery disease
(CAD). The results showed that patients with CAD (at least one stenotic lesion > 50%) had
higher ST than those without CAD, and ST was related to the severity of CAD, which was
measured using the Gensini score and the synergy between PCI with Taxus and CABG
(SYNTAX) score.

However, previous studies have focused on healthy populations by applying AI
technology in affective computing, whereas only a limited number of studies have been
conducted on patients with hypertension. Moreover, ECG requires more measurement tech-
nology and pre-processing of physiological signals, whereas PPG involves non-invasive
measurement and convenient analysis. Therefore, the aims of this study were based on Rus-
sel’s circumplex model of emotions to divide the dimensions of valence (negative/positive)
and arousal (high/low), namely: (1) to conduct traditional statistical analysis and AI-
enabled AC through PPG characteristics, including blood volume amplitude (BVA), ST, DT,
peak-to-peak intervals (PPI), and valley-to-valley intervals (VVI) for different emotions
in patients with hypertension; (2) to explore the correlations between ST, DT, and BP for
different emotions in patients with hypertension; (3) to extract the amplitude and wave-
form features from the PPG signal recorded from patients with hypertension at different
emotional stages. A powerful machine-learning classifier SVM was adopted to justify
the capability of these features in differentiating distinct emotional states. Moreover, a
feature selection approach was applied to determine the optimal feature combinations that
achieved the best results.

2. Materials and Methods
2.1. Participants

A total of 261 patients diagnosed with hypertension were referred by physicians at the
divisions of Cardiology and Family Medicine of Kaohsiung Medicine University Hospital
and Kaohsiung Municipal Siaogang Hospital. The inclusion criteria for hypertension were:
(1) patients were stable and under prescription for at least three months; (2) according to the
diagnosis criteria for hypertension (140/90 mmHg), patients with comorbid hyperlipidemia
and overweight (body mass index ≥ 24) were included in this study; (3) age 30–70 years.
The exclusion criteria were: (1) participants with arrhythmia, with a pacemaker, comorbid
with severe physical illness (such as cancer, stroke, or heart failure), or mental disorders
(such as major depressive disorder or substance use); (2) Beck Depression Inventory-II
(BDI-II) and Beck Anxiety Inventory (BAI) scores were higher than 14 and 8, respectively;
(3) patients with shift work, going through pregnancy, or under benzodiazepine medi-
cation. Fifty-one participants completed the pre-test; one patient’s PPG signals failed in
the sadness recall task; three patients’ PPG signals were damaged; and three patients had
movement artifacts. Finally, PPG data from 43 participants were included in the statistical
analysis (Figure 1).

The institutional review board of Kaohsiung Medical University Hospital approved
this study. All participants provided written informed consent before the study. After
completing all experimental procedures, participants received TWD 1000 (about USD 30).
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Figure 1. Participants’ study flow.

2.2. Materials
2.2.1. Psychological Questionnaires

All participants completed self-report questionnaires, which included demographic
characteristics (including age, sex, education, and marital status) and an emotional checklist
and rating scale, the BDI-II and the BAI. The emotional checklist and rating scale were used
to evaluate the specific emotion during emotional recall tasks, and the emotion rating was
used to evaluate the emotional intensity (from 1 = not at all to 5 = very) in the past event
and during the experimental stages. The 21-item BDI-II was used to measure the severity
of depression. The 21-item BAI was used to measure anxiety severity.

2.2.2. Physiological Parameters

A non-invasive PPG sensor (BVP-Flex/Pro) was placed on the participant’s thumb
and recorded continuously using ProComp InfinitiTM version 6 (Thought Technology Ltd.,
Montreal, QC, Canada). The sensor generates 940 nm wavelength infrared light pulses
against a skin surface and measures the amount of reflected light. The PPG signal was
filtered with a preset 0.1–50 Hz bandpass filter and was acquired by the device at a sampling
rate of 2048 samples/s. Patients’ SBP and DBP were measured at 3 min intervals using GE
Marquette SmartPac Tram transport display (Absolute Medical Equipment, Garnerville,
NY, USA).

2.3. Experimental Procedure

The participants were instructed to refrain from caffeinated beverages, alcohol, smok-
ing, and excessive exercise 3 h before the experimental protocol. The participants were
seated in a sound-attenuated and temperature-controlled room. Participants completed
the demographic questionnaire and psychological questionnaires in the laboratory room
and then participated in the training session. The training and experimental sessions were
administered at one-week intervals, as per the following procedure (Figure 2).

(1) Training session: Participants were required to recall and report four emotional
states from their past life events, namely neutral, anger, happiness, and sadness. Partici-
pants were required to describe the emotional events in detail, which included answering
the 5 Ws (“Who made you feel the emotion? What happened? When did it happen? Where
did it take place? Why did you feel this emotion?”).

(2) Experimental session: After a one-week interval, participants were guided to a
5 min sitting baseline and then reporting and recalling the neutral event, followed by
the other three emotional events (anger, happiness, and sadness), employing a counter-
balance design for controlling the sequence effects. (1) The 6 min neutral recall task,
including a 3 min report of a non-emotional neutral event that happened in the previous
6 months, e.g., “Please tell me what did you do yesterday”, was followed by a 3 min recall,
wherein participants were seated comfortably; (2) the 6 min emotional recall task (the
anger/sadness/happiness events were conducted by following a counterbalance design)
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included a 3 min report of an emotional event that occurred in the previous 6 months.
For example, “Please tell me about an emotional event, including who made you feel the
emotion? What happened? When did it happen? Where did it take place? Why did you
feel this emotion?”, followed by a 3 min recovery. After each emotional report and recall,
an emotional evaluation was conducted. PPG and BP were measured during the entire
experimental session. After finishing the experimental session, the patients completed an
emotional rating and checklist as a manipulation check.
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2.4. Data Reduction and Statistical Analysis

This study focused on BP and PPG signals; the 3 min SBP and DBP data were acquired,
and the 3 min PPG data were divided into six 30 s PPG indices of BVA, ST, DT, PPI, and VVI
at baseline, neutral recall, anger recall, sadness recall, and happiness recall. In this study,
we calculated the change score (∆) to quantify the difference between the emotional state
and baseline. For example, the change score of BVA (∆BVA) at the anger stage indicated
the anger recall of BVA minus the baseline BVA.

Descriptive statistics of demographic data, psychological questionnaire scores, and
physiological parameters were scored and analyzed using the Statistical Package for the
Social Sciences version 21.0 (International Business Machines Corporation, Armonk, NY,
USA). One-way repeated-measures analysis of variance (ANOVA) was used to examine
the various experimental stage differences (baseline, neutral recall, anger recall, sadness
recall, and happiness recall) on PPG and BP parameters. If the Mauchly sphericity test
is satisfied, Bonferroni’s post hoc comparison will be applied; if the Mauchly sphericity
test is violated, the Greenhouse–Geisser adjustment will be applied in one-way repeated-
measures ANOVA. The effect size was calculated with partial eta-square (ηp2), where less
than 0.06, 0.06–0.14, and more than 0.14 were considered small, medium, and larger effect
sizes, respectively [35].

2.5. The Proposed AC Algorithm

(1) Feature extraction: The 3 min individual PPG signals acquired during the baseline
and emotion recall stages were divided into six non-overlapping segments, each of which
was 30 s in length. A typical PPG heartbeat cycle contains one peak bounded by two



Sensors 2022, 22, 8771 7 of 16

valleys, as shown in Figure 3. The peaks of the waveform can be detected by finding its
local maxima, although we may need to set rules to exclude peaks at unreasonable distances
from the previous ones. After the detection of all peaks, the valleys were identified by
finding the minimum between consecutive peaks. As a result, we were able to measure the
values of the five indices, namely BVA, ST, DT, VVI, and PPI. The BVA measures the height
from the first valley to the peak. The ST and DT depict the time that elapses from the first
valley to the peak and from the peak to the next valley, respectively. VVI and PPI represent
the time distance between a pair of valleys and peaks, respectively.
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For each 30 s segment, the mean and standard deviation for all five indices were
calculated as representative features, resulting in a total of 10 features. In summary, from
each subject, we acquired six 30 s PPG segments recorded from the baseline and each
of the four emotion recall states, and 10 features were calculated to characterize each
30 s segment. However, as the baseline properties of the subjects can be significantly
different, we managed to tackle the problem of individual differences by using differential
features. The idea is intuitive. The differential features were calculated by subtracting
the baseline features from the activated state features, and their effects on differentiating
distinct emotional states were evaluated. Moreover, the differentiating capability of the
combined use of both activated state features and differential features was also justified.

(2) Feature normalization: Because the dynamic range of individual features can differ
dramatically, a feature normalization process is usually required to scale all the features
to the same level. In this study, we employed z-score normalization, where each feature
was normalized by first subtracting the mean and then dividing by the standard deviation
(STD). The mean and STD of each feature were calculated solely from the training dataset
and used to normalize that feature in both the training and testing datasets.

(3) Feature selection: In a classification task, when the feature dimensions are high,
feature selection techniques are usually required to determine the most representative
subset of features, which can efficiently delineate the primary feature set and remove
redundant features, such that the dimensions are reduced, while the accuracy is retained or
even improved. For a feature set containing n features, the possible combinations of feature
subsets are (2n − 1). In this study, we compared the differentiating power of 10 original
features, 10 differential features, and a combination of both original and differential features
(20 features). We applied the full search approach to a smaller feature set with 10 features.
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However, for the feature set with 20 features, we exploited a (almost) global optimal
approach, the genetic algorithm (GA), to reduce the computational load and accelerate the
selection process.

GA is an optimization methodology based on Darwinian evolution theory [36] and
was first introduced in the literature by Holland [37]. Basic arithmetic algorithms have been
proposed for typical evolutionary operations, such as selection, crossover, and mutation.
The genes are modeled by binary strings called chromosomes. To use GA for feature selec-
tion, we associate the binary representation of a chromosome with a specific combination
of features, such that a “1” represents selection, whereas a “0” represents the removal of a
specific feature from the feature set.

The selection process uses classification accuracy as the fitness function. Chromosomes
with high fitness values are selected as parents at a higher probability. The crossover process
produces new chromosomes, with a certain possibility of mutation in the next generation.
In this manner, the GA generates and modifies chromosomes until a preset number of
generations is reached or the optimal fitness values remain constant. Because the GA
operates on a collection of candidate solutions in parallel, and the evolution rules allow the
algorithm to jump out of local optima, the GA has a higher probability of finding the global
optimal solution. As a result, the GA generates an optimal combination of features that
possess the highest discrimination power.

(4) Classifier: An SVM [38] was employed as the classifier in this study. The SVM
maps the training samples from the input space into a higher dimensional feature space
using a kernel function. Any product of the vectors in the optimization process can be
implicitly computed to generate a hyperplane to categorize two classes. When the training
data are not completely separable, the optimal solution can be found by minimizing both
the empirical risk and complexity of the hypothesis space. Multiple SVM classifiers can
be integrated using the one-against-one or one-against-all approach to treat problems
with more than two classes. In this study, we used the one-against-all approach [39] to
differentiate three and four categories of emotions. A radial basis function (RBF) kernel
was used in this study.

(5) Validation: We employed two methods to validate the capabilities of the features
and classifiers in emotion recognition from different points of view. (a) Resubstitution vali-
dation: This method is also called the all-train-all-test (ATAT) or self-consistency evaluation.
The purpose of this validation is to test the differentiating power of the proposed method
by categorizing the entire database in a classifier model construction process. (b) K-fold
cross-validation: This method tests the capability of the features and classifiers in identify-
ing similar data, given that information from the same group of subjects is provided. The
data across subjects and emotional states were divided evenly into K folds. As we divided
the signal recordings from individual experimental settings into six 30 s segments, we
applied six-fold cross-validation (CV). Each fold of features had the same chance to serve
as testing data, and the other five folds were used to train the classifier. The accuracies of
the six individual trials were averaged to verify the performance of the classifier across
the dataset.

3. Results
3.1. Participants’ Characteristics

The demographic data are shown in Table 1. Forty-three patients completed the
statistical analysis (34.88% females and 65.12% males). The emotional checklist showed
the main effects on anger, happiness, and sadness (anger: F = 1186.77, p < 0.001, ηp2 = 0.97;
happiness: F = 2282.92, p < 0.001, ηp2 = 0.98; sadness: F = 1836.24, p < 0.001, ηp2 = 0.98).
These results indicate that the experimental procedure can induce the patients’ emotions of
anger, happiness, and sadness (Table S1). Moreover, the patients reported an emotional
intensity of 97.69%, 95.49%, and 96.30% for anger, happiness, and sadness, respectively, in
the experimental session compared with their past experiences.
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Table 1. The demographic data, psychological questionnaires, and blood pressure (n = 43).

Variables Mean (SD) or n (%)

Age, years 53.84 (8.87)
Sex, n (%) Female 15 (34.88%)

Male 28 (65.12%)
Education, n (%) Primary school 1 (2.33%)

Junior high school 3 (6.98%)
Senior/vocational high school 13 (30.23%)
Junior college 10 (23.26%)
Bachelor degree 11 (25.58%)
Master degree 5 (11.63%)

Marital status, n (%) Single 4 (9.30%)
Married 29 (67.44%)
Divorced/separated 6 (13.95%)
Widowed 4 (9.30%)

Beck Depression Inventory-II Total score 3.16 (3.24)
Beck Anxiety Inventory Total score 1.91 (2.03)
Systolic blood pressure (mmHg) 130.23 (11.31)
Diastolic blood pressure (mmHg) 80.33 (10.03)

3.2. Physiological Responses under Different Experimental Stages

Regarding BP, the one-way repeated-measures ANOVA revealed a significant inter-
action effect on SBP and DBP (F = 26.32, p < 0.001, ηp2 = 0.39; and F = 39.07, p < 0.001,
ηp2 = 0.48, respectively), and the Bonferroni post hoc comparison showed higher SBP and
DBP at the anger, happiness, and sadness stages compared with baseline and neutral stages.
Regarding PPG parameters, the one-way repeated-measures ANOVA revealed a significant
interaction effect on BVA, ST, and DT (F = 21.01, p < 0.001, ηp2 = 0.33; F = 15.36, p < 0.001,
ηp2 = 0.27; and F = 5.90, p = 0.001, ηp2 = 0.12, respectively). The Bonferroni post hoc
comparison showed a lower BVA at anger, sadness, and happiness recall stages compared
with that at baseline and neutral recall stages, as well as higher ST at neutral, anger, sadness,
and happiness recall stages compared with that at baseline, and higher ST at the anger
recall stage compared with that at the neutral recall stage. Moreover, the DT was lower
at the anger and sadness recall stages than that at the baseline. However, there were no
significant differences in PPI and VVI at the neutral, anger, sadness, and happiness recall
stages (F = 2.19, p = 0.073, ηp2 = 0.05; F = 1.39, p = 0.252, ηp2 = 0.03, respectively; Table 2).

This study analyzed changes in BP and PPG parameters to differentiate the four
emotional states. The results showed higher SBP and DBP values at the anger, happiness,
and sadness stages compared with those at the neutral stage (F = 11.59, p < 0.001, ηp2 = 0.22;
and F = 17.08, p < 0.001, ηp2 = 0.29, respectively), as well as lower BVA at the anger,
happiness, and sadness stages compared with that at the neutral stage (F = 16.17, p < 0.001,
ηp2 = 0.28). Moreover, ST was higher at the anger and sadness stages compared with that
at the neutral stage (F = 7.31, p = 0.001, ηp2 = 0.15), and DT was lower at the sadness stage
compared with that at the neutral stage (F = 3.97, p = 0.016, ηp2 = 0.09). However, there
were no significant differences in PPI and VVI at the neutral, anger, sadness, and happiness
stages (F = 2.89, p = 0.051, ηp2 = 0.06; F = 1.76, p = 0.167, ηp2 = 0.04) (Table 2).



Sensors 2022, 22, 8771 10 of 16

Table 2. The raw and change scores of blood pressure and photoplethysmography at different
experimental stages (n = 43).

Baseline Neutral
Recall

Anger
Recall

Happiness
Recall

Sadness
Recall F p ηp2 Bonferroni

Post hoc
Comparison(1) (2) (3) (4) (5)

SBP
(mmHg)

130.23
(11.31)

135.79
(12.43)

140.51
(12.74)

140.98
(13.95)

144.77
(17.69) 26.32 *** <0.001 0.39 3,4,5 > 1,2;

2 > 1
DBP

(mmHg)
80.33

(10.03) 83.95 (9.98) 87.77
(10.32)

88.19
(10.94)

90.33
(11.02) 39.07 *** <0.001 0.48 3,4,5 > 1,2;

2 > 1
BVA (mV) 11.82 (4.22) 11.13 (4.25) 8.23 (2.89) 8.89 (3.13) 8.39 (4.55) 21.01 *** <0.001 0.33 3,4,5 < 1,2

ST (ms) 196.01
(50.12)

205.59
(57.01)

226.18
(40.75)

218.83
(41.22)

219.45
(41.08) 15.36 *** <0.001 0.27 2,3,4,5 > 1;

3 > 2

DT (ms) 650.84
(82.39)

642.18
(84.08)

627.04
(61.02)

635.92
(79.94)

618.28
(101.20) 5.90 ** 0.001 0.12 3,5 < 1

PPI (ms) 846.62
(113.40)

847.44
(117.47)

853.21
(114.07)

854.92
(117.02)

836.68
(116.75) 2.19 0.073 0.05

VVI (ms) 846.90
(113.47)

847.91
(117.20)

853.36
(81.51)

854.95
(99.44)

838.11
(116.82) 1.39 0.252 0.03

∆SBP
(mmHg) - 5.56 (6.40) 10.28 (9.35) 10.74 (8.74) 14.53

(14.65) 11.59 *** <0.001 0.22 3,4,5 > 2

∆DBP
(mmHg) - 3.63 (3.39) 7.44 (5.94) 7.86 (5.08) 10.00 (7.84) 17.08 *** <0.001 0.29 3,4,5 > 2

∆BVA
(mV) - −0.69

(3.16)
−3.59
(3.62)

−2.93
(3.92)

−3.43
(4.15) 16.17 *** <0.001 0.28 3,4,5 < 2

∆ST (ms) - 9.58 (16.50) 30.17
(33.24)

22.83
(28.52)

23.44
(29.36) 7.31 ** 0.001 0.15 3,5 > 2

∆DT (ms) - −8.67
(27.28)

−23.79
(50.57)

−14.92
(48.24)

−32.56
(61.29) 3.97 * 0.016 0.09 5 < 2

∆PPI (ms) - 0.81 (22.29) 6.58 (42.19) 8.29 (45.72) −9.94
(60.79) 2.89 0.051 0.06

∆VVI (ms) - 1.01 (22.21) 6.47 (60.64) 8.05 (49.36) −8.79
(60.47) 1.76 0.167 0.04

* p < 0.05, ** p < 0.01, *** p < 0.001. Note: ∆ change score = emotional state–baseline; 1 = baseline;
2 = neutral recall; 3 = anger recall; 4 = happiness recall; 5 = sadness recall; BVA = blood volume amplitude;
ST = systolic upstroke time; DT = diastolic time; STD = standard deviation; PPI = peak-to-peak intervals;
VVI = valley-to-valley intervals.

3.3. Correlations between PPG Parameters and BP

The results demonstrated a negative correlation between DT and DBP (r = −0.37~−0.53)
and among PPI, VVI, and DBP (r = −0.35~−0.46) at the baseline, neutral, anger, happiness,
and sadness recall stages. Moreover, we also found a negative correlation between BVA
and DBP at the sadness recall stage (r = −0.40, p < 0.01) and a negative correlation between
ST and DBP at the baseline (r = −0.36, p < 0.05) (Table 3).

Table 3. The correlations between photoplethysmography parameters and blood pressure under
different experimental stages (n = 43).

Baseline Neutral Recall Anger Recall Happiness Recall Sadness Recall

SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP

BVA
(mV) 0.19 0.09 −0.08 −0.01 −0.08 −0.07 −0.23 −0.21 −0.27 −0.40 **

ST (ms) −0.09 −0.36 * −0.11 −0.24 0.16 −0.03 0.02 −0.03 0.13 0.02
DT (ms) 0.09 −0.37 * 0.01 −0.41 ** −0.10 −0.37 * −0.09 −0.41 ** −0.26 −0.53 **
PPI (ms) 0.03 −0.43 * −0.05 −0.41 ** −0.07 −0.45 ** −0.09 −0.38 * −0.19 −0.46 **
VVI (ms) 0.03 −0.43 * -0.05 −0.41 ** 0.004 −0.30 −0.07 −0.35 * −0.18 −0.45 **

* p < 0.05, ** p < 0.01 Note: SBP = systolic blood pressure; DBP = diastolic blood pressure; BVA = blood volume
amplitude; ST = systolic upstroke time; DT = diastolic time; STD = standard deviation; PPI = peak-to-peak
intervals; VVI = valley-to-valley intervals.
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3.4. AC through PPG parameters

(1) Differentiation between the baseline and emotionally activated stage: The AC
algorithm was first applied to different individual emotionally activated stages from the
baseline (Table 4). By applying resubstitution validation, the proposed AC algorithm
achieved 100% accuracy in differentiating all emotionally activated stages from the baseline.
This result supports the feasibility of using the AC algorithm to construct an effective
model for completely differentiating the emotionally activated stages from the baseline for
an entire dataset. When we applied the six-fold CV method to justify the differentiating
power of the AC algorithm by providing only 5/6 of the data while testing with the other
1/6, high accuracy (more than 85%) could also be observed in differentiating the anger,
happiness, and sadness stages from the baseline (85.47%, 86.24%, and 87.40%, respectively).
The differentiating power of neutral from baseline was 71.12% (Table 4).

Table 4. Performance of affective computing for emotion activation.

Validation Neutral Anger Happiness Sadness

Resubstitution (ATAT) 100% 100% 100% 100%
Six-fold 71.12% 85.47% 86.24% 87.40%

Note: ATAT = all-train-all-test.

(2) Differentiation among distinct emotionally activated stages: The capability of the
AC algorithm to differentiate distinct emotional records was tested by observing its accuracy
in categorizing the records into two (positive (neutral and happiness) and negative (anger
and sadness)), three (negative (anger and sadness), neutral, and positive (happiness)), and
four (anger, sadness, neutral, and happiness) classes. In the two-class (2C) categorization,
the negative class included anger and sadness states, and the positive class included neutral
and happiness states. In the three-class (3C) categorization, the neutral state was separated
from the positive class as a distinct class. The four-class (4C) categorization included four
emotional states. We tested the differentiating power of the AC algorithm using different
feature sets and validation methods. The capabilities of the AC algorithm in the emotional
state categorization for the entire dataset were justified using the resubstitution (all-train-all-
test, ATAT) validation method. Notably, by using the resubstitution (ATAT) validation, the
proposed AC algorithm achieved 100% accuracy in all the emotional state categorization
tests. This result demonstrates the powerful capability of the AC algorithm in categorizing
the emotional states for the entire dataset.

The capabilities of the AC algorithm in emotional state categorization across data
segments were justified using the six-fold CV method (Table 5). The predictability of
the AC algorithm in emotion categorization across data segments (using six-fold CV)
is impressive. The accuracy is relatively high when compared to other emotional state
identification studies (please refer to the Discussion section). The accuracy is the highest
with 20 combined features, and the accuracy after using 10 differential features outperforms
that of using 10 waveform features. However, the trends in emotional type categorization
were similar. The record categorization accuracy decreased in the order 2C, 3C, and 4C,
which is not surprising because the classification tasks become tougher with the increasing
number of classes. These observations highlight the importance of using differential
features to characterize the changes in individual features between the activated and
baseline states. Moreover, the combined use of both waveform and differential features
further improves the performance.

The effects of feature selection in AC for emotional type categorization are also in-
cluded in Table 6 for comparison. It is obvious that using feature selectors further improves
the accuracy of certain categorization tasks, although the accuracy order remains the same,
that is, 2C, 3C, and 4C. The effect of using feature selectors on 20 combined features is
the most promising; a 3.39–5.72% improvement in the accuracy is observed for different
categorization tasks. The accuracy of a few AC algorithms also increased after applying the
feature selectors separately to the 10 differential and 10 waveform features, respectively,
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although to a minor extent. Similar to the tests without feature selectors, the differential
feature case outperformed the waveform feature case.

Table 5. Performance of affective computing in emotional type categorization using six-fold cross-
validation method.

Feature
Selection Feature Types Two-Class Three-Class Four-Class

10 waveform features 68.90% 61.24% 52.91%
N/A 10 differential features 70.83% 66.47% 54.17%

20 combined features 74.61% 70.83% 61.63%
10 waveform features 68.90% 61.24% 53.00%

Yes 10 differential features 71.03% 66.47% 54.36%
20 combined features 78.97% 74.22% 67.35%

Note: N/A = not available.

Table 6. Features selected from the 20 combined features using GA.

BVA ST DT PPI VVI

2C 3C 4C 2C 3C 4C 2C 3C 4C 2C 3C 4C 2C 3C 4C

Mean X X X X X X X X X X X X X X X
STD X X X X X X X
Differential mean X X X X X X X X X X X X X
Differential STD X X X X X X X X

Note: BVA = blood volume amplitude; ST = systolic upstroke time; DT = diastolic time; STD = standard deviation;
PPI = peak-to-peak intervals; VVI = valley-to-valley intervals; 2C = two classes of emotion types (happiness
and sadness); 3C = three classes of emotion types (neutral, positive (happiness) and negative (anger, sadness));
4 C = four classes of emotion types (neutral, anger, happiness, and sadness).

4. Discussion

The quality of the PPG signal is a major factor, which influences the reliability of
waveform features. The pre-processing methods, especially filtering, can significantly
change the PPG waveform features. In this study, we acquired the PPG signal using an
FDA-approved system with an adequate sampling rate and bandpass filter, which enabled
preserving reliable PPG morphological features for further analysis.

Regarding the correlations between ST, DT, and BP, the results demonstrated neg-
ative correlations between DT and DBP for different emotional states in patients with
hypertension. This result was consistent with prior studies, which reported similar observa-
tions [24,25,32]. Moreover, negative correlation between BVA and DBP under the sadness
emotion and lower BVA under the sadness emotion, indicating vasoconstriction, may cause
higher DBP. This study found that DBP values under positive emotion (happiness) and
negative emotion (anger and sadness) were negatively related to DT, PPI, and VVI. This
result indicated that longer diastolic time and interbeat intervals (peak-to-peak intervals
and valley-to-valley intervals) were related to lower DBP; the underlying physiological
mechanisms may be related to lower reactivity under both positive and negative emo-
tions [9,40]. Therefore, different emotions cannot be distinguished by using traditional
statistical methods. Several studies used PPG to predict hypertension; these studies con-
verted the PPG features to pulse arrival time (PAT), PPG amplitude, PPG waveform area,
and slope [41–43]. Lan et al. [41] used PPG-derived HRV signals to discriminate between
participants with or without hypertension; they found six HRV parameters to predict
hypertension, and the SDNN of HRV had the highest accuracy of 85.47% for predicting
hypertension. Liang et al. [42] found that combining the PAT and PPG features can reach
an accuracy of 88.49%.

The proposed AC algorithm displayed high accuracy in differentiating the anger,
happiness, and sadness stages from the baseline. Slightly lower, yet noticeable, accuracy
was attained in differentiating the neutral stage from the baseline. These observations
demonstrate the importance of using features calculated from the five waveform indices
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in emotion differentiation, which had higher accuracy rates than traditional statistical
analysis using repeated-measures ANOVA. The ANOVA differentiated between neutral
and baseline using SBP, DBP, BVA, and ST; between anger and neutral using ST; and
between sadness, happiness, and baseline using DT. However, it could not distinguish
between anger, happiness, and sadness. Moreover, the higher accuracy achieved using the
10 differential features when compared with that using the 10 waveform features highlights
the importance of using differential features in emotional state categorization. The benefit
of using differential features can also be observed in traditional statistical analysis using
repeated-measures ANOVA.

The selected items from 20 combined features using GA in the 2C, 3C, and 4C cate-
gorization tasks are summarized in Table 6 (denoted as cross “X” symbols). For each of
the five indices, four features were calculated, including the mean, STD, differential mean,
and differential STD. The frequency of a feature being selected demonstrates the relative
significance of the feature and the associated indices in emotional state identification. The
results show that all four features associated with BVA, the mean and differential mean
of ST, the mean and differential mean of DT, the mean of PPI, and the mean, STD, and
differential mean of VVI contributed profoundly to all three emotion identification tasks.
Among the five indices, the BVA features were selected most frequently, and thus, BVA was
inferred to be the most crucial index in emotional categorization. Among the four features
for each of the indices, the “mean” was selected by all the classification tasks, followed
by the “differential mean” associated with BVA, ST, DT, and VVI. The “STD” feature of
BVA and VVI and the “differential STD” feature of BVA were also demonstrated to be
significant in the classification tasks. Moreover, the differential features were selected at
similar frequencies when compared to their original waveform counterparts, confirming
their significance in emotional state differentiation; however, the two categories of features
needed to complement each other to fulfill the classification tasks. Although we can identify
several substantial features in the study, it is noteworthy that other less dominant features
must be recruited to supplement the classification capability of these features.

Khalid et al. [44] selected the 3 most significant PPG pulse features (total area, rising
time, and width 25%) out of 16 time-based signal features, based on a statistical multi-
collinearity test and a two-step method, for blood pressure estimation. Although they used
normalized amplitude and normalized time (w.r.t. VVI) for extracting the features, the
three significant PPG pulse features are closely related to the five morphological features
proposed in this study for emotional state recognition. More specifically, the (normalized)
total area is related to both BVA and VVI, the (percentage of) rising time to ST and DT, and
the width 25% to ST, DT, VVI, and PPI. This consistency may imply the close relationship
between blood pressure and emotional states. However, our study employs the raw fea-
tures instead of the normalized ones, which may provide more profound information for
strengthening the distinguishability of the proposed morphological features in emotion
recognition. The addition of differential features, which measure the change of features
between the baseline and the activated states, further boosts the distinguishability of the
proposed AC (Table 5).

The performance of the proposed AC algorithm was compared with that of four
representative methods in the literature. The results are presented in Table 7. A summary
of these methods is provided in the Introduction. Among them, the methods proposed
by Park et al. [20], Lee et al. [21], and Lu et al. [22] used only PPG signals to differentiate
two types of emotions. In contrast, Pollreisz et al. [15] used three types of signals (PPG,
EDA, and skin temperature) to differentiate four types of emotions. This is because very
few studies, if any, attempted to differentiate more than two types of emotions using only
PPG. Notably, the proposed AC algorithm selected features originating from only five PPG
waveform indices and achieved 78.97%, 74.22%, and 67.35% accuracy rates in categorizing
the emotional states into two, three, and four classes, respectively. Compared with other
methods, the proposed AC algorithm outperforms them in differentiating two categories
of emotions and is competitive in differentiating four categories of emotions. Moreover,
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the proposed AC algorithm extracted features from only five indices that were relatively
easy to measure and were tested on a relatively large population (number of subjects),
which was more likely to result in lower accuracy in a user-independent setting. Although
the experimental arrangement and validation methods may vary widely across different
studies, the results demonstrate the significance of the five indices and the effectiveness of
using the proposed AC algorithm in emotion recognition.

Table 7. Comparison with other relevant methods.

Method Signal Types Emotion Types Features Accuracy Subjects

Park et al. [19] PPG 2 (happiness and sadness) 1 63.67% 5
Lee et al. [20] PPG 2 (positive and negative) By 1D CNN 75.3% 32
Lu et al. [21] PPG 2 (neutral and love) 26 71.09% 46

Pollreisz et al. [15] PPG + EDA + skin
temperature

4 (happiness, anger, sadness,
and pain) 4 64.66% 16

This study PPG 2 (positive (happiness) and
negative (anger and sadness)) 13 78.97% 43

PPG
3 (neutral, positive (happiness)
and negative (anger
and sadness)

15 74.22% 43

PPG 4 (anger, sadness, neutral, and
happiness) 15 67.35% 43

Note: 1D CNN = one-dimensional convolutional neural network; EDA = electrodermal activity; PPG = photo-
plethysmography.

This study has a few limitations. First, due to the strict screening of hypertension
patients, only 43 patients were included in AI AC, and the small sample size is a limitation
of this study. Second, we evaluated only four types of emotions and used PPG signals
to develop AI-assisted AC. The breadth of emotions may not cover all emotional levels
of valence and arousal in Russel’s circumplex model of emotions. Third, this study only
recruited patients with hypertension for affective computing and did not compare the PPG
features with healthy controls. The psychophysiological mechanism of emotionally induced
changes between patients with hypertension and healthy controls could be different and
needs more future studies.

5. Conclusions

In summary, the proposed AI-assisted AC achieved high accuracy in categorizing four
emotional states through five waveform indices of extracted PPG features. The results
demonstrated the effectiveness of AI in AC in discriminating between neutral emotion,
anger, happiness, and sadness in patients with hypertension. Future research can cover
more emotion categories for employing AI in AC.
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