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Abstract: Transportation, logistics, storage, and many other sectors provide a wide space for applying
Industry 4.0. This era, with its components, represents the equipment necessary to obtain a unique
competitive advantage. Being smart through sensors, big data, and digitalization corresponds not
only to evolution but also provides protection for businesses in the face of depression. The COVID-19
pandemic caused collapses and defects for very large enterprises and large enterprises, especially
for small and medium-sized enterprises (SMEs). This article focuses on SMEs and their profits from
using smart sensors. Thus, the aim was to expose the striking effect of Industry 4.0 on earnings
during the crisis in the Visegrad Four. The Mann–Kendall trend was used to map the consequences
contrasting the period of 2016–2021. The investigation involved samples from 1221 Slovak, 259 Czech,
855 Polish, and 2156 Hungarian enterprises. The results showed that more than 80% of businesses
did not have a negative trend in how their earnings changed over time. This fact was confirmed by a
z-test for the comparison of one proportion for each analyzed country. The adaptation to Industry 4.0
strengthened the muscle for bankruptcy resilience during the crisis. In addition, it may encourage
enterprises to be smart in the same or different sectors.

Keywords: bankruptcy; COVID-19 pandemic; earnings; Industry 4.0; small and medium-sized
enterprises; smart sensors; Visegrad Four

1. Introduction

Smart sensors are applied in sectors and their systems to indicate changes or monitor
trends in controlling parameters during the Industry 4.0 era [1]. Small and medium-
sized enterprises may determine and enhance their strategic position using them [2]. The
COVID-19 pandemic caused a very turbulent and risky business environment, affecting
all enterprises [3,4]. When an analytical solution to a particular examined problem is not
possible or would be difficult to obtain, or when a comparison of analytical and model
solutions is advised, models are used [5]. For the purpose of creating a model that will be
used as a tool for future research, it is essential to gather as much information as possible
from real-world solutions [6]. Thus, the consequences and impacts of a new crisis were
hard to predict for all enterprises, especially in the area of SMEs [7,8]. The evidence of
financial indebtedness and defaults in the V4 region was confirmed [9–15]. There have
been occurrences of many approaches, behaviors, and intentions to maintain resilience and
avoid bankruptcy during and after a given crisis [16–20]. New habits have been adopted
and are now preferred [21,22].

Tijani et al. [23] advocated for enterprises to form strategic alliances and partnerships.
Watson and Popescu [24] added the decisions leading to the acquisitions. Dempere [25]
identified the factors of economic freedom that control the COVID-19 era. Javaid et al. [26]
highlighted the importance of Industry 4.0 and its technologies in the fight against the
coronavirus. Acioli et al. [27] identified Industry 4.0 as a facilitator in the erupting crisis.
Its moderating role recognizes the conclusions by Narayanamurthy and Tortorella [28]
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or Hussain et al. [29]. Agrawal et al. [30] pointed out how important Industry 4.0 is and
how important it will be in the future to solve problems such as COVID-19. Kubickova
et al. [31] detected the acceleration in the enterprises to implement the tools of Industry 4.0
during the pandemic. Umair et al. [32] confirmed the catalyst due to the coronavirus and
the significance of Industry 4.0 in the transportation sector as well. Those findings were
based on reports by consulting companies and interactions with industry experts.

In general, Industry 4.0 is a fundamental requirement for process optimization, waste
reduction, innovation introduction, and acquiring competitive advantages [33]. Its policies
determine one of the crucial parameters of sustainable economic growth [34]. Lazanyi and
Lambovska [35] tested V4 countries for the challenges and ways related to Industry 4.0
and concluded that national initiatives have been consistent. Based on this study, Slovakia,
Czechia, Poland, and Hungary provide a great starting point to compare the similar effects
of Industry 4.0 in SMEs. Habanik et al. [36] showed that the COVID-19 crisis has forced
considerable application of Industry 4.0 in enterprises. The technological advances in smart
sensors and systems, the interconnectivity of big data, automation, digitalization, and
artificial intelligence have contributed to defining Industry 4.0 [37].

Thus, the aim of this research was to expose the striking effect of Industry 4.0 on earn-
ings during the crisis in the Visegrad Four. Many studies have confirmed the dependence
between the derivatives of Industry 4.0 and the maintenance of earnings for enterprises in
general. The contribution of this study compared to previous studies is a comprehensive
assessment of SMEs for the V4 region on the issue based on robust samples and confirma-
tion of the significant effect of smart sensors against crises as evidenced by the COVID-19
pandemic example. The novelty consisted of using methodologies that combined trend
analysis, heterogeneity occurrence, and the z-test.

This article especially focuses on smart sensors; the last incentives have been as follows:
Blake and Frajtova Michalikova [38] provided a quantitative literature review of ProQuest,
Scopus, and the Web of Science for cognitive sensor networks; Nagy and Lazaroiu [39]
focused on the techniques of sensor networks; Tucker [40] and Suler et al. [41] assessed
sensor networks in cyber–physical system-based smart factories; and Townsend [42] and
Harris [43] dealt with sensing technologies in planning and data-driven smart, sustain-
able cities.

Marinov et al. [44] showed that suitable “lightweight” algorithms are required for
effective connectivity and smart control of the measurement processes in order to address
the issues brought about by the resource limitations of smart devices. Blake et al. [45] added
deep-learning-assisted smart process planning. Griffin and Krastev [46] extended smart
process planning to transportation systems. Jiang and Qiu [47] delivered an investigation
of multitarget localization and tracking.

Valaskova et al. [48] linked systems of sensors for smart manufacturing. Bhargava et al. [49]
monitored them in logistics and supply chain management. Ullo and Sinha [50] con-
firmed that smart sensors with advanced techniques such as artificial intelligence (AI)
play an important role in other areas and sectors; e.g., agriculture. The significance of
AI was highlighted in studies by Zhang and Wei [51] and Nica and Stehel [52] as well.
Cheema et al. [53] emphasized the use of sensors to capture real-time parameters for smart
farming. Novak et al. [54] and Adams and Krulicky [55] preferred to make decisions about
products and manufacturing based on real-time sensor networks.

Ha et al. [56] enumerated the practical uses of sensing in the context of the two
main categories of optical image sensing by describing the interconnection between the
sensor technologies. Cohen [57] discussed interconnected sensor networks in digital urban
governance. Sustainable urban governance networks were evaluated in the exploration of
Evans and Horak [58]. Fonseca et al. [59] suggested improvements in quantitative traffic
measurement toward smart city governance. Chapman [60] examined environmental
sustainability by connecting sensors in cities.

Shirmohammadli and Bahreyni [61] prepared case studies that applied the information
offered to address various real-world applications of smart sensors. Welch [62] focused on
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real-world applications for vehicles. Specifically, Nandutu et al. [63] reported the status
of sensing in vehicle collisions. Mitchell [64] and Aldridge and Stehel [65] described
the possibility of autonomous vehicle algorithms in transportation systems. However,
Shen et al. [66] and Lewis [67] warned that many of the problems in this area depend on
software systems, data quality, and verification.

Smart sensors lead to an increase in the accumulation of big data [68,69]. Gibson [70]
comprehensively solved the analysis and management of big data. Dawson [71] determined
the use of sensing big data in sustainable product lifecycle management. Aliahmadi et al. [72]
concluded that thanks to smart sensors and the production of big data, managers can respond
to conditions and act on changes.

Table 1 sums up the mentioned studies according to the solved area.

Table 1. Summary of last incentives from literature review.

Area Solved by Smart Sensors Study Reference

Sensor networks

Blake and Frajtova Michalikova (2021) [38]
Nagy and Lazaroiu (2022) [39]

Tucker (2021) [40]
Suler et al. (2021) [41]

Adams and Krulicky (2021) [56]

Smart processes

Marinov et al. (2022) [44]
Blake et al. (2021) [45]

Griffin and Krastev (2021) [46]
Jiang and Qiu (2022) [47]

Shirmohammadli and Bahreyni (2021) [61]

Big data

Clayton and Kral (2021) [68]
Hopkins and Siekelova (2021) [69]

Gibson (2021) [70]
Dawson (2021) [71]

Aliahmadi et al. (2022) [72]

Smart manufacturing

Valaskova et al. (2022) [48]
Bhargava et al. (2022) [49]
Cheema et al. (2022) [53]
Novak et al. (2021) [54]

Adams and Krulicky (2021) [55]

Vehicles

Welch (2021) [62]
Nandutu et al. (2022) [63]

Mitchell (2021) [64]
Aldridge and Stehel (2021) [65]

Shen et al. (2022) [66]
Lewis (2021) [67]

AI
Ullo and Sinha (2021) [50]
Zhang and Wei (2020) [51]
Nica and Stehel (2021) [52]

Smart governance
Cohen (2021) [57]
Horak (2021) [58]

Fonseca et al. (2021) [59]

Smart cities
Townsend (2021) [42]

Harris (2021) [43]
Chapman (2021) [60]

This article is structured as follows: A literature review of studies pertaining to
the evaluation of smart sensors and the most recent incentives is highlighted first. The
statistical techniques employed in the provided study are then demonstrated, together with
the dataset that was used. The Section 3 includes the findings. In Section 4, the acquired
results are contrasted with similar studies from the V4 region. In Section 5, the constraints
of the study are summed up, and suggestions for future research are also made.



Sensors 2022, 22, 8671 4 of 21

2. Materials and Methods

This study targeted SME enterprises. The choice was limited to businesses that were
oriented toward smart sensors because this issue has been scarcely documented in the
literature [73]. The period of investigation, 2016–2021, was purposely selected. The first
part of the period allowed a focus before the COVID-19 crisis. Enterprises had to implement
and use smart sensors until the beginning of the crisis; this covered the years from 2016 to
2019. The main aim was to expose the striking effect of Industry 4.0 on earnings during the
crisis in the Visegrad Four. Thus, the second half of the time frame, from 2020 to 2021, was
chosen to detect how smart sensors impacted the coronavirus era. The data was taken from
the Orbis database, which was provided by Bureau van Dijk.

The earnings were chosen because owners, managers, or other external entities set
the greatest momentousness for financial quantification [74,75]. It has been proven that
earnings volatility or a rapid decrease in earnings may lead to bankruptcy [76–78]. The
idea of bankruptcy protection involves the incentives that maintain the earnings measures
at an appropriate level or eliminate the risk of a negative change in the earnings of the
enterprises [79,80].

The financial situations of SMEs were expressed in this investigation as earnings before
interest, tax, depreciation, and amortization (EBITDA). This indicator is recommended
for use in the comparison of different sectors [81,82] because it eliminates the difference
in economic results between different sectors as well as countries because it removes the
impact of different tax policies and interest rates, especially the different depreciation and
amortization standards.

The following methodology was used in this study:

1. Creation of a sample.

The outliers were not excluded because the sub-samples were not balanced to obtain
a relevant and robust sample from V4, reflecting the actual situation in the sector [83–86].
Together, 4834 SMEs were related to Industry 4.0. However, the original Orbis database
included the missing values for EBITDA. They were found and excluded, not replaced.
Incomplete data were detected for 165 SMEs, 157 Czech SMEs, 18 Polish SMEs, and
3 Hungarian SMEs (Table 2). Table 2 also shows the final number of units included in
this investigation.

Each country was labeled with a number: 1 for Slovakia, 2 for Czechia, 3 for Poland, and
4 for Hungary. These numbers were used to name the countries in the tested hypotheses.

Table 2. Sampling of SMEs.

Number of SMEs Slovakia (1) Czechia (2) Poland (3) Hungary (4)

Original sample 1386 416 873 2159
Sample with incomplete data 165 157 18 3

Used sample 1221 259 855 2156

2. Detection of a trend.

There was a premise that smart sensors supported enterprises. Then, we could not
reject the occurrence of no trend within EBITDA during 2016–2021. The existence of a
monotonic trend was found by the Mann–Kendall trend test. The time series for Slovak,
Czech, Polish, and Hungarian SMEs were checked for a negative trend against a distribution
that was identical.

Kliestik et al. [87] noted the null hypothesis was that the data came from a population
with independent realizations and were identically distributed. There may be no trend.
The alternative hypothesis was that the data followed a monotonic trend. This hypothesis
can be tested for a positive, negative, or non-null trend. This test assessed the sign of
the difference between later-measured data and earlier-measured data. The alternative
hypothesis for the non-null did not test a specific trend. It confirmed only the occurrence of
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the trend. It may be formulated as follows: there exists either an upward or a downward
monotonic trend.

The nonparametric statistic (S) is defined as:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(
Xj − Xk

)
with

sgn (x) =


1
0
−1

if
if
if

x
x
x

>
=
<

0
0
0

where sgn
(
Xj − Xk

)
is an indicator function that takes on the values 1, 0, or −1 according

to the sign of Xj − Xk. The mean of S is E[S] = 0 and the variance σ2 is:

σ2 =
1

18

{
n (n− 1) (2n + 5)−

p

∑
j=1

tj
(
tj − 1

) (
2tj + 5

)}

where p is the number of the tied groups in the data set and tj is the number of data points
in the j-th tied group. The statistic S is approximately normally distributed provided that
the following Z-transformation is employed:

Z =


S−1

σ
0

S+1
σ

if
if
if

S
S
S

>
=
<

0
0
0

where σ is the standard deviation. It is much easier to present statistics that are closely
linked to S and more well-known, such as Kendall’s τ, which is given by:

τ =
S
D

where:

D =

[
1
2

n (n− 1)− 1
2

p

∑
j=1

tj
(
tj − 1

) ] 1
2 [1

2
n (n− 1)

] 1
2

Kendall’s τ is normalized; that is why it may take values from −1 to 1, with negative
values detecting a downward trend and positive values an upward trend in a time series.

The following theory was developed and tested separately for each nation:

Ha. Smart sensors did not balance earnings for Slovak (Czech, Polish, and Hungarian) SMEs.
There was a negative trend confirmed for the period of 2016–2021.

3. Disclosure of a change.

Pettitt’s test was run after the trend test for SMEs; it confirmed the negative devel-
opment. It was done to trace heterogeneity and the year that changed the decrease in
EBITDA as based on the study by Kanovsky [88]. There was a premise that pandemic
years (2020 or 2021) affected the disruptions. The mentioned test defined whether EBITDA
could be considered homogeneous within a time series or if there existed any year in which
change was caused. This test was used with 100,000 Monte Carlo simulations to test the
homogeneity because it is a nonparametric rank test that can reveal the single break point
in continuous data [89].

Valaskova et al. [90] noted that the null hypothesis was that the T variables followed
one or more distributions that had the same location parameter. The alternative hypothesis
was that the year of change occurred.
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The nonparametric statistic is defined as:

KT = max|Ut,T |

where:

Ut,T =
t

∑
i=1

T

∑
j=t+1

sgn
(
Xi − Xj

)
where the year of change of the time series is located at KT provided that the statistic is
significant. The significance probability of KT is approximated for a p-value ≤ 0.05 as:

p ∼= 2 exp
(
−6 K2

t
T3 + T2

)
The following theory was developed and tested separately for each nation:

Hb. There was a phenomenon of heterogeneity in earnings for smart Slovak, Czech, Polish, and
Hungarian SMEs. The pandemic years caused a negative disruption in the period of 2016–2021.

4. Confirmation of a proportion.

The pandemic years were determined as the years of change within EBITDA. Then, the
z-test for the comparison of one proportion was applied to confirm the percentage of SMEs
that were protected during a crisis via smart sensors. The findings could be generalized
after running this test based on the used samples.

Svabova et al. [91] noted that the null hypothesis was that the proportion of character
π in the population was equal to the constant π0 (a test proportion). The alternative
hypothesis in this case was that the proportion of character π was greater than the chosen
constant. The proportion occurred in the population at a higher rate than was assumed.

An assumption of the z-test is that the size of the sample must be sufficiently large
while considering the occurrence of the required character within it. The fulfillment of this
assumption is very important in order to be able to use the approximation of the distribution
of the test statistics using the normal distribution. The sample is large enough if:

np(1− p) > 9

where:
p =

m
n

where m is the number of units with the required attributes (no trend in EBITDA) and n is
the total range of the used sample.

The test statistic T is defined as:

T =
p− π0√
π0(1−π0)

n

The test statistic may be greater than the standard normal distribution z2α for upper
tailed hypothesis. Thus, one should reject the null hypothesis and accept the alternative
hypothesis. The test proportion π0 was set at level 0.8. This meant that it should have
been a generalized conclusion for 80% of SMEs. This level was chosen due to the findings
of many researchers [92–101] that summed up to the fact that over 80% of SMEs were
negatively affected by the COVID-19 pandemic. The purpose of this study was to contrast
this fact and show how smart sensors supported the retention of EBITDA in more than 80%
of SMEs in each analyzed country during the crisis.

The following theory was developed and tested separately for each nation:

Hc. More than 80% of Slovak (Czech, Polish, and Hungarian) SMEs balanced earnings during
the crisis.
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3. Results

The results assessed the nexus between smart sensors and the retention of earnings by
SMEs. The sample included 4491 units from the V4 region and covered a 6-year period.

Firstly, the occurrence of a negative trend in earnings in smart enterprises was checked
during the period 2016–2021. The significance level alpha was set at level 0.05 for all the
investigations. Each country of the Visegrad Four was tested in turn.

The following hypotheses were mapped to the analysis in Slovakia:

H0a: Smart sensors balanced earnings for Slovak SMEs. There was no trend in the period of
2016–2021.

H1a. Smart sensors did not balance earnings for Slovak SMEs. There was a negative trend confirmed
for the period of 2016–2021.

The Mann–Kendall trend test was run for each enterprise in the sample of 1221 SMEs.
If the computed p-value is lower than the significance level alpha, one should reject the
null hypothesis and accept the alternative hypothesis based on Figure 1. This situation, due
to the occurrence of a negative trend, was confirmed for 154 SMEs (Table 3).
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Figure 1. Negative trend in Slovakia.

Table 3. Trends of SMEs.

Number of SMEs Slovakia Czechia Poland Hungary

Used sample 1221 259 855 2156
Negative trend 154 31 63 212

No trend 1067 228 792 1944

Based on Figure 2, as the p-value was greater than the significance level alpha, we
could not reject the null hypothesis. Thus, smart sensors balanced earnings for Slovak
SMEs during the period 2016–2021 in 1067 cases (Table 3).
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Figure 2. No trend in Slovakia.

The following hypotheses were mapped to the analysis in Czechia:

H0a. Smart sensors balanced earnings for Czech SMEs. There was no trend in the period of
2016–2021.

H2a. Smart sensors did not balance earnings for Czech SMEs. There was a negative trend confirmed
for the period of 2016–2021.

The Mann–Kendall trend test was run for each enterprise in the sample of 259 SMEs.
If the computed p-value is lower than the significance level alpha, one should reject the
null hypothesis and accept the alternative hypothesis based on Figure 3. This situation, due
to the occurrence of a negative trend, was confirmed for 31 SMEs (Table 3).
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Figure 3. Negative trend in Czechia.
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Based on Figure 4, as the p-value was greater than the significance level alpha, we
could not reject the null hypothesis. Thus, smart sensors balanced earnings for Czech SMEs
during the period 2016–2021 in 228 cases (Table 3).
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Figure 4. No trend in Czechia.

The following hypotheses were mapped to the analysis in Poland:

H0a. Smart sensors balanced earnings for Polish SMEs. There was no trend in the period of
2016–2021.

H3a. Smart sensors did not balance earnings for Polish SMEs. There was a negative trend confirmed
for the period of 2016–2021.

The Mann–Kendall trend test was run for each enterprise in the sample of 855 SMEs.
If the computed p-value is lower than the significance level alpha, one should reject the
null hypothesis and accept the alternative hypothesis based on Figure 5. This situation, due
to the occurrence of a negative trend, was confirmed for 63 SMEs (Table 3).

Based on Figure 6, as the p-value was greater than the significance level alpha, we
could not reject the null hypothesis. Thus, smart sensors balanced earnings for Polish SMEs
during the period 2016–2021 in 792 cases (Table 3).

The following hypotheses were mapped to the analysis in Hungary:

H0a. Smart sensors balanced earnings for Hungarian SMEs. There was no trend in the period of
2016–2021.

H4a. Smart sensors did not balance earnings for Hungarian SMEs. There was a negative trend
confirmed for the period of 2016–2021.
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Figure 6. No trend in Poland.

The Mann–Kendall trend test was run for each enterprise in the sample of 2156 SMEs.
If the computed p-value is lower than the significance level alpha, one should reject the
null hypothesis and accept the alternative hypothesis based on Figure 7. This situation, due
to the occurrence of a negative trend, was confirmed for 212 SMEs (Table 3).
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Figure 7. Negative trend in Hungary.

Based on Figure 8, as the p-value was greater than the significance level alpha, we
could not reject the null hypothesis. Thus, smart sensors balanced earnings for Hungarian
SMEs during the period 2016–2021 in 1944 cases (Table 3).
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Figure 8. No trend in Hungary.

Secondly, the negative trend was explored in detail for 460 SMEs. The test for hetero-
geneity was applied individually in every enterprise with this kind of trend. The pandemic
years of 2020 and 2021 were supposed to be the cause of decreased development in the
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time series. The significance level alpha was set at level 0.05 for all the investigations. Each
country of the Visegrad Four was tested in turn.

The following hypotheses corresponded to the analysis of Slovakia:

H0b. There was no phenomenon of heterogeneity in earnings for smart Slovak SMEs. The pandemic
years did not cause a negative disruption in the period of 2016–2021.

H1b. There was a phenomenon of heterogeneity in earnings for smart Slovak SMEs. The pandemic
years caused a negative disruption in the period of 2016–2021.

Pettitt’s test was run for each enterprise in the sample of 154 Slovak SMEs. If the
computed p-value is lower than the significance level alpha, one should reject the null
hypothesis and accept the alternative hypothesis. Thus, the phenomenon of heterogeneity
in earnings was accepted for each unit in the sample. Based on Figure 9, pandemic years
caused negative disruption in the period 2016–2021; 2020 was a climacteric year for 95 smart
SMEs, and 2021 was a critical year for 59 smart SMEs. COVID-19 was at the core of this
development (Table 4).
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Figure 9. Heterogeneity in Slovakia.

Table 4. Years of disruption for SMEs.

Number of SMEs Slovakia Czechia Poland Hungary

Occurred heterogeneity 154 31 63 212
Year 2020 95 19 32 143
Year 2021 59 12 31 69

The following hypotheses corresponded to the analysis of Czechia:

H0b. There was no phenomenon of heterogeneity in earnings for smart Czech SMEs. The pandemic
years did not cause a negative disruption in the period of 2016–2021.

H2b. There was a phenomenon of heterogeneity in earnings for smart Czech SMEs. The pandemic
years caused a negative disruption in the period of 2016–2021.

Pettitt’s test was run for each enterprise in the sample of 31 Czech SMEs. If the
computed p-value is lower than the significance level alpha, one should reject the null
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hypothesis and accept the alternative hypothesis. Thus, the phenomenon of heterogeneity
in earnings was accepted for each unit in the sample. Based on Figure 10, pandemic years
caused negative disruption in the period 2016–2021; 2020 was a climacteric year for 19 smart
SMEs, and 2021 was a critical year for 12 smart SMEs. COVID-19 was at the core of this
development (Table 4).
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Figure 10. Heterogeneity in Czechia.

The following hypotheses corresponded to the analysis of Poland:

H0b. There was no phenomenon of heterogeneity in earnings for smart Polish SMEs. The pandemic
years did not cause a negative disruption in the period of 2016–2021.

H3b. There was a phenomenon of heterogeneity in earnings for smart Polish SMEs. The pandemic
years caused a negative disruption in the period of 2016–2021.

Pettitt’s test was run for each enterprise in the sample of 63 Polish SMEs. If the
computed p-value is lower than the significance level alpha, one should reject the null
hypothesis and accept the alternative hypothesis. Thus, the phenomenon of heterogeneity
in earnings was accepted for each unit in the sample. Based on Figure 11, pandemic years
caused negative disruption in the period 2016–2021; 2020 was a climacteric year for 32 smart
SMEs, and 2021 was a critical year for 31 smart SMEs. COVID-19 was at the core of this
development (Table 4).

The following hypotheses corresponded to the analysis of Hungary:

H0b. There was no phenomenon of heterogeneity in earnings for smart Hungarian SMEs. The
pandemic years did not cause a negative disruption in the period of 2016–2021.

H4b. There was a phenomenon of heterogeneity in earnings for smart Hungarian SMEs. The
pandemic years caused a negative disruption in the period of 2016–2021.
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Figure 11. Heterogeneity in Poland.

Pettitt’s test was run for each enterprise in the sample of 212 Hungarian SMEs. If
the computed p-value is lower than the significance level alpha, one should reject the null
hypothesis and accept the alternative hypothesis. Thus, the phenomenon of heterogeneity
in earnings was accepted for each unit in the sample. Based on Figure 12, pandemic
years caused negative disruption in the period 2016–2021; 2020 was a climacteric year for
143 smart SMEs, and 2021 was a critical year for 69 smart SMEs. COVID-19 was at the core
of this development (Table 4).
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Figure 12. Heterogeneity in Hungary.

A negative trend was proven due to the pandemic and its consequences. Finally, the
study exposed the striking effect of Industry 4.0 on earnings. The tests for one proportion
disclosed the percentage of SMEs that protected their earnings using smart sensors during
a crisis. The findings were generalized based on the analyzed samples for the entire
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population. The significance level alpha was set at level 0.05 for all the investigations. Each
country of the Visegrad Four was tested in turn.

The hypotheses supporting the analysis of Slovakia were:

H0c. 80% of Slovak SMEs balanced earnings during the crisis via Industry 4.0.

H1c. More than 80% of Slovak SMEs balanced earnings during the crisis via Industry 4.0.

The z-test for comparison of one proportion tested if the difference between the
proportions was equal to 0 or not. If the computed p-value is lower than the significance
level alpha, one should reject the null hypothesis and accept the alternative hypothesis.
Thus, more than 80% of Slovak SMEs balanced earnings during the crisis via Industry 4.0.
This was generalized based on the p-value < 0.0001 from Table 5.

Table 5. The z-test for comparison of one proportion for SMEs.

z-Test Slovakia Czechia Poland Hungary

Frequency (balanced earnings) 1067 228 792 1944
Sample size 1221 259 855 2156

Test proportion 0.8 0.8 0.8 0.8
Proportion 0.8739 0.8803 0.9263 0.9017

Assumption Confirmed Confirmed Confirmed Confirmed
Hypothesized difference 0 0 0 0

Difference 0.0739 0.0803 0.1263 0.1017
z (Observed value) 6.4176 3.1535 9.1911 11.7751

z (Critical value) 1.6449 1.6449 1.6449 1.6449
alpha 0.05 0.05 0.05 0.05

p-Value (upper-tailed) <0.0001 0.0008 <0.0001 <0.0001

The hypotheses supporting the analysis in Czechia were:

H0c. 80% of Czech SMEs balanced earnings during the crisis via Industry 4.0.

H2c. More than 80% of Czech SMEs balanced earnings during the crisis via Industry 4.0.

The z-test for comparison of one proportion tested if the difference between the
proportions was equal to 0 or not. If the computed p-value is lower than the significance
level alpha, one should reject the null hypothesis and accept the alternative hypothesis.
Thus, more than 80% of Czech SMEs balanced earnings during the crisis via Industry 4.0.
This was generalized based on the p-value = 0.0008 from Table 5.

The hypotheses supporting the analysis in Poland were:

H0c. 80% of Polish SMEs balanced earnings during the crisis via Industry 4.0.

H3c. More than 80% of Polish SMEs balanced earnings during the crisis via Industry 4.0.

The z-test for comparison of one proportion tested if the difference between the
proportions was equal to 0 or not. If the computed p-value is lower than the significance
level alpha, one should reject the null hypothesis and accept the alternative hypothesis.
Thus, more than 80% of Polish SMEs balanced earnings during the crisis via Industry 4.0.
This was generalized based on the p-value < 0.0001 from Table 5.

The hypotheses supporting the analysis in Hungary were:

H0c. 80% of Hungarian SMEs balanced earnings during the crisis via Industry 4.0.

H4c. More than 80% of Hungarian SMEs balanced earnings during the crisis via Industry 4.0.

The z-test for comparison of one proportion tested if the difference between the pro-
portions was equal to 0 or not. If the computed p-value is lower than the significance level
alpha, one should reject the null hypothesis and accept the alternative hypothesis. Thus,
more than 80% of Hungarian SMEs balanced earnings during the crisis via Industry 4.0.
This was generalized based on the p-value < 0.0001 from Table 5.
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4. Discussion

The results were discussed to determine whether they were a close match with the
last studies from the V4 region. The findings for SMEs (primarily from the transportation
and automotive sectors) may be expressed through the juxtaposition of similar ones.

Gasiorek [102] did not analyze the entire V4 region; the article highlighted the skills
needed for enterprises to be successful as based on responses from respondents in Poland.
It is necessary to have stable earnings not only due to the technological part that was
presented in this study; the study by Gasiorek [102] also reported specific soft competen-
cies (including cognitive and social) to be imparted into the human workforce to meet
the requirements of both progress in technology and the requirements of employees for
Industry 4.0. Olsanova et al. [103] confirmed these conclusions in Czech conditions as well.
The investigation recommended lifelong learning with technological advancements and
soft skills to be smart and profitable. On the contrary, the Hungarian automotive industry
does not place human resources among the success factors a priori. This was evidenced in
the research by Toth-Kaszas [104].

Karmanska [105] explored the striking effect of Industry 4.0 in the transport sector.
This study focused on the Internet of Things. The study used a questionnaire and an inter-
view technique for Polish enterprises. The benefits were different because they balanced
earnings. From a microeconomic view, the biggest improvements were shown in the areas
of employee productivity and asset management.

Kliestik et al. [106] assessed the EBITDA of transport enterprises in the V4 region
in general. There were no specifications required to be fulfilled by the enterprises. The
investigation covered a period before the COVID-19 pandemic (2010–2019). The earnings
were tested on an average for every year, not individually for each enterprise, as in this
study. They found a downward trend in the analyzed time series that was in contrast with
the provided study. In addition, its opposite effect, the effect of Industry 4.0, was particu-
larly caused by earnings manipulation. The secondary cores were indicated as the GDP,
unemployment rate, average monthly gross wage, and the ease of doing business index.

The exploration by Michalkova et al. [107] added 26 countries to the countries of
V4 during the precrisis years of 2011–2019. Panel data were mapped for earnings. The
study disclosed that earnings were significantly affected by the size of the enterprise. All
transportation SMEs’ earnings were managed downward. This generalization of results
contrasted with the ones mentioned for smart SMEs from the analyzed sample. However,
very large enterprises demonstrated positive earnings. The advantage was reflected much
earlier than in SMEs before the COVID-19 pandemic. This might be the consequence of the
first implementation of Industry 4.0 in very large enterprises rather than in SMEs.

5. Conclusions

The aim of this study was to expose the striking effect of Industry 4.0 on earnings
during the crisis in the Visegrad Four. Specifically, the advantages of using smart sensors
for the retention of earnings as represented by EBITDA were shown. A decrease in earnings
may support even the bankruptcy of SMEs. It was proven that COVID-19 caused a negative
trend in earnings. During the pandemic crisis (2020–2021), however, smart sensors the
balanced earnings of more than 80% of Slovak (Czech, Polish, and Hungarian) SMEs. Based
on these results, Industry 4.0 and its components mean not only progress, but also the
protection business in which they have been involved. This positive fact, which was based
on verifiable samples, is the next reason for governments and authorities to support and
speed up programs that apply smart manufacturing systems and technology.

The first limitation was that there was not an equal number of enterprises in the
samples for each country. The SMEs declared the dominant use of smart sensors as a
possible progression of tools. However, we did not check whether there were positive effects
of other parts of Industry 4.0 that were implemented in SMEs. Further, the orientation was
for all sectors and only SMEs. Thus, future research should be extended to the investigation
of large and very large enterprises. In addition, the orientation per sector included balanced
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samples that involved Industry 4.0. The other parts of Industry 4.0 may also be tested while
their effects are being examined.
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