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Abstract: Extracting useful knowledge from proper data analysis is a very challenging task for
efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML)
algorithms, while, especially in healthcare, this complexity increases due to the domain’s require-
ments for analytics-based risk predictions. This manuscript proposes a data analysis mechanism
experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient
ML algorithms to be used depending on the healthcare scenario’s requirements and datasets, for
efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve
Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks,
Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke,
COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance
metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a
sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios,
and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending
on the scenarios’ nature and needed metrics. Further evaluation must be performed considering
additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for
improving the mechanism’s efficiency.

Keywords: data analysis; machine learning; catalogue; supervised learning; prediction; healthcare

1. Introduction

According to a recent survey [1], almost 60% of companies utilize machine learning
(ML) techniques or artificial intelligence (AI) to support their decision-making processes.
This percentage is expected to grow even more, highlighting the importance of the existence
of mechanisms that can perform data analyses. The global AI market in 2021 was measured
at 327.5 billion dollars, with companies such as IBM and Intel investing a great number
of resources in ML and generally in AI to improve their products and services [2]. This
suggests that dedicated mechanisms should exist for performing data analyses in collected
data, including tasks like feature extraction and ML models’ training, applying those
models to assess their accuracy, providing predictions, and strengthening their nature.

Such mechanisms are utilized in multiple domains and sectors, including transporta-
tion, finance, education, smart cities, and healthcare [3]. For instance, in the transportation
domain those mechanisms are applied in route optimization, parking, streetlights, accident
prevention/detection, and road anomalies [4]. In finance, they can be utilized for pattern
recognition and financial econometrics [5], while in education they can be used for pre-
cision education [6]. Regarding smart cities, ML can be used for the effective utilization
of unmanned aerial vehicles (UAVs) to assure the best services of 5G communications, as

Sensors 2022, 22, 8615. https://doi.org/10.3390/s22228615 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1543-5627
https://orcid.org/0000-0002-1681-3626
https://orcid.org/0000-0002-6237-488X
https://orcid.org/0000-0001-7019-7214
https://doi.org/10.3390/s22228615
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228615?type=check_update&version=2


Sensors 2022, 22, 8615 2 of 46

well as the energy-efficient utilization of smart grids (SGs) [7]. When it comes to health-
care, the use of ML is even more extensive due to the massive new opportunities that it
can provide to this domain. Predicting the outcome of a patient’s disease, suggesting a
suitable treatment, and creating an intervention or even a policy regarding public health
are indicative examples of utilizing ML in this domain. An example of these opportunities
can be the fact that considering traditional healthcare environments, the proper diagnosis
of a disease depends on the healthcare practitioner’s decision, solely considering a patient’s
symptoms. However, this may lead to unwanted errors that can result in increased medical
costs, also affecting the quality of service provided to patients. Instead, expert healthcare
systems that utilize data mining, ML, and AI techniques [1] could be used to emulate the
decision-making ability of a human expert for answering simple questions like “What is
the average age of patients who have heart disease?”, “Are there any female patients who
are single and have been treated for heart diseases?”, and also complex ones like “Given
the patient records, is it feasible to predict the probability of patients who diagnosed with a
heart disease?”, “Is it possible to find the most significant risk factor that results to a heart
disease?”. Considering the multidimensionality and heterogeneity of the health-related
data that are hidden behind such questions, their efficient analysis can be managed by
a variety of ML algorithms, thus leading to better decision-making [8]. Hence, making
use of ML in healthcare can both reduce medical errors and decrease practice variation,
while it can also assist the diagnosis’ process and improve the treatment plan [9]. Such a
notion may be efficiently realized by identifying information in massive amounts of data
by recognizing patterns and summarizing data into an understandable style.

To get the most out of the provided data, the data analysis mechanisms should
always ensure that they use the most suitable approach. Nowadays, a plethora of algo-
rithms/techniques exist, each one being more suitable for specific use cases, thus making
the selection of the proper one a real challenge. For instance, there may be cases of health
incidents where a simple ML classification algorithm can be used to classify different
patients based on their characteristics. There may also be other cases where a more complex
ML prediction algorithm should be utilized to predict the onset of a disease. To this context,
a variety of studies have been conducted to provide predictions either for diagnosis or for
prognosis of different diseases and health conditions, comparing several ML algorithms
and classifiers [2,3]. Most of those studies are use-case specific, not providing insights
regarding the most suitable algorithm in diverse healthcare scenarios. What is needed is
an on-demand real-time and ready-to-use catalogue of ML algorithms in the form of a list,
indicating the proper ML algorithm that must be used under specific cases, considering
real-time requirements and needs. Consequently, instead of randomly choosing an ML
algorithm for predicting the cause or the onset of a disease that could possibly result in
erroneous results and a time-consuming process, this ML algorithms’ catalogue could
facilitate the overall choice and significantly improve the prediction process.

In this manuscript, a data analysis mechanism is proposed to deal with the abovemen-
tioned challenges, aiming to train different ML models on top of diverse healthcare-related
datasets and use cases in order to derive the envisioned ML algorithms’ catalogue. As
already stated, this catalogue will contain a list of the most proper ML algorithms to be
used under specific healthcare scenarios, whereas through proper criteria selection these
ML algorithms can be accordingly adapted and offered to their stakeholders. For instance,
there may be cases where stroke prediction must be provided in real-time for a specific
patient, and as a result Bernoulli Naive Bayes (BNB) should be performed. Real-time
predictions are considered of crucial importance since there may exist several diseases,
such as stroke, heart failure, or fainting episodes that may occur in unexpected cases, even
in moments after abnormal bio-signals measurements have taken place [10]. As a result, if
those abnormal measurements are detected on-the-fly and, based on an already trained
ML healthcare disease model are classified as harmful, then the appropriate decisions
could be made in real-time (e.g., real-time emergency alerts for hospitalization, contact
of emergency services). However, in a different case, a stroke prevention policy should
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be provided, and as a result the Decision Tree would provide results of higher value. To
achieve all these, the developed mechanism can collect data and perform various ML
algorithms, such as BNB, K-Nearest Neighbors (KNN), Decision Tree, Logistic Regression,
and Random Forest Classifiers to provide predictions regarding specific features that occur
in healthcare data deriving from diverse scenarios. Based on the provided data and specific
metrics that are generated after the training of the ML models, the mechanism selects the
most proper algorithm to be used for predictions in similar future datasets and scenarios,
under certain requirements. To evaluate such an approach, the mechanism exploits various
heterogeneous datasets covering six different healthcare scenarios, ranging from stroke to
COVID-19 data, among others, to verify its applicability in diverse healthcare scenarios
and provide a complete ML catalogue based on an exploratory proof-of-concept. The major
contributions of this manuscript lie not only on the ML catalogue itself, but also on the
separate components that make up the whole proposed mechanism, which are further
analyzed in the Sections below. More specifically, the first major contribution refers to
the Gateway component that is responsible for the collection of the data, being capable of
collecting both real-time and non-real-time data, regardless of their data format. Another
major contribution refers to the Data Reliability component that is responsible for ensuring
the reliability of the collected data, making use of several ML and natural language process-
ing (NLP) techniques to efficiently complete its tasks. What is more, a notable contribution
relies on the Model Training component, where a plethora of experiments are performed in
order to conclude in the best suitable models’ parameters to be chosen for each different
scenario, exploiting the hyperparameters tuning concept. To successfully capture and boost
the reliability of the developed models, through the model evaluation component, the
mechanism can estimate the overall performance of the trained ML algorithms by capturing
a plethora of diverse metrics, referring to accuracy, precision, recall, F1-score, specificity,
and confusion matrix for finally choosing the most proper algorithm to be applied on each
given scenario, towards creating the proposed ML algorithms’ catalogue. Additionally, a
notable contribution of the proposed mechanism refers to the Data Storage component that
exploits the NoSQL databases concept in order to be able to efficiently handle and process
the huge amounts of data that may be received. On top of the developed components, a
major contribution of the proposed mechanism relies on the applied software architecture,
which refers to the MicroServices Architecture (MSA). The latter provides a more efficient
way for performing ML training and prediction than traditional architectures, such as the
Monolithic Architecture (MA).

The rest of this manuscript is organized as follows. Section 2 provides a literature
review regarding the main principles of applying ML for predictions, mentioning how
specific ML algorithms are utilized in the context of healthcare. Additionally, it depicts
the overall architecture of the proposed mechanism, as well as the steps that have been
followed towards the extraction of results. Section 3 states the derived results from the
evaluation of the proposed mechanism, being followed by an extended analysis of them
through proper graphs and charts. Section 4 provides a discussion of the captured results,
also indicating the mechanisms’ limitations. Finally, Section 5 summarizes the manuscript’s
overall work and provides insights for the following steps to tackle the faced challenges
and limitations.

2. Materials and Methods
2.1. Machine Learning Principles and Algorithms

In recent years, ML has become a powerful tool in many fields of technology and other
domains. It is devoted to creating algorithms and models that allow software applications
to “learn” and perform accurate predictions upon the existing plethora of data. Thus,
through ML, computers are capable of automatically improving their functionalities based
on experience. To do so, computers need to utilize data derived from the real world so that
they can “learn” from them and provide the needed predictions. To accomplish such a task,
the applied ML techniques are usually separated into two categories, named supervised
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and unsupervised ML techniques. A labeled sample of training data is utilized in the
first case to estimate/map the input data to the intended output. In the second case, no
labeled data are supplied, and hence no specified intended result is provided. In every case,
however, the goal remains the same, referring to the production of a ML model that can be
exploited for classification, prediction, or any other related task. By the time that the model
is generated, it is then imperative to be evaluated. To this context, the model’s performance
can be assessed based on specific metrics, including accuracy, specificity, recall, precision
F1-score, and confusion matrix, among others.

In general, ML tools have grown in popularity in the healthcare area during the last
few decades, where a variety of ML algorithms, including BNB, KNN, Decision Tree (DT),
Logistic Regression (LR), Random Forest (RF), Neural Networks (NN), and Stochastic
Gradient Descent (SGD) [10–13], among others, have been widely applied, aiming to detect
key features of patients’ conditions, health risks, as well as diseases’ progression after
treatment, exploiting information that derives from various complex medical datasets.
Since a plethora of challenges and requirements exist that need to be faced regarding
such concepts, various research approaches have been conducted towards this direction
(i.e., generating ML models to provide predictions for diseases’ outcomes and assist in
selecting the right treatment plan). Such approaches are further examined in Section 4 of
the manuscript. Regarding the main challenges that need to be faced when utilizing ML in
healthcare, those mainly refer to data collection, data management and, finally, data analysis.
The latter aims to assist in precision medicine, which means creating the most proper model
to result to the successful treatment protocol of patients based on their attributes and
treatment context (e.g., provide the best treatment possible to patients suffering from
diabetes). At the same time, since the volume of the underlying data is tremendous, all
the corresponding ML approaches should make the most accurate predictions possible,
without, however, exceeding certain computational limits.

All of those challenges have been addressed by existing approaches that have been
effectively applied in the medical research to construct prediction models towards correct
decision-making [14,15], being use-case specific. As mentioned in [16], the selection of the
best algorithm is based on the available dataset per use case and the diseases that those
datasets refer to. Thus, in the context of this manuscript, for the validity and confirmation
of the proposed mechanism’s produced results, a list of the most popular algorithms was
selected (based on the current literature), having the ability to be applied concurrently
in multiple datasets, since they are not tailored to be efficient solely for domain-specific
datasets. Consequently, since the aim of this research is to cover multiple datasets from
several healthcare scenarios, as well as to perform an unbiased performance evaluation
based on different metrics and criteria, state-of-the-art algorithms were preferred to be used
with a wider domain area application (e.g., healthcare, industry, manufacturing), avoiding
already known algorithms for their high-performance explicitly in the medical domain
(e.g., XGBoost, AdaBoost, GDBT). Furthermore, it should be noted that although the latter
algorithms (i.e., XGBoost, AdaBoost, GDBT) may be more efficient in certain medical
domains, the current literature shows that their applicability and efficiency have not been
experimented and evaluated as a whole in such a wide area of healthcare scenarios, such as
the ones that are investigated in the current manuscript. Although isolated cases exist, such
as AdaBoost, which has been evaluated on top of eczema datasets [17], XGBoost, which has
been experimented considering asthmatic patients [18], type-2 diabetic patients [19], GDBT
that has been put into practice upon predicting patients’ care needs [20], and Parkinson’s
disease [21]. However, to the best of our knowledge, none of the aforementioned research
works evaluate these algorithms on top of the same use cases simultaneously. As a result,
their prior performance and applicability would be equally unknown, as in the case of using
the current research algorithms (e.g., Naïve Bayes, KNN). For this reason, the proposed
mechanism utilizes seven widely used and well-established ML algorithms, namely the
BNB, KNN, DT, RF, LR, NN, and SGD, to train models to perform predictions across
diverse healthcare anomalies’ scenarios (e.g., diabetes, heart failure, stroke, COVID-19,
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breast cancer, and chronic kidney disease). Based on specific metrics (i.e., accuracy, recall,
precision, F1-score, specificity, and confusion matrix), the proposed mechanism compares
the algorithms’ efficiency and chooses the most proper one to be applied on each given
scenario, towards creating the proposed ML algorithms’ catalogue. The basic principles of
all the exploited algorithms are further depicted in the following sub-sections.

2.1.1. Bernoulli Naïve Bayes (BNB)

BNB is based on Bayes’ theorem for finding the conditional occurrence probability of
two events based on the occurrence probabilities of each event. When the class variable is
supplied, BNB considers the presence/absence of a certain attribute of a class to be uncon-
nected to the presence/absence of any other attribute, while the features are independent
binary variables that reflect whether a condition will occur or not [22]. BNB’s model can be
created as shown in Formula (1):

P(x i | y ) = P(i | y )xi + (1− P(i | y ))(1− xi) (1)

where P(x i | y ) is the probability of xi given that evidence y has already occurred, and
y can have only values 0 or 1. The needed steps to apply BNB are shown in Figure 1.
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Based on the literature, the BNB classifier is used in a variety of health-related use
cases, which are highlighted below through a multitude of research case studies. More
specifically, in [23], the authors created a decision support system based on BNB to predict
heart failure disease. In a similar study [24], the authors used BNB to predict heart disease,
resulting into a greater success rate of correct prediction than previous approaches. Another
important use of BNB in health-related sectors is liver disorders. To predict three major
liver disorders using their different characteristics [25], the authors also employed BNB. By
comparing BNB with NB, they discovered that NB outperforms its counterpart in predicting
the three liver diseases of liver cancer, cirrhosis, and hepatitis. In [26], the authors created
a human–machine semi-automated system based on BNB to classify injury tales using a
huge administrative database, discovering that the created method had a very high overall
accuracy. In another study [27], to identify illnesses, the authors created a patient-centered
clinical decision support system employing BNB and cloud computing technologies. A
comprehensive overview of the use of BNB in medical data mining is also discussed in [28].
Most recently, in [29], the authors performed an analysis based on the symptoms observed
in people affected by COVID-19, and among other algorithms they used BNB to perform
classification to find the best performance metrics.

2.1.2. K-Nearest Neighbors (KNN)

KNN is a non-parametric algorithm that is widely used for classification, getting as an
input the k closest training instances in a dataset, and producing as an output the class of a
requested instance, where the majority votes of the instance’s neighbors exist [30]. KNN’s
model can be created following Formula (2):

(
n

∑
i=1
|xi − yi|P)

1
P

(2)

where p > 0 and xi , yi are the vectors to find the similarity distance between the x and
y instances. The steps for applying KNN are summarized in Figure 2.
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Figure 2. Indicative example of KNN steps.

According to the literature, KNN is used in a variety of health-related fields. To be more
specific, for stroke prediction, the authors in [31] outlined that the accuracy rate achieved
from KNN is very high, whereas in the same notion the authors in [32] stated that KNN
scores the highest percentage of accuracy against the other algorithms that are exploited for
predicting healing of COVID-19 patients. In addition, in [33], a conceptual framework for
developing sustainable digital innovation hubs was examined on top of different algorithms
performed on diabetes data, where it was observed that KNN scores were lower in terms
of efficiency. However, for cases of kidney disease prediction, the authors in [34] noted
that KNN has increased levels of accuracy. In [35], a correlation analysis for determining
effective data in ML was performed on top of heart failure datasets, proving that KNN
scores the highest accuracy rate. In [36], the authors used KNN to classify arrhythmia beats,
while in [37] the authors efficiently predicted heart disease using KNN. Another study [38]
compares the performance of KNN and BNB on thyroid detection, whereas most recently,
the research in [30] performs a comparison of the performance of KNN and its variations
for disease prediction.

2.1.3. Decision Tree (DT)

DT is a predictive modelling approach used in statistics, and ML is one of the most
popular approaches for producing classifiers [39]. It is analogous to the flowchart structure,
in which each internal node represents a condition on an attribute, each branch represents
the condition’s outcome, each leaf node represents the class label, and the final choice is
made after computing all the attributes [40]. In essence, it employs a decision tree to move
from observations of an item (represented by branches) to inferences about the target value
of the item (represented by leaves) [41], formulated by applying Formula (3):

G =
C

∑
i=1

p(i) ∗ (1− p(i)) (3)

where C is the total number of features and p(i) is the probability of picking the data point
with feature i. The steps for applying DT are shown in Figure 3.
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According to a comparative analysis of ML classifiers for stroke predictions [42], it is
observed that the accuracy rate noted for DT is of high value, whereas in [43], COVID-19
mortality levels are predicted following the DT algorithm scores, which were not satisfac-
tory enough. In addition, for diabetes prediction, a comparative study in [44] demonstrates
that DT achieves results of high score, while considering the cases of predicting and diag-
nosing breast cancer and kidney disease. In [45,46], DT is selected as an effective option
of classification algorithms, along with recursive feature elimination techniques, resulting
into high accuracy rates. Additionally, in [47], in the context of heart failure data, it has
been noticed that DT scores a medium level of accuracy rate, among a list of ML algorithms
that are applied for multiple diseases’ prediction.

2.1.4. Random Forest (RF)

RF is an ensemble learning approach widely used for classification, which works by
generating a large number of decision trees during training. It is similar to DT, except the
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fact that the algorithm builds a forest of decision trees with attribute sites picked at random.
It has the benefit of increased computer efficiency, which improves forecast accuracy
without significantly increasing the computational cost. It is also capable of predicting up
to hundreds of explanatory factors [40], whilst it can be formulated as depicted in (4):

Gini Index = 1−
n

∑
i=1

(Pi)
2 = 1−

[
(P+)

2 + (P−)
2
]

(4)

where P+ is the probability of a positive feature and P− is the probability of a negative
feature. The steps that need to be followed to apply RF are summarized in Figure 4.
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In the medical profession, RF is frequently used to pick the proper and ideal mix of
symptoms and illness components. This is accomplished by reviewing the patient’s medical
records [48]. In accordance with the literature on predicting stroke outcomes, it is observed
that in [49] the accuracy rate noted for the RF algorithm is of high value, whereas in [50], a
computational intelligence-based model is used for mortality rate prediction in COVID-19
patients, proving that RF scores a high-value accuracy rate. In addition, on a diabetes
prediction using ML algorithms with feature selection and dimensionality reduction, a
comparative study was done in [51], where it is observed that RF achieves a medium-value
score of accuracy. Additionally, regarding predicting breast cancer biopsy outcomes in [52]
and developing an insulin resistance model in the context of the kidney disease in [53],
both studies show that RF has high values of accuracy rates. Additionally, regarding using
effective data mining techniques for heart failure, in [54] the authors noticed that RF is
among the best candidates of ML algorithms, with scores of high accuracy.

2.1.5. Logistic Regression (LR)

In its most basic form, LR is a statistical model that employs a logistic function
to represent a binary dependent variable. In essence, it divides training data into two
categories (“0” and “1”), which relate to the Bernoulli distribution [55], while when there
are more than two possible outcomes, multinomial logistic regression is used. In general,
LR is used in regression analysis to estimate the parameters of a logistic model (a form of
binary regression), as depicted in Formula (5):

p(x) =
1

1 + e−(β0+β1x)
(5)

where β0 = −µ/s and β1 = 1/s. The steps that need to be followed to apply LR are
summarized in Figure 5.
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The existing research reveals that LR is used in a variety of health-related fields.
Study [56] predicts the risk of drug intoxication mortality using LR, whereas the study
in [57] uses LR for pancreatic cancer classification. Most recently, ref. [58] performed an
evaluation of brucellosis risk variables in dairy cattle using LR and classification trees.
Moreover, on the stroke usage scenario, it is observed that in [59] where the authors try to
predict the motor function in stroke patients, the accuracy rate that is noted for LR is not of
high efficiency. Additionally, regarding the mortality rate prediction of COVID-19 patients,
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in [50] it is observed that LR scores a high accuracy rate, whereas in [60], considering a
comparison of ML algorithms for diabetes prediction, it is observed that LR achieves a
high score for splitting method. Additionally, regarding breast cancer prediction in [45]
and the study of predicting kidney disease in [61], among several algorithms that have
been compared, it has been identified that LR has high accuracy rates. Additionally, in [54]
through research for predicting heart failures, it was noticed that LR scores medium levels
of accuracy rate.

2.1.6. Neural Networks (NN)

NN, also known as artificial neural networks (ANNs), are a sub-set of ML inspired
by the human brain, mimicking the way that biological neurons signal to one another.
A widely known NN learning algorithm, among many others, is multi-layer perceptron
(MLP), which is an extension of the least mean squared rule [62]. MLP learns a function
f(.): Rm → Ro, where m is the number of input dimensions and o is the number of output
dimensions. Given a set of features x and a target, MLP can learn a nonlinear function
approximator for classification. It differs from LR in the sense that one or more non-linear
levels, known as hidden layers, can exist between the input and the output layers. One
buried layer with scalar output exists, whereas the leftmost layer (i.e., input layer) is
made up of neurons that represent the input characteristics. Each neuron in the hidden
layer performs a weighted linear summation on the preceding layer’s values, while the
last hidden layer values are received by the output layer and transformed into output
values [63].

The steps that need to be followed to apply MLP are summarized in Figure 6.
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In the medical field, there is a growing trend of NNs being used to learn about fault
tolerance, generalization, and the environment in medical diagnosis, as stated in [44],
whereas by exploiting data mining techniques in [54] and NNs, it is observed that high
levels of accuracy are achieved. More deeply emphasizing in MLP, a study [64] used
MLP for breast cancer classification. Additionally, in [65], the authors performed cardiac
arrythmia classification using MLP. Most recently, a study [66] presented a medical data
MLP classification approach based on a biogeography-based optimization algorithm with
a probability distribution. Moreover, according to the literature on stroke prediction from
electrocardiograms by deep neural network, the results in [67] show high accuracy values.
A reliable neural network-based tool for predicting confirmed cases, recovered cases, and
deaths from COVID-19 has proved to be very useful to health advisors to take appropriate
measures to control the epidemic [68]. A realistic framework has been proposed for
predicting the diagnosis of diabetes in [69], resulting into high-value results, while in [70],
the authors reviewed various approaches for breast cancer diagnosis and compare MLP
and convolutional NN methods, concluding with the production of quite reliable results in
both cases.

2.1.7. Stochastic Gradient Descent (SGD)

In gradient descent (GD), a cost function is explicitly minimized by several neural
network learning techniques. Backpropagation, for example, employs GD to minimize the
mean squared error criterion by modifying the weights after each sweep over the training
dataset in the whole GD process. SGD, on the other hand, has been shown to be quicker,
more reliable, and less prone to reaching undesirable local minima than GD. The weights
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in this approach are adjusted after each example is shown based on the gradient of the loss
function [71]. The applied formula for such a process is depicted in Formulas (6) and (7):

lim
a →0

L(x + au) = uT ∇xL(x) (6)

uT ∇xL(x) = u ∇xL(x) cosθ (7)

where x is assumed to be a single vector, and u denotes the unit vector or direction in which
x should ideally be altered, aiming to find a u such that uT ∇xL(x) is minimized [72]. The
steps that need to be followed to apply SGD are summarized in Figure 7.
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The research suggests that SGD may be used in a variety of medical use cases, such
as investigating the primary causes of a disease or forecasting the likelihood of illness
development based on the factors impacting the condition [73]. What is more, in [74], an
ensemble framework for improving brain stroke prediction performance is used along
with SGD, resulting into high accuracy results. Regarding COVID-19, different X-rays are
compared through SGD, with the algorithm scoring a relatively moderate result in the
accuracy coefficient in [75]. Algorithms such as SGD also overcome performance issues and
speed up convergence, especially on large datasets as provided in [76], whereas considering
breast cancer prediction, it is observed that according to [77], SGD scores a relatively low
accuracy rate. Finally, according to a performance analysis of SGD on top of kidney disease
datasets, in [78] it is observed that SGD has high accuracy rates, while for improving the
prediction of heart failure patients, SGD has been proved not to be reliable enough, with
moderate levels of accuracy rate in [54].

2.2. Proposed Machine Learning Approach

As already stated, there exist a plethora of ML algorithms, each one of them being
functional and effective at different contexts and levels for performing efficient and trust-
worthy predictions. Especially into the context of healthcare, where timely predictions are
considered of crucial importance, this manuscript aims to identify the most suitable ML
algorithm to be triggered on top of different healthcare-related scenarios, considering the
domain of the ingested datasets, as well as a set of criteria such as results’ accuracy, preci-
sion, and specificity, among others. Based on that, the mechanism depicted in Figure 8 will
ingest datasets covering different scenarios (e.g., diabetes, heart failure, stroke, COVID-19,
breast cancer, kidney disease) and will identify the most suitable ML algorithm to be used
for each separate case to predict the onset of a disease more efficiently.

To achieve the abovementioned task, the mechanism relies on a Kubernetes cluster
to easily scale the proposed application compared to virtual machines and speed up the
overall delivery process. This cluster consists of various microservices [79], each one
of them being hosted in a docker container and being responsible to perform a specific
functionality (e.g., data ingestion, data cleaning, Model Training).
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In deeper detail, as shown in Figure 8, the whole process begins by collecting the
required datasets to be analyzed. Thus, through the provided Gateway microservice, all
the data are retrieved by the corresponding data sources. To this end, it should be noted
that the Gateway microservice can collect either streaming or non-streaming data from
external sources through dedicated application programming interfaces (APIs) that have
been developed, regardless of their size and format [80,81]. The data are then converted
to JavaScript Object Notation (JSON) format, and are stored in a NoSQL database (i.e.,
MongoDB) in the form of collections [79]. At this point, it is worth mentioning that
every microservice that processes the aforementioned data, such as the Data Reliability
microservice that will be analyzed later on, will also utilize the data in their JSON format.
As soon as the data are stored into the database, the Data Reliability microservice is applied.
The latter is responsible for automatically preprocessing and cleaning all the collected
stored raw data by performing cleaning operations for identifying and rapidly removing
duplicate records, missing values, outliers, and syntactic errors that may exist into the data.
To perform such task, the Data Reliability microservice performs data cleaning based on a
set of constraints that are part of certain structures called schemas, which each dataset’s
features should satisfy (i.e., rule-based data cleaning). Those constraints/schemas are
generated either by dataset experts or automatically, with the use of natural language
processing (NLP). More specifically, NLP is utilized in the scope of the Data Reliability
microservice as a way to compare a newly uploaded dataset (i.e., whose corresponding data
schema is not available) to data schemas that were previously generated by the microservice,
thus minimizing the computational cost of the whole data cleaning process. Every feature
of the new dataset is compared to the features of the old datasets regarding the syntactic
and the semantic similarity of the features, as well as the characteristics of the features.
The computation of the syntactic similarity takes place by utilizing two commonly used
techniques for accomplishing such task, namely the Jaccard similarity [82] and the Cosine
similarity [83]. Regarding the semantic similarity, a more complex technique is used that is
based on Transformers, which are types of Deep Learning (DL) models that differentially
weight the input data [84]. If, by utilizing those NLP techniques, the Data Reliability
microservice succeeds in finding a high similarity (syntactic and semantic) between the
new feature and an old feature (exceeding the set threshold of 70% based on previous
research [85]), then the corresponding rule of the old feature is used to validate the new
feature, thus eliminating the need for generating a brand-new rule (or even a data schema).
In the case that the similarity of the new feature to an old one is not satisfactory, then either
the rules of the most similar feature are selected, or a data expert should intervene to create
new rules for this specific feature/dataset. Additionally, in the cases where missing values
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are identified based on the set/found constraints, the Data Reliability microservice utilizes
ML algorithms to predict the missing values. To be more specific, the mechanism firstly
detects such values by performing several SQL-like queries on the data (e.g., the mechanism
may SELECT all the attributes WHERE their value is not following a specific pattern), and
then utilizes the KNN algorithm to predict the missing values based on other attributes’
behavior, nature, or similar patterns. As a final step, the mechanism replaces those missing
values with the predicted ones, again following several SQL-like queries on the data (e.g.,
the mechanism may UPDATE an attribute WHERE a specific anomaly was detected). To
this end, it must be noted that the mechanism can also delete the value of an unpredicted
attribute following the notion of SQL-like queries (e.g., the mechanism may DELETE an
attribute WHERE its value could not be predicted). It is clear that the latter functionality
could be efficiently replaced through simple SQL queries, but in the proposed mechanism’s
case, it was best chosen to follow the SQL queries nature and increase their complexity
with ML methods to more efficiently address a wider area of missing values. For instance,
through using simple SQL queries, the values that could be replaced by pattern mining
techniques (i.e., a result of ML) would not be efficiently predicted, leading possibly to the
overall deletion of entire dataset rows, which could affect the overall analytics’ outcomes
and the gained insights, since a smaller dataset would be used in the end for the overall
ML Model Training [86]. This could have major effects for decision-makers, especially
considering the nature of the healthcare domain that requires high volumes of reliable
data for high-value outcomes. By the time that the data cleaning process gets completed,
the Data Reliability microservice stores the cleaned data values in a new collection in the
database.

As soon as the collected data are effectively preprocessed, the Data Analytics mi-
croservices are implemented. Specifically, the cleaned data analysis microservice applies
exploratory data analysis (EDA) as an approach for analyzing cleaned datasets to sum-
marize their main features. EDA is an approach that looks at the data from as many
angles as possible, always on the lookout for finding some interesting features [87]. EDA’s
goal is to analyze datasets to summarize their main characteristics, often using statisti-
cal graphics and other data visualization methods. Then, the Orchestrated Experiment
microservice is applied. The current most popular experimental methodology in ML for
accomplishing such a task is to firstly come up with a hypothesis about the algorithms
under investigation, then perform experiments explicitly designed to test this hypothesis,
and finally interpret the produced results. Every parameter or value in every hypothesis
made by the proposed mechanism is stored into a git source repository, from where it
is then available to repeat the experiment, at the same time being available for the rest
of the microservices. Essentially, the Orchestrated Experiment microservice is the parent
microservice of the training, evaluation, and validation of the mechanism’s ML models’
microservices. Initially, the Orchestrated Experiment microservice prepares the data for
the ML models, by randomly splitting 80/10/10 the data into training, validation, and test
sets. In sequel, data transformations (i.e., the process of changing the format, structure, or
values of the data) and feature engineering (i.e., the process of selecting, manipulating, and
transforming the underlying data into features that can be used in supervised learning)
are applied as an approach of analyzing the cleaned datasets to summarize their main
features. As soon as this process gets complete, the training of the mechanism’s ML models
occurs through the Model Training microservice. Regarding the algorithms that are used
to train the mechanism’s models, as mentioned in Section 2.1, these refer to: (i) BNB,
(ii) KNN, (iii) DT, (iv) LR, (v) RF, (vi) NN, and (vii) SGD, where all of the chosen algorithms
include various hyperparameters that must be tweaked before the algorithms are ready
to be executed (further analyzed in Tables 8–14). Simply said, parameters in ML refer to
the values that a learning algorithm may independently alter as it learns, and these values
are influenced by the hyperparameters that the data analyst specifies. Therefore, before
training begins, hyperparameters are specified, and the learning algorithm utilizes the set
hyperparameters to learn the parameters. Parameters are constantly modified behind the
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scenes throughout training, and the final ones derived by the finalization of the training
compose the final model. As a result, selecting the appropriate hyperparameter values is
critical since it has a direct influence on a model’s performance when employed during
Model Training. Hence, in the context of the proposed mechanism hyperparameters, tuning
is performing all the abovementioned process in order to determine the structure of each
ML algorithm and how the algorithm is taught. The initial settings of each algorithm’s
hyperparameters are the default values stated in the utilized software packages that are
based on recommendations/past research [22,88].

After the training phase, each model is evaluated and validated with the Model
Evaluation and Model Validation microservices. More specifically, to identify the best
suitable training algorithm and make the needed prediction upon the given data, during
the training phase, the mechanism estimates the metrics of (i) classification accuracy that
captures the number of right guesses divided by the total number of predictions, (ii) F1-score
(Formula (8)) that combines the metrics of precision (Formula (9)) and recall (Formula (10)),
and (iii) specificity (Formula (11)) that refers to the likelihood of a negative test, assuming
that the test is genuinely negative.

F1 Score = 2× Precision × Recall
Precision + Recall

(8)

Precision =
True Positives

True Positives + False Positives
(9)

Recall =
True Positives

True Positives + False Negatives
(10)

Specificity =
True Negatives

True Negatives + False Positives
(11)

Additionally, the train–validation–test scores are used for each dataset that is divided
into training set, validation set and test set. The purpose of this analysis is to prove the
reason why an algorithm has been chosen, compared to the other cases. The training set is
used to train the model and teach it about the hidden features/patterns in the data. The
training set should include a broad range of inputs so that the model may be trained in a
variety of circumstances and forecast any previously unknown data sample that may arise
in the future. As for the validation set, the basic reason behind separating the dataset into
a validation set is to keep the model from overfitting, which occurs when the model gets
proficient at categorizing samples in the training set but is unable to generalize the results
and make accurate classifications on data that it has not seen before. Finally, the test set is a
different collection of data used to validate the model once it has been trained. In terms
of accuracy and other measures, it delivers an impartial final model performance metric.
Therefore, it is desirable to observe a high percentage in all the three targets, whereas the
deviation rates should be around 1%–2%.

In combination with the above, another important element in the algorithms’ perfor-
mance in the field of ML, and in particular in the problem of statistical classification, is
the confusion matrix. The main concepts of a confusion matrix, include: (i) True positive
(TP) values for cases that the prediction is realistically positive, (ii) True negatives (TN)
values for cases that the prediction is realistically negative, (iii) False positives (FP) values
for cases that the prediction is positive but not realistic, (also known as “type I error”), and
(iv) False negatives (FN) values for cases that the prediction is negative but not realistic,
(also known as “type II error”). This matrix (Figure 9) contains two rows and two columns
and uses the number of TP, TN, FP, and FN. Each column represents the number of values
in their categorized class, whereas each row denotes the number of items in their real class.
The correct predictions are on the diagonal of the matrix, while the remaining cells show
the incorrect predictions. Ideally, it is preferrable for the diagonal to contain large numbers,
while the rest of the cells to tend to be zero as much as possible. Hence, the best algorithm
is the one that has the most elements in the main diagonal in the matrix.
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As soon as all these metrics are captured for each trained algorithm, the trained models
are stored in the Model Registry (i.e., a centralized repository where model developers may
submit production-ready models for easy access) in the form of pickle files (i.e., .pkl file
extension), and then are retrieved by the Model Serving microservice (i.e., a model serving
that hosts ML models and makes their functions available via APIs so that other microser-
vices can incorporate into their systems) in order to serve the Prediction microservice. In
essence, the Prediction microservice is the final stage in the proposed mechanism, which
tries to warn the physicians and the caregivers of the likelihood of events and outcomes
before they occur, assisting them in preventing and curing health concerns to the greatest
extent feasible.

On top of this process, the mechanism provides a suitable user interface (UI) to provide
the ability to its users (i.e., researchers, data scientists, clinicians, physicians, caregivers) to
insert new patient data, by uploading them with a simple drag and drop functionality in a
specific form. Through this UI, data scientists and researchers can perform data analysis
and ML experiments with a plethora of heterogeneous datasets. Through this way, new
ML models are served and are available for predictions for all the potential users. Finally,
the results and the performance metrics of each algorithm are monitored through the
Performance Monitor microservice of operations. These metrics help the mechanism to
determine how the deployed model is performing from a usage point of view. These
metrics include: (i) throughput for calling the Prediction microservice (i.e., number of
requests), (ii) latency when calling the Prediction microservice (i.e., average response time),
(iii) IO/Memory/CPU usage when performing prediction (i.e., average consumption),
(iv) disk utilization (i.e., average consumption), and (v) system uptime, whereas all of these
metrics should be calculated over different time frames, as desired.

By successfully accomplishing all the abovementioned steps, the mechanism achieves
the uploading and analysis of various health data, providing the appropriate visualization
and interpretation of the results of predicting the occurrence of a disease. To this end, it
should be noted that the difference with other data visualization and analysis tools, such
as Weka [89] and AutoML [90], is the fact that the proposed mechanism is based on a
specific domain, that of healthcare, and not on a general visualization approach. That is
why specific emphasis has been provided into domain-specific sub-mechanisms in the
form of microservices—to prioritize and more efficiently collect, enhance, analyze, and
visualize the ingested data. This is in contrast with AutoML techniques and the Weka
software, as on the one hand they are more applicable into a wider area of domains, but on
the other hand they are not sufficiently considering the data requirements of the healthcare
domain (e.g., data prioritization issues, data confidentiality, data provenance logging),
which are tackled from the current research’s mechanism. Additionally, the downside of
AutoML is its lack of business intuition. Despite AutoML leading to a production-ready
model more quickly, it would not provide justification regarding the use of ML or an
interpretation of the prediction results, let alone the selection of a specified problem to
attempt to solve from the multitude of tools available. Furthermore, Weka as a software
has a less active community, and is efficient only in the cases where data are well cleaned
and prepared, while based on current research, it has a large inability of handling large
amounts of data. Moreover, considering its outdated UI, it is also unable to follow current
researchers’ requirements for enhanced visualizations and better explainability results.
Hence, considering the aforementioned drawbacks, the aim of this mechanism is to go
beyond their shortcomings and provide an end-to-end architecture for healthcare data
handling, analysis, and outcomes’ interpretation and visualization.
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3. Results
3.1. Datasets Description

The applicability of the proposed mechanism was measured by evaluating all the
different ML algorithms on six diverse datasets selected from various available data reposi-
tories, referring to different health anomalies and scenarios (i.e., diabetes [91], stroke [92],
heart failure [93], COVID-19 [94], breast cancer [95], kidney disease [96]). More specifically,
diabetes data were chosen because diabetes refers to a set of metabolic disorders from
which millions of people suffer worldwide and, as a result, it is imperative to find the best
prediction model to avoid implications and provide the best treatment possible. In the case
of the stroke-related dataset, as well as the heart-failure-related dataset, those were chosen
since both stroke and heart failure events occur regularly and are fatal in about 20% of
the cases [97]. COVID-19 data were chosen because the COVID-19 pandemic radically
changed the ordinary way of life and ML models are needed to predict the short-term (i.e.,
Intensive Care Units (ICU) visits) and long-term implications of this disease (i.e., other
medical conditions such as heart failure). Breast cancer data were used because breast
cancer is one of the most common types of cancer in women, and ML models could help
physicians to determine whether a tumor is malignant or not. Finally, kidney disease is also
a chronic disease for which, even though it mostly affects older people, its symptoms may
occur in an earlier stage in life. To predict the occurrence of kidney disease, ML models can
also be utilized, and that is why a kidney disease-related dataset was also used in this study.

The selection of the aforementioned diseases, apart from the COVID-19 case, re-
gards the selection of some of the major chronic diseases in which patients are subject
to multiple drug regimens. More specifically, two of the four main categories of chronic
non-communicable diseases as indicated by WHO [98] have been selected, referring to
cardiovascular diseases (stroke, heart failure) and diabetes mellitus (diabetes). In addition
to these categories, there are also breast cancer and kidney disease, which do not belong to
any of the four categories but belong to the wide range of chronic diseases. In addition, the
choice of the COVID-19 case is due to the fact that it is a recent healthcare topic studied by
the entire research community to interpret its possible linking with chronic diseases. At
this point, it is necessary to clarify that chronic diseases share common factors (common
characteristics) and risk situations. While some risk factors, such as age and sex, cannot
be changed, many behavioral risk factors can be changed, as well as several intermediate
biological factors such as high blood pressure or body mass index. Additionally, economic
(e.g., working status) and physical conditions (e.g., place of residence) influence and shape
behavior and indirectly influence other biological factors (e.g., single or married, smoker or
non-smoker). Identification of these common risk factors and conditions is the conceptual
basis for a comprehensive approach to any chronic disease being studied. Equally impor-
tant is the contribution of laboratory data, such as red or white blood cells and other data,
which help clinicians to provide a better picture of the control and prevention of potential
patients’ health-related risks.

In further detail, the diabetes dataset spans ten years (1999–2008) of clinical treatment
across 130 US hospitals and integrated delivery networks, including more than 50 variables
characterizing patient and hospital outcomes. However, for the current experimentation,
the main features that were selected were race, gender, age, admission type, discharge dis-
position, admission source, time in hospital, number of procedures, number of medications,
number of inpatient visits, number of diagnoses, glucose serum test result, A1c test result,
and change of medications (Table 1). The characteristics were chosen because they reflect
the main features of a patient’s background and main clinical features.

Regarding the stroke event dataset, it consists of clinical features for predicting stroke
events, like gender, age, and various diseases. Indicatively, some of the chosen features
of the above dataset were gender, age, hypertension, heart disease, and smoking status
(Table 2). The selected features were considered necessary for the final prediction result,
because in the case that a patient has hypertension or not, it is a feature with significant
role. Knowing whether the patient is married or not, whether he/she lives in a city or the
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suburbs, as well as his/her occupation, also are of great importance. Equally important are
the body mass index metrics or glucose levels, as well as smoking category.

As for the heart failure dataset, it is made up of 299 heart failure patients’ medical
records obtained from the Faisalabad Institute of Cardiology. The patients ranged in the age
from 40 to 95 years old and included 105 women and 194 men. For this dataset, the following
features were selected for the experimentation: age, anemia, creati-nine_phosphokinase,
diabetes, and ejection_fraction (Table 3). The features reported to make the ML models
are general patient targets, such as age, gender, and smoking habits. Additionally, there
included data from clinical laboratory tests that are considered necessary metrics for the
state of a patient’s indicators.

Table 1. Dataset description of diabetes.

No. Attribute Name Attribute Information Range of Values

1 Race Race of patient “Caucasian”, “Asian”, “African”,
“American”, “Hispanic”, “Other”

2 Gender Gender of patient “Male”, “Female”,
“Unknown/Invalid”

3 Age Age of patient (0–10), . . . , (90,100)
4 Admission type Type of admission (1–8)
5 Discharge disposition Disposition of discharge (1–28)
6 Admission source Source of admission (1–20)

7 Time in hospital Number of days between admission and
discharge (1–14)

8 Number of procedures Number of operations conducted during the
encounter (0–6)

9 Number of medications Number of different names used throughout
the encounter (1–81)

10 Number of inpatient visits Number of inpatient visits in the year
preceding the encounter (0–21)

11 Number of diagnoses Number of diagnoses that have been entered
into the system (1–16)

12 Glucose serum test
result Range of result/Test not taken “>200”, “>300”,

“Normal”, “None”
13 A1c test result Range of result/Test not taken “>8”, “>7”, “Normal”, “None”

14 Change of medications Change in diabetic medications
(either dosage or generic name) “Change”, “No change”

Table 2. Dataset description of stroke.

No. Attribute Name Attribute Information Range of Values

1 id Unique identifier (67–72.940)
2 gender Patient’s gender “Male”, “Female”, “Other”
3 age Patient’s age (0.08–82)

4 hypertension Patient has hypertension
or not

(0–1) 0: Does not have hypertension, 1: Has
hypertension

5 heart_disease Patient has heart_disease
or not

(0–1) 0: Does not have any heart diseases, 1:
Has heart diseases

6 ever_married Patient is or not married “No”, “Yes”

7 work_type Type of work type “Children”, “Govt_jov”, “Private”
“Never_worked”,“Self-employed”

8 residence_type Residence type of patient “Rural”, “Urban”
9 avg_glucose_level Average blood glucose level (55.12–271.74)
10 bmi Body mass index (10.3–97.6)

11 smoking_status Patient smoking status “Formerly smoked”, “Never smoked”,
“Smokes”, “Unknown”
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Table 3. Dataset description of heart failure.

No. Attribute Name Attribute Information Range of Values

1 age Age of the patient (40–95)

2 anemia Decrease of red blood cells or
hemoglobin

(0–1) 0: red blood cells,
1: hemoglobin

3 creatinine_phosphokinase Blood’s CPK enzyme (mcg/L) (23–7861)

4 diabetes If the patient has diabetes (0–1) 0: patient has diabetes, 1: patient has
not diabetes

5 ejection_fraction Percentage of blood that leaves the
heart with each contraction (14–80)

6 high_blood_pressure If the patient has hypertension (0–1) 0: patient has hypertension, 1: patient
has not hypertension

7 platelets Platelets found in the blood
(kiloplatelets/mL) (25,100–850,000)

8 serum_creatinine Blood’s serum creatinine (mg/dL) (0.5–9.4)
9 serum_sodium Blood’s serum sodium (mEq/L) (113–148)
10 sex Woman or man (0–1) 0: woman, 1: man

11 smoking Whether or not the patient smokes (0–1) 0: patient smokes, 1: patient does not
smoke

12 time Follow-up period (days) (4–285)

13 death_event If the patient deceased during the
follow-up period

(0–1) 0: patient has deceased during the
follow-up period, 1: patient has not

deceased during the follow-up period

As for the COVID-19 dataset, ML models were created exploiting train-test split
techniques using 18 laboratory data features from 600 individuals. Hence, for this dataset,
the following features were selected: age quantile, hematocrit, hemoglobin, platelets, and
red blood cells (Table 4). Predicting whether a patient ends up with pneumonia or not due
to COVID-19 implications requires the patient’s laboratory data, because the laboratory
indicators are quite important for making new decisions from health professionals.

Table 4. Dataset description of COVID-19.

No. Attribute Name Attribute Information Range of Values

1 Patient age quantile Age of the patient (0–19)
2 Hematocrit Quantity of hematocrit (−4.50–2.66)
3 Hemoglobin Quantity of hemoglobin (−4.34–2.67)
4 Platelets Quantity of platelets (−2.55–9.53)
5 Red blood Cells Quantity of red blood cells (−3.97–3.64)
6 Lymphocytes Quantity of lymphocytes (−1.86–3.76)
7 Leukocytes Quantity of leukocytes (−2.02–4.52)
8 Basophils Quantity of basophils (−1.14–11.07)
9 Eosinophils Quantity of eosinophils (−0.83–8.35)

10 Monocytes Quantity of monocytes (−2.16–4.53)
11 Serum Glucose Quantity of serum glucose (−1.10–7.00)
12 Neutrophils Quantity of neutrophils (3.33–2.53)
13 Urea Quantity of urea (−1.63–11.24)

14 Proteina C reativa mg/dL Quantity of proteina C
reativa (−0.53–8.02)

15 Creatinine Quantity of creatinine (−2.38–5.05)
16 Potassium Quantity of potassium (−2.28–3.40)
17 Sodium Quantity of sodium (−5.24–4.09)

18 Alanine transaminase Quantity of alanine
transaminase (−0.64–7.93)

19 Aspartate transaminase Quantity of aspartate
transaminase (−0.70–7.23)



Sensors 2022, 22, 8615 17 of 46

Breast cancer is the most frequent malignancy in women worldwide. It is responsible
for 25% of all cancer incidences and afflicted approximately 2.1 million individuals in 2015.
The main obstacle to its detection is determining whether tumors are malignant (cancerous)
or benign (non-cancerous). The chosen characteristics are included in Table 5, which are
quite important for the broad picture of the patient, and thus for training the models in
order to produce the most accurate outcome predictions.

Table 5. Dataset description of breast cancer.

No. Attribute Name Attribute Information Range of Values

1 radius_mean Radius of lobes (6.98–28.1)
2 texture_mean Mean of surface texture (9.71–39.3)
3 perimeter_mean Outer perimeter of lobes (43.8–189)
4 area_mean Mean area of lobes (144–2501)
5 smoothness_mean Mean of smoothness levels (0.05–0.16)
6 compactness_mean Mean of compactness (0.02–0.35)
7 concavity_mean Mean of concavity (0–0.43)
8 concave points_mean Mean of concave points (0–0.2)
9 symmetry_mean Mean of symmetry (0.11–0.3)

10 fractal_dimension_mean Mean of fractal dimension (0.05–0.1)
11 radius_se SE of radius (0.11–2.87)
12 texture_se SE of texture (0.36–4.88)
13 perimeter_se Perimeter of SE (0.76–22)
14 area_se Are of SE (6.8–542)
15 smoothness_se SE of smoothness (0–0.03)
16 compactness_se SE of compactness (0–0.14)
17 concavity_se SEE of concavity (0–0.4)
18 concave points_se SE of concave points (0–0.05)
19 symmetry_se SE of symmetry (0.01–0.08)
20 fractal_dimension_se SE of fractal dimension (0–0.03)
21 radius_worst Worst radius (7.93–36)
22 texture_worst Worst texture (12–49.5)
23 perimeter_worst Worst perimeter (50.4–251)
24 area_worst Worst area (185–4250)
25 smoothness_worst Worst smoothness (0.07–0.22)
26 compactness_worst Worse compactness (0.03–1.06)
27 concavity_worst Worst concavity (0–1.25)
28 concave points_worst Worst concave Points (0–0.29)
29 symmetry_worst Worst symmetry (0.16–0.66)
30 fractal_dimension_worst Worst fractal dimension (0.06–0.21)

Finally, the last of the datasets is that of kidney disease. The corresponding data for
this scenario were collected from a competition of the electronic repository Kaggle, with
the amount of this data reaching 399 patient records with the control of various laboratory
elements deemed necessary for training the models and safely making decisions about
kidney disease predictions. The characteristics that were selected for investigating whether
there is a risk of developing kidney disease or not are related to age, blood pressure, specific
gravity, albumin, etc. (Table 6).
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Table 6. Dataset description of kidney disease.

No. Attribute Name Attribute
Information Range of Values

1 Id Unique ID (1–399)
2 Age Age of the patient (2–90)
3 Bp Blood pressure (50–180)
4 Sg Specific gravity (1–1.02)
5 Al Albumin (0–5)
6 Su Sugar (0–5)
7 Rbc Red blood cells “Normal”, “Unknown”
8 Pc Pus cell “Normal”, “Unknown”

9 Pcc Pus cell clumps “Not present”, “Present”,
“Unknown”

10 Ba Bacteria “Not present”, “Present”,
“Unknown”

11 Bgr Blood glucose
random (70–490)

12 Bu Blood urea (10–391)
13 Sc Serum creatinine (0.4–76)
14 Sod Sodium (4.5–163)
15 Pot Potassium (2.7–47)
16 Hemo Hemoglobin (3.1–17.8)
17 Pcv Packed cell volume (9–54)

18 Wc White blood cell
count (0–9600)

19 Rc Red blood cell count (0–4.5)
20 Htn Hypertension ”True”, ”False”
21 Dm Diabetes mellitus ”No”, ”Yes”, ”Other”

22 Cad Coronary artery
disease ”No”, ”Yes”, ”Other”

23 Appet Appetite ”Good”, ”Poor”
24 Pe Pedal edema ”True”, ”False”
25 Ane Anemia ”True”, ”False”

3.2. Evaluation Environment

The source code of every microservice of the proposed mechanism has been imple-
mented in Python language [57] exploiting the Flask framework (v.2.0.1) [58]. For the data
analysis the Pandas framework [63] was exploited, for the ML algorithms the scikit-learn
libraries [64] were used, whereas the UI was implemented using Angular [71]. Docker [64]
was used for containerizing the microservices, whilst Kubernetes [65] in a minikube [66]
on a centos7 [87] server was exploited for orchestrating the Docker containers. The devel-
opment of all the above is accomplished by an 8-core processor with 32 GB of memory
and has a centos7 as an operating system. Apache JMeter [99] was used as a testing tool
for capturing the algorithms’ training time metrics. Finally, batch learning [100] was used
throughout every experiment. Concerning the results of the mechanism, these are depicted
below, following step-by-step the process explained in Section 2.2.

3.3. Evaluation Results

To perform a prediction on a given patient, the ML algorithms were already trained
with the datasets described in Section 3.1. As a result, for a new prediction based on the
trained models, specific information for this patient is uploaded through one of the forms
provided by the UI of the mechanism, as shown in Figure 10. More specifically, the form
depicted in Figure 10 deals with the stroke dataset, where the user is requested to fill in the
provided fields in order to proceed with the needed data analysis. To this end, it should be
noted that all form’s fields are required to be filled in by the user.
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The fields that make up the form refer to the id, gender, age, hypertension, heart_disease,
ever_married, work_type, residence_type, avg_glucose_level, bmi, and smoking_status.
By clicking the prediction button, the user could see whether the patient had a chance
of having a stroke or not, based on the provided data. Firstly, the data were cleaned to
remove outliers or other similar cases such as missing values of some fields, and then the
data were properly orchestrated through the execution of the Orchestrated Experiment
microservice. Consequently, the ML models were trained by exploiting the inserted data
via the Model Training microservice and then exporting the appropriate metrics via the
Model Evaluation and Model Validation microservices. After completing this procedure, to
check the performance of the developed models on both the training data and the test data,
the Model Serving microservice was applied for the prediction results. At the end, all these
mechanisms were optimized into one page within the UI. Additionally, along with the final
decision, the UI revealed to the user the most suitable ML model used for the prediction. In
this experiment, the mechanism revealed that there was not any possibility of the patient
to have a stroke, whereas the KNN algorithm was outlined to have produced the most
reliable and efficient results. To be more specific, KNN was chosen for the stroke case since
it produced the highest accuracy rate (96%), and also in relation to the remaining metric
functions (further analyzed in Table 15).

Following the same concept, the mechanism supports the same functionalities for
the other five datasets (i.e., diabetes, heart failure, COVID-19, breast cancer, kidney dis-
ease). In deeper detail, as for the case of diabetes, the form’s features were: age, admis-
sion_type, discharge_type, timeHospital, admission_source_type, num_medication_type,
num_inpatient_type, number_diagnoses, num_procedure, race, gender, glu_serum, A1C,
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and change. For the heart failure prediction, the form’s features were age, anaemia, diabetes,
ejection_fraction, creatinine_phosphokinase, serum_creatinine, sex, high_blood_pressure,
platelets, smoking, serum_sodium, and time. In addition, the features for the COVID-19
case were: age, hematocrit, hemoglobin, platelets, redBloodCells, lymphocytes, leukocytes,
basophils, eosinophils, monocytes, serumGlucose, neutrophils, creatinine, urea, sodium,
proteina, potassium, alanineTransaminase, and aspartateTransaminase. Furthermore, in
the case of breast cancer, the form’s feature were: radius_mean, texture_mean, perime-
ter_mean, area_mean, smoothness_mean, compactness_mean, concavity_mean, concave
points_mean, symmetry_mean, fractal_dimension_mean, radius_se, texture_se, perime-
ter_se, area_se, smoothness_se, compactness_se, concavity_se, concave points_se, symme-
try_se, fractal_dimension_se, radius_worst, texture_worst, perimeter_worst, area_worst,
smoothness_worst, compactness_worst, concavity_worst, concave points_worst, symme-
try_worst, and fractal_dimension_worst. Finally, for the kidney disease scenario, the form’s
features were sg, al, sc, pcv, and htn.

To effectively capture all the aforementioned results for all the different chosen sce-
narios, as stated above, the proposed mechanism applied the procedure described in
Section 2.2, following the sequence of the described processes (i.e., microservices). Hence,
during the Data Reliability process, various corrective actions took place upon the diverse
datasets, resulting into the results of Table 7. Each row of this table showcases the data
inconsistencies that were traced and fixed per dataset, to secure that the performance of the
ML algorithms applied in the following step would be the best possible, since it is highly
correlated to the quality of the given data.

Table 7. Cleaning results for each use case.

Dataset
Number of

Records

Cleaning Metrics

Missing Values Outliers Values Duplicate
Values

Diabetes 101,766 100,723 0 0
Stroke 5110 201 0 1

Heart Failure 299 0 19 0
COVID-19 600 0 0 0

Breast Cancer 569 0 5 0
Kidney Disease 400 684 0 0

Then, each ML algorithm was applied upon the inserted user’s data and the respective
cleaned dataset. More specifically, the exploited algorithms had been set based on the pa-
rameters that are depicted in the following tables (Tables 8–14), for each different algorithm.
Initially, the models’ training began with each algorithm’s parameters being initialized to
random values or zeros. An optimization technique was then used to change the initial val-
ues as training/learning continued (e.g., gradient descent). The learning method constantly
updated the parameter values as learning progressed, whilst the model’s hyperparameter
values stayed static.

Table 8. Parameters of mechanism set for BNB.

Parameter Set Value Description

alpha 1.0 Additive parameter (Laplace/Lidstone) used for smoothing
binarize 0.0 Threshold used for mapping to booleans a sample feature
fit_prior True Learn class prior probabilities

class_prior None Prior probabilities of the classes
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Table 9. Parameters of mechanism set for KNN.

Parameter Set Value Description

n_neighbors 5 Integer number corresponding to the neighbors
weights Uniform All the points in each neighborhood are equally weighted

algorithm Auto The most proper algorithm is chosen based on the values
that are passed to the fit method

Leaf_size 30 Leaf size that is passed to BallTree or KDTree

metric 2 Minkowski distance (equivalent to standard Euclidean
metric)

Table 10. Parameters of mechanism set for DT.

Parameter Set Value Description

criterion Gini Function to review the quality of a split
splitter Best Strategy to choose the splitting method at each node

max_depth None Maximum depth of tree (if None, nodes are expanded until
all leaves are pure or contain less than min_samples_split)

Table 15 depicts the prediction results of each algorithm in combination with its
percentage of accuracy (%). The values in the first sub-field (inside parenthesis) for the
cases of heart failure, stroke, COVID-19, and kidney disease refer that there is a possibility
of the anomaly to happen (Yes as Y) or not (No as N). In the case of diabetes, it states if
there is a need for the patient to uptake insulin (Yes as Y) or if there is a need to uptake
insulin along with other medicine (No as N). As for the case of breast cancer, it states if
there is a chance of the cancer type being malignant (as M) or being benign (as B). For
example, in the case of the first conducted experiment (i.e., stroke), the result indicated
that there was not any chance of the patient to have a stroke (N) and the accuracy of the
prediction of KNN was 96%. Even though the rest of the algorithms had also high levels of
accuracy, as for example the BNB that had an accuracy of 95%, such a small difference in
the world of ML is quite important, since in real-world scenarios, such differences are of
crucial importance. Additionally, in the case of breast cancer, the results of most algorithms
indicated that a large percentage of patient samples have benign breast cancer, so it is
not considered as a problem of great concern. This is positive, because it is observed that
the LR algorithm scores an accuracy rate equal to 100%, outlining that the patients were
dealing with a benign breast cancer. However, this was also proven with additional related
parameters that are mentioned in the following sections.

Table 11. Parameters of mechanism set for RF.

Parameter Set Value Description

n_estimators 100 Integer number corresponding to the trees in the forest
criterion Gini Function to review a split

max_depth None Maximum depth of the tree

min_samples_split 2 Integer number that minimizes the number of samples required to split an internal
node

min_samples_leaf 1 Integer number that minimizes the number of samples required to be at a leaf node

min_weight_fraction_leaf 0.0 Minimum weighted fraction of the total of weights (of all the input samples) required
to be at a leaf node

max_features sqrt Number of features to consider when looking for the best split

max_leaf_nodes None Grow trees with max_leaf_nodes in best-first fashion, where best nodes are defined as
relative reduction in impurity

min_impurity_decrease 0.0 A node will be split if this split induces a decrease of the impurity greater than or
equal to this value

bootstrap True Use bootstrap samples when building trees
oob_score False Use out-of-bag samples to estimate the generalization score

n_jobs None Number of jobs to run in parallel
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Table 11. Cont.

Parameter Set Value Description

random_state None Randomness of samples’ bootstrapping when building trees and sampling of features
when looking for the best node’s split

verbose 0 Verbosity when fitting and predicting
warm_start False Fit a whole new forest

class_weight None Weight of each class
ccp_alpha 0.0 Parameter used for Minimal Cost-Complexity Pruning

max_samples None Draw X.shape [0] samples

Table 12. Parameters of mechanism set for LR.

Parameter Set Value Description

solver liblinear Algorithm to use in the optimization problem
penalty l2 Additive penalty term (L2)

dual True Dual or primal formulation (Dual formulation is only
implemented for L2 penalty with liblinear solver)

tol 10-4 Tolerance for stopping criteria

C 1.0 Inverse of regularization strength, where smaller values
specify stronger regularization

fit_intercept True A constant should be added to the decision function
intercept_scaling 1 Used for solver ‘liblinear’ self.fit_intercept ‘True’

class_weight None No class weigh
random state None Shuffle data

max_iter 100 Maximum number of iterations for solvers to converge

multi_class Auto Selects ‘ovr’ if data is binary or if solver = ‘liblinear’,
otherwise selects ‘multinomial’

verbose 0 Verbosity level

Table 13. Parameters of mechanism set for ANN.

Parameter Set Value Description

hidden_layer_sizes 5000, 10 Represents the number of neurons in the ith hidden layer
activation relu Activation function for the hidden layer

solver lbfgs Optimizer in the family of quasi-Newton methods
alpha 10-5 Strength of the L2 regularization term

batch_size Auto Size of minibatches for stochastic optimizers
learning_rate Constant Learning rate schedule for weight updates

learning_rate_init 0.001 Initial learning rate for step-size in updating the weights
power_t 0.5 Exponent for inverse scaling learning rate
max_iter 200 Maximum number of iterations
shuffle True Whether to shuffle samples in each iteration

random_state None Random number generation for weights and bias
initialization

tol 10-4 Tolerance for the optimization
verbose False Print progress messages to stdout

warm_start False Erase the previous solution
momentum 0.9 Momentum for gradient descent update

nesterovs_momentum True Use Nesterov’s momentum

early_stopping False Use early stopping to terminate training when validation
score is not improving

validation_fraction 0.1 Proportion of training data to set aside as validation set for
early stopping

max_fun 15000 Maximum number of loss function calls
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Table 14. Parameters of mechanism set for SGD.

Parameter Set Value Description

loss hinge Loss function
penalty l2 Penalty (regularization) to be used
alpha 0.0001 Constant that multiplies the regularization term

fit_intercept True Intercept should be estimated
max_iter 5000 Maximum number of passes over training data (epochs)

tol 10-3 Stopping criterion
shuffle True Training data should be shuffled after each epoch
verbose 0 Verbosity level
epsilon 0.1 Epsilon in the epsilon-insensitive loss functions
n_jobs None Number of CPUs for One Versus All (OVA) computation

random_state None Shuffling the data

learning_rate optimal eta = 1.0///(alpha * (t + t0)) where t0 is chosen by a
heuristic

power_t 0.5 Exponent for inverse scaling learning rate

early_stopping False Use of early stopping to terminate training when validation
score is not improving

validation_fraction 0.1 Proportion of training data to set aside as validation set for
early stopping

n_iter_no_change 5 Number of iterations with no improvement to wait before
stopping fitting

class_weight None Preset for the class_weight fit parameter
warm_start False Erase the previous solution

Table 15. Prediction results and accuracy per ML model for each use case.

Dataset ML Algorithms

BNB KNN DT LR RF SGD NN

Diabetes Y(76%) N(68%) Y(70%) Y(77%) Y(76%) N(54%) N(77%)
Stroke N(95%) N(96%) Y(91%) Y(95%) N(95%) N(96%) N(92%)

Heart Failure Y(80%) N(76%) N(72%) Y(82%) Y(86%) N(80%) N(68%)
COVID-19 N(85%) N(88%) N(79%) N(89%) N(92%) N(87%) N(86%)

Breast Cancer B(93%) B(96%) B(94%) B(100%) B(94%) B(98%) B(98%)
Kidney Disease N(90%) N(90%) N(100%) N(90%) N(100%) N(97%) N(100%)

In sequel, to conclude to the best suitable training algorithm for the prediction, during
the training phase, the mechanism considered the metric of accuracy along with the metrics
of precision, recall, F1-score, and confusion matrix (described in Section 2.2).

Concerning precision, this metric refers to the ratio between the true positive and all
the positive values. Thus, for the first experiment (i.e., stroke), this referred to the measure
of the patients correctly identified of having a chance to have a stroke from all the patients
who actually had. Figure 11 depicts this metric for all the algorithms applied upon the
different chosen datasets, where in the case of diabetes the best algorithm was RF (70%), in
the case of heart failure both LR, RF, and SGD produced the best results with 67% precision,
in the case of stroke BNB, KNN, LR, and SGD had perfect precision (i.e., 100%), whilst
in the case of COVID-19 the best performing algorithms were KNN and RF, with 44%
precision. For the case of breast cancer, the best algorithm was LR (100%). Finally, as for
the kidney disease use case, the best algorithms were DT, RF, and NN, which resulted into
100% precision.
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Regarding recall, this metric depicts the correctly identified true positive values.
Figure 12 depicts this metric for all the algorithms applied upon the different chosen
datasets. In the case of diabetes, the best algorithms were LR and NN (77%). When applied
on the heart failure dataset both LR and RF had 89% recall, while in the case of the stroke
dataset all algorithms had a very high percentage of recall (96%). In the case of COVID-19
the best performing algorithms were KNN and NN with 100% recall, whereas in the same
notion, in the case of breast cancer the best algorithms were LR and NN with 100% recall as
well. Finally, in the case of kidney disease, DT, RF, and NN also had a perfect recall (100%).
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To this end, it should be noted that achieving high recall can be considered more
important than obtaining high accuracy. For other kind of ML models, such as the clas-
sification ones, whether a patient is suffering from an anomaly or not, it is desirable to
have high accuracy. Therefore, Figure 13 portrays the F1-score metric for all the algorithms
applied upon all the different selected datasets. In the case of the diabetes dataset, the best
algorithm was BNB with 80% F1-score. In the case of heart failure RF had 67% F1-score,
while in the case of the stroke dataset BNB, KNN, LR, and RF achieved 97% F1-score.
Regarding the COVID-19 dataset, the best algorithm was RF with 53% F1-score. Moreover,
in the case of breast cancer dataset LR had 100% F1-score, whilst in the case of the kidney
disease dataset DT, RF and NN achieved 100% F1-score as well. It is worth mentioning that
SGD algorithm achieved equally accurate results with 97% F1-score.
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Additionally, regarding the specificity metric, in the scope of the utilized datasets, it
refers to the percentage of people who do not have a disease and are tested as negative.
Figure 14 depicts this metric for all the algorithms applied upon the different chosen
datasets, where in the case of the diabetes dataset the best algorithm was NN (70%), while
in the case of the heart failure dataset RF achieved 72% specificity. In the case of the stroke
dataset the best choice of algorithm was KNN, since it had 100% recall, whilst in the case
of the COVID-19 dataset the best performing algorithms were KNN and RF with 80%
specificity. Moreover, regarding the case of breast cancer dataset, the best algorithms were
DT, RF, and NN with a perfect (100%) specificity, whereas in the case of the kidney disease
dataset all the algorithms achieved a perfect (100%) specificity as well.
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3.3.1. Diabetes Use Case

Apart from the abovementioned metrics, the train, validation, and test scores were
used for the models’ evaluation, as described in Section 2.2. For the diabetes dataset, in
Figure 15, DT and RF achieved a train score percentage equal to 99.65%, while the rest of the
algorithms achieved a score under 80%. Moreover, it was observed that BNB (76.35%) or
KNN (79.78%) could not be properly trained, due to the training data. As for the validation
score, only three algorithms achieved a score above 60%. These algorithms were BNB,
KNN, and NN, with a percentage equal to 61.22%. Regarding the test score, RF achieved a
score of 86%, while all the other algorithms had scores under 85%. The next highest score
was 82% by LR. In conclusion, for the diabetes dataset, the best algorithm was BNB, since
all the metrics in all training, validation, and test data did not differ from each other.
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Finally, the confusion matrix for the diabetes scenario’s predictions was estimated,
showing the distribution of records based on the four different combinations of predicted
and actual values of the diabetes dataset. Figure 16 depicts the confusion matrix for the
diabetes dataset, where NN predicted that there was a true probability that insulin would
be granted in 3199 records (TP), while insulin in combination with some other medicine
would be granted in 3142 records (TN). In addition, the next best algorithm was LR with
2657 records in which insulin would be administered, and 3513 records in which insulin
with other medicine would be administered.
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Figure 17 summarizes the comparison in terms of accuracy, precision, recall, F1-score,
and specificity for the diabetes dataset. It can be observed that LR and NN produced the
best prediction in terms of accuracy in comparison with BNB and the rest of the algorithms.
Furthermore, the highest value of precision was observed for RF, which was equal to 0.7,
followed by LR and NN with values equal to 0.68 and 0.69, respectively. In addition, as
for the recall metric, the highest value was noted for the LR and NN algorithms. For the
F1 score it was observed that the highest value was that of BNB, which was equal to 0.8,
while LR, RF, and NN were the next ones. Finally, another important metric was that of
specificity in which it is observed that the highest value was noted for NN algorithm, being
equal to 0.7. Therefore, it is understood that for this case the most suitable algorithm for
the diabetes scenario was NN.
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3.3.2. Stroke Use Case

Regarding the stroke dataset, as shown in Figure 18, KNN achieved a validation
percentage equal to 95.18%, BNB 94.82%, and DT 94.46%, while the worst results were
those of LR (7.94%) and RF (35.61%), due to the fact that they could not properly validate
the received data. Additionally, it is observed that DT and RF, by considering a percentage
of data from 65–70% of the original (training) dataset, achieved a perfect (100%) score, while
KNN achieved 96.44%. Additionally, most algorithms produced quite high test scores,
however KNN achieved a percentage equal to 96.02%, followed by BNB with a percentage
of 95.9%.
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highest value was achieved by SGD that was equal to 0.98, followed by BNB, KNN, LR, 
and RF. Finally, another important metric was that of specificity, in which it was observed 

Figure 18. Train–validation–test score for stroke use case.

Figure 19 depicts the confusion matrix for the stroke dataset, where KNN predicted
that there was a true probability that a stroke attack would occur in 797 records (TP), while
in only one case (just in 1 record) it predicted that no stroke attack would occur (TN).
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Figure 20 summarizes the comparison in the metrics of accuracy, precision, recall,
F1-score, and specificity for the stroke scenario. To begin with, it can be seen that KNN and
RF produced the best predictions in terms of accuracy in comparison with BNB, LR, and the
rest of the algorithms. Moreover, the precision’s highest value was noted for BNB, KNN,
LR, and SGD, which was equal to 1, followed by the RF algorithm. Regarding the recall
metric, the highest value was noted in KNN. Moreover, regarding F1-scores, the highest
value was achieved by SGD that was equal to 0.98, followed by BNB, KNN, LR, and RF.
Finally, another important metric was that of specificity, in which it was observed that the
highest value was noted for KNN, being equal to 1. Therefore, it is understood that for this
case the most suitable algorithm for predicting whether a patient is likely to have a stroke
or not was KNN.
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3.3.3. Heart Failure Use Case

For the heart failure dataset, as shown in Figure 21, DT and RF achieved a train score
percentage equal to 100%, RF had also a good performance (99.50%), whilst the rest of the
algorithms achieved scores between 75% and 85%. Moreover, the lowest percentages were
produced by BNB (75%), KNN (83.5%), and SGD (85.32%), due to the fact that the training
data could not be properly trained. Regarding the second metric, validation scores were
quite low for all the algorithms, whilst only three of them achieved a score above 60%,
referring to BNB, KNN, and NN. As for the test score, RF achieved a score equal to 86%,
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while all the other algorithms had scores below 85%, while the next highest percentage
was achieved by LR (82%). In conclusion, for the case the of heart failure dataset, the best
algorithm was BNB, since all the captured metrics in all the training, validation, and test
data did not differ from each other.
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Figure 22 shows the confusion matrix for the heart failure dataset, where RF predicted
that there was a true probability that a heart failure attack would occur in 35 records (TP),
while no heart failure attack would occur in eight records (TN). Additionally, the next best
algorithm was LR with 33 records being predicted for having a heart failure attack, while
no heart failure attack was predicted in eight records.
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Figure 23 illustrates the comparison for the different metrics in the heart failure case.
RF produced the best prediction in terms of accuracy (0.86) in comparison with LR (0.82)
and the other algorithms. In addition, regarding precision, it is observed that the highest
value was noted for RF and LR that was equal to 0.67. As for the recall metric, the highest
value was noted for the LR and RF algorithms, while for F1-score, it is observed that the
highest value was that of RF, being equal to 0.67, and followed by LR and SGD (<0.04).
Finally, another important captured metric was that of specificity, in which it is observed
that the highest value was achieved by RF, being equal to 0.72. Therefore, it is understood
that the most suitable prediction regarding heart failure was produced by RF.
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3.3.4. COVID-19 Use Case

For the COVID-19 dataset, in Figure 24 it can be seen that DT and NN achieved a train
score percentage equal to 100% and KNN achieved a 90.79% score, while the rest of the
algorithms reached a score not greater than 90%. For example, BNB had an 87.31% score,
LR had an 89.55% score, and SGD had an 85.32% score due to the fact that the training data
could not be properly trained. It was also observed that most algorithms achieved a score
of around 80 to 90% (i.e., BNB (82.82%) or RF (87.87%)), while LR and SGD achieved a very
low score of around 40% to 45%, respectively. Regarding the test score metric, RF achieved
a score of 92.92%, while all the other algorithms had scores under 90% (i.e., BNB (85.85%)
or LR (89.89%)). In conclusion, for the case of the COVID-19 dataset, the best algorithm was
RF, because all the metrics in all the training, validation, and test data achieved a maximum
score of approximately or equally to 100%.
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Figure 25 shows the confusion matrix for the COVID-19 dataset, where KNN predicted
that there was a true probability that a pneumonia attack would occur in 89 records (TP),
while no pneumonia attack would occur in just four records (TN). However, it is worth
mentioning that RF also depicted the same results.
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Figure 26 summarizes the comparison for all the captured metrics of COVID-19
dataset. As it can be seen, KNN produced the best prediction in terms of accuracy (0.96)
in comparison with LR (0.95) and the other algorithms. In addition, precision’s highest
value was noted for BNB, KNN, LR, and SGD, which was equal to 1. Moreover, as for the
recall metric, the highest value was noted for BNB and KNN (0.96). For F1-score it was
observed that the highest value was that of SGD that was equal to 0.98. Finally, for the
specificity metric, it was observed that the highest value was captured for KNN, being
equal to 1. Therefore, it is understood that for this case, the most suitable prediction for
having a pneumonia or not was the KNN algorithm.
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3.3.5. Breast Cancer Use Case

For the breast cancer scenario, in Figure 27 it is illustrated that all the algorithms
achieved an almost perfect train score percentage between 95% to 100%. For example, DT,
RF and NN had a percentage equal to 100%, while the other algorithms achieved more
than 95% (i.e., BNB (95.01%) or KNN (97.9%)). However, regarding the validation score,
all the algorithms achieved a low percentage at 41.48%. As for the test score, LR achieved
100% score, whereas the second better algorithm was SGD with 97.87%. In addition, the
next better algorithm was KNN with 95.74%. All the other algorithms had scores below
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95%. Thus, it appeared that the best algorithm was LR, since the minimum deviation was
observed between the training and test metrics.
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Figure 28 presents the confusion matrix for the breast cancer dataset, where LR pre-
dicted that there was a true probability that benign cancer would be in 62 records (TP),
while malignant cancer would be in 32 records (TN). Moreover, the next best two algo-
rithms were SGD and NN, which predicted that 60 records would have benign cancer,
while 32 records would have malignant cancer.
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Figure 29 synopsizes the comparison in the captured metrics of accuracy, precision,
recall, F1-score, and specificity for the breast cancer case. More specifically, RF produced
the best prediction in terms of accuracy (0.92) in comparison with LR (0.89) and KNN (0.88).
Moreover, precision’s highest value was noted for RF which was equal to 0.44. As for the
recall metric, the highest value was noted for the RF and KNN (0.94), whilst for F1-score it
is observed that the highest value was that of algorithm RF, being equal to 0.53. Finally,
as for specificity, it was observed that the highest value was noted for RF, being equal to
0.8. Therefore, it is understood that for this case the most suitable algorithm regarding
the prediction of whether the patient is likely to have a benign or malignant cancer for the
breast cancer was RF.
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3.3.6. Kidney Disease Use Case

For the kidney disease dataset, as it is depicted in Figure 30, DT and RF achieved a
train score percentage equal to 100%, while NN scored an equally high percentage equal
to 99.2%. However, it should be emphasized that the scores of the rest of the algorithms
were also quite high (90%). Regarding the validation score, DT, LR, and RF achieved a
tremendously high score (100%), whilst the other algorithms achieved quite high scores as
well, equal to 96.77%. Regarding the test score metric, DT, RF, and NN achieved an equal
score at 100%, whilst the next highest score was that of SGD (96.77%). In conclusion, for the
kidney disease dataset, the best algorithms were DT and RF, since all the metrics in all the
training, validation, and testing data did not differ from each other, being equal to 100%.
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Figure 31 shows the confusion matrix for the kidney disease dataset, where DT, RF
and NN predicted that there was a true probability that 18 records would refer to patients
with kidney disease (TP), while 13 records would refer to patients with no kidney disease
(TN).
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Figure 32 summarizes the comparison for all the captured metrics of the kidney
disease case. In deeper detail, LR produced the best prediction in terms of accuracy (1)
in comparison with LR (0.93). In addition, precision’s highest value was noted for the
algorithm LR, being equal to 1, recall achieved the highest value by the LR, SGD, and
NN algorithms (1), whilst F1-score had the highest value by LR, being equal to 1. Finally,
regarding the specificity metric, it is observed that the highest value was achieved by the
DT, RF, and NN algorithms, being equal to 1. Therefore, it is understood that in this case,
the most suitable algorithm regarding the prediction of kidney disease was LR.
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3.3.7. Training Performance

Figure 33 presents the comparison of the training performance time (in milliseconds
(ms)) for each ML algorithm upon each different chosen dataset. Specifically, for each
dataset, consecutive tests were performed on the Model Training microservice, implement-
ing the different exploited ML algorithms (BNB, KNN, DT, LR, RF, NN, and SGD). Based
on the captured results, it is observed that RF was more complex in its training process for
the diabetes dataset, while NN followed. In general, it can be seen that the diabetes dataset,
due to its high complexity (concerning its large number of features, and huge data volume),
revealed the highest training time in every algorithm. As for the rest of the datasets, it can
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be observed that the training time was a function of data complexity, as expected, where
RF took longer to train its model, while NN and KNN followed.
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4. Discussion

Applying ML techniques and algorithms in several diverse domains is a matter of
investigation in a plethora of research and enterprise initiatives. ML provides the right tools
to analyze data and extract useful knowledge. More specifically, regarding the healthcare
domain, ML is capable of processing large amounts of data and then providing useful
insights regarding the planning and the delivering of care by the clinicians [101]. ML
can lead to better decision-making, thus minimizing the cost whilst, at the same time,
maximizing the efficiency and efficacy of healthcare-related processes [102].

It is an undeniable fact that a variety of research approaches have been proposed,
presenting and applying diverse ML algorithms, even combining those algorithms for
achieving high rates of predictions’ data accuracy [103], focusing on performing predictions
on multidimensional heterogeneous health-related data for inference in medical practices.
As previously stated, all of these current methodologies have been effectively used in
medical research for the construction of prediction models, leading in undoubtedly effective
and correct decision-making. A summarization of various conducted research works upon
diverse healthcare-related use case datasets can be found in Table 16. It should be noted that
the illustrated healthcare-related research works refer to the diverse healthcare scenarios
(i.e., stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failures) that are under
investigation in the current manuscript.

Regarding the aforementioned list of existing research works, it is also worth men-
tioning the corresponding key components that are part of every approach’s workflow
towards the accomplishment of the required predictions (except for the ML algorithms
that they utilize, as depicted in Table 16). Through this analysis, it becomes feasible to
determine the works’ applicability and complexity in comparison with the manuscript’s
proposed mechanism, based on the separate components that both of them put in place.
Table 17 depicts in deep detail such information, including a list of the existing approaches
in comparison with the proposed mechanism. To be more specific, the components listed
in this table refer to “Gateway”, “Data Reliability”, “Hyperparameters’ Tuning” (included
into the Model Training component), “Data Storage”, and “Model Evaluation” that are con-
sidered to be the major contributions of the current manuscript (as described in Section 1).
It is worth mentioning that regarding the first two components (i.e., “Gateway”, “Data
Reliability”), those do not refer to simple data collection and data cleaning techniques (e.g.,
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data are stored into a simple local file and are cleaned by dropping rows of erroneous data),
since those are trivial procedures. Instead, they refer to approaches that the corresponding
components perform more complex tasks, such as those that are showcased in the present
manuscript (further analyzed in Section 2.2). Moreover, it should be noted that the “Data
Storage” component does not refer to the fact whether the existing research works exploit a
NoSQL database for storing their data (as in the case of the proposed mechanism), but it
just refers to the fact as to whether the stated research works are putting in place in their
overall workflow a Data Storage component for handling the storage of the investigated
data.

Table 16. List of existing research works based on diseases and algorithms (annotated with *) used
for their predictions.

Disease Author Methods

B
N

B

K
N

N

N
N

SG
D

D
T

LR R
F

D
ia

be
te

s

Mogaveera et al. (2021) [104] *
Wu et al. (2022) [105] *

Xing et al. (2007) [106] * *
Oza et al. (2022) [107] * *

Palimkar et al. (2022) [108] * * * *
Komal et al. (2019) [109] *

C
O

V
ID

-1
9

Ahmad et al. (2018) [110] *
Ho et al. (2022) [111] *

Oyelade et al. (2021) [112] *
Hassan Yaseen et al. (2022) [113] * *

Shaban et al. (2020) [114] *
Yoo et al. (2020) [115] *

H
ea

rt
Fa

ilu
re Akbulut et al. (2018) [116] * * * *

Peter et al. (2012) [117] * * * *
Morgenstern et al. (2022) [118] *

Qian et al. (2022) [119] * *
Çınar et al. (2021) [120] *

St
ro

ke

Ponciano-Rodríguez et al. (2019) [121] *
Santos et al. (2022) [122] *

Dev et al. (2022) [123] * * *
Paikaray et al. (2022) [124] * *

Iosa et al. (2021) [125] *

K
id

ne
y

D
is

ea
se Pal et al. (2022) [126] * *

Revathy et al. (2022) [127] * *
Sinha et al. (2015) [128] *

Almustafa et al. (2015) [129] * * *
Singh et al. (2022) [130] *
Kim et al. (2021) [131] *

Br
ea

st
C

an
ce

r Mittal et al. (2015) [132] *
Tran et al. (2022) [133] * *
Pfob et al. (2022) [134] * *

Rasool et al. (2022) [135] * *
Naseem et al. (2022) [136] * * * *

Allugunti et al. (2022) [137] * *

Based on the results captured in Tables 16 and 17, it has become clear that even
though new and better software technologies have considerably reduced the complexity
of implementation for many ML algorithms in recent years, most of these approaches are
use-case specific, whereas specific algorithms and components have been applied upon
the effective completion of their predictions. For this reason, this manuscript proposes a
mechanism that utilizes a list of widely used and well-established ML algorithms to train
models to perform predictions across diverse healthcare anomalies’ scenarios, and based
on specific metrics, it compares the algorithms’ efficiency. By the time that this process



Sensors 2022, 22, 8615 37 of 46

gets complete, the mechanism creates a catalogue with the most proper algorithms to be
applied on each given scenario. The outcomes of this process are further described below,
regarding each different metric that was estimated across the diverse chosen scenarios.

Table 17. List of existing research works based on the components (annotated with *) used for their
predictions.

Author Components

G
atew

ay

D
ata

R
eliability

H
yperparam

eters
Tuning

D
ata

Storage

M
odelEvaluation

Proposed Mechanism * * * * *
Mogaveera et al. (2021) [104] * *

Wu et al. (2022) [105] * *
Xing et al. (2007) [106] * *
Oza et al. (2022) [107] * *

Palimkar et al. (2022) [108] *
Komal et al. (2019) [109] * *
Ahmad et al. (2018) [110] *

Ho et al. (2022) [111] * * *
Oyelade et al. (2021) [112] * *

Hassan Yaseen et al. (2022) [113] * *
Shaban et al. (2020) [114] * * *

Yoo et al. (2020) [115] *
Akbulut et al. (2018) [116] * * *

Peter et al. (2012) [117] *
Morgenstern et al. (2022) [118] *

Qian et al. (2022) [119] * * *
Çınar et al. (2021) [120] * *

Ponciano-Rodríguez et al. (2019) [121] *
Santos et al. (2022) [122] * *

Dev et al. (2022) [123] * *
Paikaray et al. (2022) [124] *

Iosa et al. (2021) [125] *
Pal et al. (2022) [126] * *

Revathy et al. (2022) [127] *
Sinha et al. (2015) [128] *

Almustafa et al. (2015) [129] *
Singh et al. (2022) [130] * * *
Kim et al. (2021) [131] * *

Mittal et al. (2015) [132] * *
Tran et al. (2022) [133] *
Pfob et al. (2022) [134] * *

Rasool et al. (2022) [135] * *
Naseem et al. (2022) [136] * *

Allugunti et al. (2022) [137] * *

More specifically, regarding the diabetes use case, it is observed that the most suitable
algorithm, in terms of the accuracy parameter, is LR with a percentage equal to 77%, given
that the number of correct predictions (insulin administration) divided by the total number
of predictions are correctly defined. Furthermore, as for the heart failure scenario, it is
observed that the most proper algorithm is RF with an accuracy equal to 86. Moreover,
in the stroke use case scenario, the most efficient algorithm is SGD with an accuracy
percentage of 96%. As for COVID-19 use case scenario, RF performed most sufficiently
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since it achieved the highest accuracy of 92%. Additionally, on finding breast cancer, the
results indicate that LR had the best performance with 92%, referring to all the cases in
which the patients will have benign cancer, while for the kidney disease case, it seems that
this will not happen in the given patients, with 100% accuracy of the three algorithms of
DT, RF, and NN representing a strong prediction.

Additionally, the recall metric is considered quite significant because it shows the ratio
of correctly predicted positive observations to all observations in the actual class. For all
the use cases studied in this manuscript it is observed that the recall metric is above 50%.
In the diabetes use case, the highest corresponding score is equal to 77% and is achieved by
the LR algorithm. In the heart failure use case, a percentage of 89% is achieved by LR and
RF. In the rest of the use cases, it appears that recall scores are greater than 90%, except for
the use case of COVID-19, where the recall score is 79%.

Regarding the precision metric and the diabetes use case, it is observed that the most
suitable algorithm is RF with a rate equal to 70%, given the number of correct predictions
(insulin administration) divided by the total defined number of predictions. Furthermore,
in the heart failure use case, it is observed that the most suitable algorithms were LR, RF,
and SGD, with a precision score of 67%. Additionally, in the stroke use case, the most
effective algorithms were BNB, KNN, LR, and SGD, with a perfect precision score equal
to 100%. As for the COVID-19 use case, RF had the most adequate performance as it
achieved the highest precision score of 44%. Additionally, for the breast cancer use case, the
mechanism shows that LR was quite precise (100%), while the rest of the algorithms range
between 90% and 100%, showing that the given patients will have benign cancer, while in
the case of kidney disease, it seems that there will not be any kidney disease to the patients
with 100% precision for three algorithms (DT, RF, NN), which is a strong prognostic factor.

Additionally, regarding the F1-score metric, the weighted average of precision and
recall was tested. Initially, in the diabetes use case, it appears that BNB adapts better with
a percentage of 80%, followed by LR with a score equal to 79%. In the heart failure use
case, it is observed that RF’s F1-score is 67%. However, in general the algorithms have
a quite low score regarding F1-score (around 50%). In the same way, in the use case of
COVID-19, it seems that only RF surpasses 50%, whilst for the remaining scenarios (i.e.,
stroke, breast cancer, and kidney disease), all the algorithms appear to match well with
percentages greater than 90%. For example, in the stroke case it appears that SGD has a
percentage equal to 98%, in the case of breast cancer LR achieves a score equal to 100%,
while in the same notion, in the kidney disease case it appears that several algorithms (DT,
RF, NN) achieve a perfect score (100%) as well.

Of course, it is worth mentioning that the current approach has certain limitations.
Regarding the Gateway microservice, this utilizes a mechanism to efficiently retrieve large
amount of data by splitting them into batches and storing them into the database. However,
the size of the batches is currently at a default value. If the batch size was dynamically
changing based on the size and structure of the collected data, the data collection would
probably be even more efficient. Moreover, this functionality has been tested with a limited
number of external sources and third-party APIs, so further testing should take place. As
for the Data Reliability microservice, this depends on a set of ML techniques that even
include NLP. This fact suggests that more time and/or computational cost should be
needed in order to effectively eradicate all the possible data inconsistencies. As a result,
further development should take place to make the corresponding processes more efficient,
at a software level. Moreover, the Data Reliability microservice should split the data to
batches to perform data cleaning, when it comes to large datasets. As for the microservices
of Model Training, Model Evaluation, and Model Validation, it is difficult to compare
algorithms objectively across studies, since each study’s performance is reported using
different methodologies on different populations with distinct sample distributions and
features. To be fair, algorithms must be compared using the same independent test set
that is representative of the target population and the same performance criteria. Without
this, healthcare practitioners would have a difficult time determining which algorithm
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is most likely to perform well for their patients. To fully examine the performance of
the different available algorithms in a representative sample of their community, each
healthcare practitioner may use the curation of separate local test sets. Such independent
test sets should be constructed using an unenriched representative sample and data that
are not intended to be used to train algorithms. Furthermore, prior to formal testing, an
additional local training dataset for the Model Serving microservice could be provided to
allow fine tuning of the chosen algorithms. ML algorithms are susceptible to a variety of
flaws, including inapplicability outside of the training domain, bias, and brittleness (i.e.,
the ability to be easily deceived [138]). The following have to be considered: the dataset
shift, the fitting confounders rather than the true signal, the spreading inadvertent biases in
clinical practice, the offering of algorithm interpretability, the creation of correct evaluations
of model confidence, and the difficulty of applicability to new populations. Given the
current velocity of innovation, the significant risks involved, and the potentially fluid
nature of ML models, this is a one-of-a-kind problem. Furthermore, proactive regulation
will create trust in professionals and healthcare systems for the Prediction microservice.
What is more, currently there is a trade-off between the performance and the explainability
for the developed Performance Monitor microservice. The highest performing models (e.g.,
DL) are frequently the least explainable, whereas models with worse performance (e.g., LR,
DT, or RF) are the most explainable. DL models currently have a significant disadvantage
in the way that they lack explicit declarative knowledge representation, making it difficult
to provide the necessary explanatory structures [139]. For the Orchestrated Experiment
microservice, the currently exploited ML models do not rely on a long history of research
in classical symbolic AI techniques to allow for the encoding of data semantics and the
use of ontologies to assist the learning process, which may help healthcare specialists to
better understand and re-trace decision processes [140]. Finally, regarding the developed
UI, all the underlying microservices are directly or indirectly connected and visualize their
produced results through the provided interfaces, thus following the MSA towards code’s
reuse and efficient operations. However, in the case of adding more complex ML/DL
mechanisms, more complex code compositions are required that should be further studied
to respond to the requests returned to the developed UI.

5. Conclusions

Currently there is a growing interest in using ML to predict the outcome of a disease
or treatment, while there exists a plethora of algorithms that can be utilized for this task.
However, each algorithm is efficient for specific kind of data and use cases. Thus, the
selection of the most proper algorithm is not an easy task. This manuscript proposes a
mechanism that utilizes well-known ML algorithms, and conducts a complete comparison
between them, resulting with the most effective ones in different scenarios being related
to healthcare. The reason behind this is to construct a catalogue of ready-to-use and
on-demand ML algorithms, and to offer—under specific criteria—the most appropriate
algorithms for more efficient and reliable prediction results.

According to the conducted study, the most accurate algorithms for diabetes are LR
with a percentage of 77% accuracy and RF with an accuracy of 86%. For heart failure, it is
observed that the most proper algorithm is RF with an accuracy of 86%. For stroke, SGD
is the most efficient algorithm, with an accuracy percentage of 96%. As for COVID-19,
RF achieved an accuracy of 92%. In the breast cancer use case LR achieved an accuracy
rate equal to 92%, while for kidney disease, DT, RF, and NN achieved 100% accuracy.
Regarding recall, it is a measure indicating how well the algorithm predictions match the
actual observations, where in the current study, it was found that this metric was always
above 50%. The highest score was achieved by LR in the diabetes use case, with a score of
77%. In the heart failure use case, RF achieved a score of 89%, while the rest of the use cases
had recall scores greater than 90%. In the COVID-19 use case, the same algorithm had a
recall score of 79%. As for the precision metric, in the diabetes use case, it was found that
RF performed the best, with a rate equal to 70%. In the heart failure use case, it was found
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that LR, RF, and SGD had the best precision scores, with 67%, 100%, and 100%, respectively.
In the stroke use case, BNB, KNN, LR, and SGD had the best precision scores (100%), whilst
for the COVID-19 use case, it was found that RF had the best performance, with a precision
score of 44%. In the breast cancer use case, it was found that LR had the best performance,
with a precision score of 100%. In general, it appeared that the algorithms had low scores
when it comes to the F1-score metric. However, in a few specific cases, the algorithms were
better suited for certain tasks, as for example in the case of heart failure prediction, where
RF was better suited for predicting the occurrence of heart failure, while in the case of
stroke, SGD was better for predicting the occurrence of stroke.

The results of this study are particularly useful in assisting the selection of classifi-
cation algorithms for future applications that exploit relevant health-related data. As for
the next steps, among the first actions that should be considered are the address of the
limitations already discussed in the discussion section. We have already identified potential
solutions and workarounds to these limitations, and as a result our future goals include
the resolution of these challenges. In addition, we aim to address issues related to feature
importance regarding the overall training of the ML algorithms, considering additional
hyperparameters tuning research studies. Moreover, we plan to take into consideration
the AUC metric for capturing the algorithms’ performance, as well as to perform several
experiments in cloud computing premises by utilizing different kinds of architectural
styles [141]. We also envision utilizing datasets from other domains to investigate whether
certain ML algorithms are more efficient than others, based on the type of the datasets’
features. Finally, we aim to test the current ML algorithms in distributed environments and
datasets by utilizing state-of-the-art techniques such as Federated Learning (FL).
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