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Abstract: Indoor-scene semantic segmentation is of great significance to indoor navigation, high-
precision map creation, route planning, etc. However, incorporating RGB and HHA images for
indoor-scene semantic segmentation is a promising yet challenging task, due to the diversity of
textures and structures and the disparity of multi-modality in physical significance. In this paper, we
propose a Cross-Modality Attention Network (CMANet) that facilitates the extraction of both RGB
and HHA features and enhances the cross-modality feature integration. CMANet is constructed under
the encoder–decoder architecture. The encoder consists of two parallel branches that successively
extract the latent modality features from RGB and HHA images, respectively. Particularly, a novel
self-attention mechanism-based Cross-Modality Refine Gate (CMRG) is presented, which bridges the
two branches. More importantly, the CMRG achieves cross-modality feature fusion and produces
certain refined aggregated features; it serves as the most crucial part of CMANet. The decoder is a
multi-stage up-sampled backbone that is composed of different residual blocks at each up-sampling
stage. Furthermore, bi-directional multi-step propagation and pyramid supervision are applied
to assist the leaning process. To evaluate the effectiveness and efficiency of the proposed method,
extensive experiments are conducted on NYUDv2 and SUN RGB-D datasets. Experimental results
demonstrate that our method outperforms the existing ones for indoor semantic-segmentation tasks.

Keywords: semantic segmentation; indoor scene; HHA data; cross-modality aggregation; attention
mechanism

1. Introduction

Semantic segmentation is one of the essential techniques in scene understanding tech-
nologies. It aims to categorize each pixel and assists in the identification and segmentation
of scene elements. Initially, the segmentation can be achieved by handcrafted features and
machine-learning algorithms [1–3], among which, deep learning is the trend of current
research [4–7]. For semantic-segmentation tasks, it is fully recognized that indoor scenes
exhibit distinct aspects compared with outdoor scenarios. For instance, services relying
on indoor-scene semantic segmentation (indoor navigation, intelligent furniture, etc.) are
strongly demanded by individuals. Therefore, facing the aforementioned challenges, some
works apply notable features of the images to assist the segmentation, e.g., edges infor-
mation [8,9]. Additionally, the illumination variations, overlaps among objects, and the
imbalanced representations of object categories in indoor scenes always make it impossible
to distinguish numerous objects using solely RGB images [10].

Adding the depth information to traditional RGB information with low-cost RGB-D
sensors is a conventional way to achieve better performance of indoor-scene semantic seg-
mentation. Nevertheless, the depth images contain only range measurement information,
which makes them challenging for feature extraction. As a result, it is natural to employ
the three-channel HHA images (three channels represent the horizontal disparity, height
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above ground, and the angle of the pixel’s local surface normal makes with the inferred
gravity direction) [11], which are coded from one-channel depth images. The application
of HHA images is demonstrated to be more efficient and robust than one-channel depth
images [4,12,13]. The comparison of RGB, depth, and HHA images are shown in Figure 1.

(a) RGB (b) Depth (c) HHA

Figure 1. Comparisons: (a) RGB images, (b) one-channel depth images, and (c) three-channel
HHA images.

In order to improve feature embedding, it is necessary to consider the essence of data
modality, i.e., the quality, attribute, or circumstance of each type. The RGB images describe
lightness and saturation, which mainly represent appearance information, whereas the
HHA images mainly represent geometric information [14]. As a result, RGB and HHA
can complement one another, with HHA discriminating instances and contexts that share
similar colors and textures [15], while RGB can assist with indistinguishable structures. As
illustrated in Figure 2, the cushion on the sofa has a similar texture to the sofa, so it can be
distinguished by the HHA images, and the pictures on the wall have a similar structure as
the wall, so they can be distinguished by the RGB images. It is evident that the combination
of both modality features from RGB and HHA images can effectively enhance the efficiency
of feature embedding.

Figure 2. Some challenging samples of semantic-segmentation tasks. The yellow bounding box
indicates the complex sample on solely RGB images, whereas the blue indicates the complex sample
with solely HHA images.

On the basis of existing deep-learning methods for RGB-D semantic segmentation,
two open problems are still widely discussed: how to fuse multi-modality (RGB and depth)
features adeptly and how to improve the robustness w.r.t. imperfect data. The first problem
is caused by the substantial variations between RGB and depth modalities [12], which lead
to inappropriate feature fusion and inferior performance. Some works utilize the depth
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image as an extra channel [4,16,17], whereas some works extract features independently
and fuse them via CNN-based architecture [14,18,19]. Despite this, these methods can
only correlate RGB and depth information to a limited extent. Additionally, measurement
noise, view angle, and occlusion boundary may affect the RGB sensors (e.g., resulting in
overexposure) and depth sensors (e.g., resulting in data loss) during the data collection
period, causing the second problem. Therefore, some works [20,21] apply pre-processing
to RGB and depth images for denoising and filling in lost depth. However, pre-processing
is not stable enough for feature extraction.

In this paper, we propose a novel Cross-Modality Attention Network (CMANet) for
indoor-scene semantic segmentation. CMANet is designed under the encoder–decoder
architecture. The encoder aims to build multi-step interaction between two modalities and
extracts multi-level features from RGB and HHA images. Meanwhile, the decoder enhances
the efficiency of feature representation and restores the feature maps to the corresponding
resolution step-by-step. It is worth mentioning that the cross-modality ability ensures that
CMANet can utilize the essence of different modalities effectively and fuse the RGB and
HHA features adeptly. To be specific, the encoder has two parallel branches to extract RGB
and HHA features. The parallel design scheme minimizes the unfavorable effects of mutual
influence between RGB and HHA features. More importantly, to achieve appropriate
feature fusion and filter out the noise of images, we propose the Cross-Modality Refine
Gate (CMRG) based on the attention mechanism, weighting the crucial features in the
first stage and aggregating them in the second stage. Moreover, the CMRG utilizes the
features from different modalities, instead of relying on one modality, which increases the
model robustness and achieves a great performance. Additionally, the output of the CMRG
is propagated in a multi-step bi-directional operation into both branches to enhance the
encoding of features. The decoder is an up-sampled ResNet, which gradually restores
spatial resolution and integrates the encoding stage information. Additionally, we conduct
pyramid supervision to improve the final semantic performance.

The main contributions of this paper are as follows:

• We propose a novel RGB-HHA semantic-segmentation network: CMANet. On one
hand, CMANet can effectively fuse and extract the cross-modality features; on the
other hand, it improves the robustness and efficiency of feature embedding;

• We design the CMRG based on the self-attention mechanism, which not only filters
the noise and highlights advantages in the feature maps, but also facilitates to improve
the representation and aggregation of cross-modality information;

• We conduct extensive experiments on challenging NYUDv2 and SUN RGB-D datasets,
on which CMANet evidences its robustness and effectiveness on indoor-scene seman-
tic segmentation.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
works. Section 3 gives a detailed description of CMANet, which includes the network
architecture, the processing modules, the training and optimization strategies, etc. Section 4
provides the experiment settings, evaluation methods, and the results, along with com-
paring the proposed method with existing methods and analyzing the strengths and
limitations of our approach. Section 5 closes the paper with a brief conclusion and future
research considerations.

2. Related Works

In this section, we briefly review the literature relevant to our work. The attention
mechanism part focuses on the utilization of channel attention and spatial attention, and the
RGB-D semantic-segmentation part elaborates the existing methods and essential concerns
of cross-modality fusion.

2.1. Attention Mechanism

The attention mechanism is derived from the behavior of humans, which is to ignore
irrelevant information and pay attention to what is essential. This strategy is commonly
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applied in the deep-learning field and performs well on Natural Language Processing
(NLP) [22–24] and Computer Vision (CV) [15,25,26] tasks. Considering the attention mech-
anism in the CV field, we divide it into two categories based on enhancement type: channel
attention (what to focus on) and spatial attention (where to focus on).

In deep learning, the feature maps that propagate in different channels usually rep-
resent different features [27], such as texture, boundary, and shape. As a result, channel
attention assigns different weights to different channels, determining what features are im-
portant (what to focus on), and is widely used [28–33]. SENet [31] provides the first step to
improving the representation ability of feature maps through channel attention by using the
Squeeze-and-Excitation (SE) block. For better modeling capability, GSoP-Net [32] generates
attention maps not only by utilizing first-order statistics (i.e., the global pooling descriptor)
but by extracting high-order statistics as well. SKNet [33] combines different receptive field
features with multiple branches to adapt the weights according to the input feature maps.
These methods open up a novel aspect to feature extraction where the valuable information
from existing channels is emphasized rather than continuously increasing the number of
parameters. Thus, we adopt the channel-attention mechanism in the CMRG to refine the
cross-modality feature maps so as to reduce the noise and improve feature representation.

Regarding one feature map, the region attribute can be represented by pixel values in
different locations. The spatial attention can adeptly select the interrelated and meaningful
regions across the entire map, then reinforce them by allocating higher weights (where to
focus on), which has significance for image processing [34–38]. AGNet [36] applies Atten-
tion Gates (AGs) for medical image segmentation. The AGs restrain irrelevant regions and
highlight significant features via implicit learning. PSANet [37] relates all the positions on
the feature map to each other via a self-adaptively learned attention mask, thus alleviating
the limitations of convolutional filters with small kernel size. Additionally, transformers
have proven to be very effective with NLP and CV tasks [22,39]; therefore, the Vision
Transformer (ViT) [38] processes images by cropping each image to 16× 16 small samples,
which is similar to split a sentence into several words. The spatial attention mainly concerns
the crucial regions in one feature map, which means it can enhance the relationship among
pixels. Inspired by these works, we consider the fact that RGB and HHA have different
geometric properties and propose a cross-modality spatial-attention mechanism that can
enhance region characteristics.

In order to better refine the feature maps, CBAM [40] combines the channel and
spatial-attention modules, which will be discussed later. Motivated by this, we employ the
sequential deployment of the channel and spatial modules for cross-modality features. In
this way, the acquisition of what is essential comes not only from latent learning, but also
from different physical characteristics from different modalities.

2.2. RGB-D Semantic Segmentation

For RGB-D semantic segmentation, not only the category labels are assigned to each
pixel; the performance is also enhanced via the cross-modality feature fusion. Based on
the existing successful deep-learning RGB semantic-segmentation structures [4–7], several
works on RGB-D semantic segmentation are presented and demonstrate their reliability
and practicality.

Since the RGB and depth modalities must be fully utilized in RGB-D semantic seg-
mentation, the cross-modality fusion is crucial. The fusion can be achieved via element-
wise summation, concatenation, or a combination of both, and adapted by latent learn-
ing [4,13,14,18,19,41–43]. For learning common and specific parts from cross-modality
features, ref. [14] designs the transformation network between the encoder and decoder,
and extracts corresponding features via Multiple Kernel Maximum Mean Discrepancy
(MK-MMD). RedNet [18] integrates ResNet [44] and encoder–decoder architecture. In
addition, it adds skip connections to optimize decoding and applies pyramid supervi-
sion to avoid overfitting. Learning from the structure of RefineNet [45], RDF [13] fuses
cross-modality features by applying a Multi-Modal feature Fusion (MMF) network, which
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is composed of several residual convolutional layers and element-wise summation. To
avoid noisy and chaotic information affecting the effectiveness of the network, RAFNet [43]
employs a three-stem branch encoder to process RGB, depth, and fusion features, respec-
tively. Meanwhile, RAFNet utilizes the channel-attention model for refinement. The RGB-D
semantic-segmentation methods mostly inherit the former deep-learning methods used for
image processing, some of which insert the attention mechanism to enhance the features
adeptly by filtering noisy and chaotic information. However, the relationship between RGB
and depth features has received little interest.

Thus, we propose several processing modules for cross-modality features based on
residual convolution and attention mechanism. In this structure, the residual convolu-
tion contributes to the latent learning and adjusts adaptively for feature maps, while the
attention mechanism contributes to information refinement.

3. The Cross-Modality Attention Network

An effective cross-modality network aims to attenuate the image noise and combine the
benefits of both RGB and HHA features. Regarding this, a novel attention-based mechanism
is introduced in our proposed model (CMANet), and it results in the so-called CMRG
design. Additionally, bi-directional multi-step propagation and pyramid-supervision
training strategies facilitate the performance. In this section, we will present detailed
descriptions of the proposed method in terms of the overall framework, the structure of
the Cross-Modality Refine Gate (CMRG), the processing modules, the configuration of the
encoder and decoder, and the pyramid-supervision strategy.

3.1. Network Architecture

In this subsection, we detail the structure of our CMANet, which includes the overall
framework, the processing modules for cross-modality features, and the configuration of
the encoder and the decoder.

3.1.1. Overall Framework

Influenced by SegNet [5], our proposed structure is based on encoder–decoder archi-
tecture. In the encoder part, latent modality features are extracted from RGB and HHA
images, which serve as the input of the decoder. Following that, the decoder gradually
reconstructs the high-dimensional features to the original spatial resolution and integrates
the encoding stage information through skip connections to produce the results of semantic
segmentation. In this structure, the encoder extracts the high-level features while the de-
coder restores the spatial information, which alleviates the problem of chaos in the semantic
assignment in pixel-wise classification.

The architecture of CMANet is presented in Figure 3. The encoder has two CNN
branches w.r.t. RGB and HHA. Each branch successively extracts latent modality features
from RGB and HHA images. Here, ResNet [44] serves as the backbone for both branches.

In order to enhance the extraction and fusion of cross-modality characteristics, we
present the Cross-Modality Refine Gate (CMRG), which is designed based on the self-
attention mechanism. The CMRG module receives pairs of encoding feature maps from the
RGB and HHA branches (e.g., the outputs of RGB-Layer1 and HHA-Layer1) and produces
aggregated features. Regarding the cross-modality fusion, there are several CMRG modules,
which correspond to distinct encoding stages. As a result, we can extract more valuable
features with the availability of an encoder capable of fusing and boosting features via the
separate implementation of encoding and fusion with CMRGs.
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Agent1 Agent2 Agent3 Agent4 Context

HHA input

RGB input CMRG2 CMRG3 CMRG4

RGB-Layer1 RGB-Layer4RGB-Layer3RGB-Layer2 RGB-Layer5

HHA-Layer1 HHA-Layer2 HHA-Layer3 HHA-Layer4 HHA-Layer5

Up-Layer5 Up-Layer4 Up-Layer3 Up-Layer2 Up-Layer1

1 Encoder

2 Decoder

CMRG5CMRG1

Figure 3. Illustration of the framework of CMANet. CMANet has the encoder–decoder architecture:
(1) The encoder extracts RGB and HHA features with ResNet [44] backbone. (2) The decoder is an
up-sampled backbone composed of several standard residual blocks.

After encoding, CMRG5 refines the outputs of RGB-Layer5 and HHA-Layer5 to
produce the final pair of feature maps. Nonetheless, the final pairings are the outputs of
the encoder, which have different representational capabilities because they are derived
from separate modalities and, hence, they cannot be joined by element-wise addition.
Consequently, we employ the Context module to aggregate and refine the pairings of
high-level feature maps from two modalities.

The decoder component is an up-sampled ResNet backbone consisting of five residual
blocks, each of which comprises several Up-sampled Residual Units (URUs). In this
structure, the decoder recovers the feature maps to the original spatial resolution stage-by-
stage via transposed convolution and combines the features from each encoding stage via
Agent modules as skip connections.

The low-level features in the decoder have a better resolution with more position
and detail information, but the high-level features contain rich semantic and category
information. To improve the use of multi-level features and alleviate the gradient vanishing
problem, we generate multi-scale semantic maps from five stages of decoding features for
pyramid supervision.

3.1.2. Processing Modules

Here, we outline the processing modules that aid in the propagation of features.
Residual Units The residual learning can effectively prevent the degradation of the

model and resolve the gradient vanishing issue during back-propagation. The structure
of residual units is shown in Figure 4. The Residual Convolutional Unit (RCU) and the
Chained Residual Pooling (CRP) are utilized in the Agent and Context modules, which are
the sub-components of RefineNet [45], whereas the Downsample Residual Unit (DRU) [18]
and Upsample Residual Unit (URU) [44] are applied for the encoder and decoder, respec-
tively. It is worth mentioning that, while the displayed Chained Residual Pooling (CRP)
has two blocks in Figure 4b, we only utilize one block in our subsequent modules since one
is sufficient for refinement.

Agent Module The skip connections between the encoder and decoder are utilized
to replenish the detail loss caused by downsampling. Hence, the Agent modules provide
certain intermediate addition of the multi-stage feature maps from the encoder to the
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corresponding decoder layers. The structure of the Agent module is illustrated in Figure 5a.
After receiving two feature maps from the RGB and HHA branches, the Agent module first
utilizes a 1× 1 convolution layer to mitigate the explosion of parameters by reducing the
dimension number. Then, each feature map goes through the RCU to adapt the element-
wise sum fusion. The combined features are fed to a one-block CRP, where a pooling
algorithm spreads large activation values while an additional convolution layer is added
to learn the significance of the pooled features. Finally, before passing to the decoder, a
Convolutional Block Attention Module (CBAM) is employed to filter and enhance the
features. Note that, in order to improve the propagation, we couple the CBAM and residual
learning via a shortcut connection.

ReLu

3×3 Conv

RCU

ReLu

5×5 Pool

3×3 Conv

5×5 Pool

3×3 Conv
CRP

(a) (b)

ReLu

1×1 Conv

ReLu

3×3 Conv

ReLu

1×1 Conv

DRU

1×1 Conv

ReLu

3×3 Conv

ReLu

3×3 Conv

URU

2×2 Conv

(d)(c)

ReLu

3×3 Conv

Figure 4. Structure of residual units: (a) Residual Convolutional Unit (RCU): a standard residual
convolutional unit, which is an adaptive convolution that has two standard 3× 3 layers with shortcut
connection; (b) Chained Residual Pooling (CRP): a chain of pooling blocks (two blocks) with shortcut
connection, each of which contains of a 5 × 5 max-pooling layer and a 3 × 3 convolution layer;
(c) Downsample Residual Unit (DRU): a downsample residual unit in the (ResNet-50) backbone;
(d) Upsample Residual Unit (URU): an upsample residual unit that we propose in the decoder.

Context Module The Context module is applied to fuse the final outputs of the two
CNN branches (RGB and HHA). As illustrated in Figure 5b, the Context module has
similar components as the Agent module, but has additional RCUs and a 3× 3 convolution
layer. The first 1× 1 convolution layer reduces the dimension from 2048 to 512. Then,
two feature maps are fused by element-wise summation and finally output to the decoder
after refinement.

1×1 Conv

RCU

CRP

1×1 Conv RCU RCU 3×3 Conv

1×1 Conv RCU RCU 3×3 Conv

RGB-branch

HHA-branch
CRP

(a)

(b)

RGB-branch

HHA-branch

CBAM

1×1 Conv

RCU

CBAM

Figure 5. Structures of processing modules: (a) the structure of the Agent module; (b) the structure
of the Context module.
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3.1.3. Encoder and Decoder Configuration

The encoder and decoder have different types and numbers of the residual unit. The
encoder with the backbone of ResNet-50 utilizes the Downsample Residual Unit (DRU)
as illustrated in Figure 4c, with the 1× 1 convolution layer with a stride of 2. Regarding
the decoder, the residual units are applied to upsample the feature maps, as illustrated
in Figure 4d, where the 2× 2 convolution layer and the second 3× 3 convolution layer
both have a stride of 1/2. The encoder and decoder configuration is shown in Table 1,
Input denotes the number of input feature channels, Output denotes the number of output
feature channels, and Units denotes the number of residual units in this layer.

Table 1. Encoder (ResNet-50) and decoder configuration.

Block
Encoder

Block
Decoder

Input Output Units Input Output Units

Layer1 3 64 - Trans1 512 256 6
Layer2 64 256 3 Trans2 256 128 4
Layer3 256 512 4 Trans3 128 64 3
Layer4 512 1024 6 Trans4 64 64 3
Layer5 1024 2048 3 Trans5 64 64 3

3.2. Cross-Modality Refine Gate

For RGB and HHA data, the former mainly record appearance information (e.g., color,
texture) that can emphasize the visual boundary, whereas the latter primarily capture
shape information (e.g., structure, spatial) that can highlight the geometric boundary. Thus,
it is challenging to fully utilize RGB and HHA images via fusion and enhancement of
cross-modality features. We propose the Cross-Modality Refine Gate (CMRG) based on the
attention mechanism to aggregate features from multiple modalities.

3.2.1. Convolutional Block Attention Module

As discussed in Section 2, the attention mechanism has been extensively used in the CV
field for determining where the focus should be placed and for deciding what is valuable.
In particular, the Convolutional Block Attention Module (CBAM) combines channel and
spatial-attention mechanisms during propagation, an achieves outstanding performance
in feature extraction [40]. For further modification of the CBAM, we discuss its overall
structure and sub-modules details first.

The structures of the CBAM and its sub-modules are shown in Figure 6. The CBAM
refines the input feature maps by sequentially applying one channel-attention module
and one spatial-attention module, as illustrated in Figure 6a. Given input feature maps
F , the CBAM first infers a 1D channel-attention map Mc using the channel-attention
module and refines the feature maps via channel-wise multiplication; then, it infers a 2D
spatial-attention map Ms using the spatial-attention module and performs spatial-wise
multiplication on the channel-refined feature maps to yield the output. The CBAM process
can be formulated as follows:

F ′ = Mc(F )⊗F , (1)

F out = Ms(F ′)⊗F ′, (2)

where F ∈ RC×H×W represents the input feature maps, F ′ represents the channel-refined
feature maps, F out represents the final output, and ⊗ denotes element-wise multiplication.
In the multiplication procedure, the attention values are broadcast as follows. Channel-
attention values are broadcast along the spatial dimension (channel-wise multiplication),
while spatial-attention values are broadcast along the channel dimension (spatial-wise
multiplication). Figure 6b,c describe the detailed structure of the channel-attention module
and the spatial-attention module.
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Channel Attention
Module Spatial Attention 

Module

(a)

Shared 
MLP

7×7 Conv

(b)

(c)

Element-wise addition Channel-wise multiplication Spatial-wise multiplication

S

S

S Sigmoid

 

MaxPool

 

AvgPool
 

Input 

 

Channel-refined 

 

Spatial-refined 

 

Channel-refined 

 

Channel Map

 

Spatial Map

 

Figure 6. Structures of CBAM and its sub-modules: (a) the structure of CBAM, which is comprised
of a channel-attention module and a spatial-attention module in sequence; (b) the structure of the
channel-attention module; (c) the structure of the spatial-attention module.

As shown in Figure 6b, the channel-attention module first aggregates the spatial
information of input feature F into two descriptors, average-pooled features F c

avg and
max-pooled features F c

max, via average-pooling and max-pooling operations, respectively.
Then, both descriptors are supplied to a shared network containing one hidden layer
of multi-layer perception (MLP). A reduction ratio is set to the shared MLP in order to
decrease parameter overhead. After propagation in the shared MLP, the descriptors are
fused by element-wise summation and modified by a sigmoid function to produce the
channel-attention map Mc. At last, the channel-refined features Fc can be generated by
multiplying the attention map and input features. The channel-attention map is computed
as follows:

Mc(F ) = σ(MLP(AvgPool(F )) + MLP(MaxPool(F )))

= σ(W1(W0(F c
avg)) + W1(W0(F c

max))),
(3)

where σ denotes the sigmoid function, W0 ∈ RC/r×C and W1 ∈ RC×C/r represent the MLP
weights, and r is the reduction ratio. As specified, the MLP weights are shared with both
inputs. Mc ∈ RC×1×1 represents the channel-attention map, F c

avg ∈ RC×1×1 represents
the average-pooled features, and F c

max ∈ RC×1×1 represents the max-pooled features.
The spatial-attention module is presented in Figure 6c. Similar to the aforementioned

channel-attention module, the spatial-attention module aggregates channel information
of the refined features to maps F s

avg and F s
max first via average-pooling and max-pooling

along the channel axis. The two maps are then merged by concatenation. After that,
the concatenated features are convolved by a standard convolution layer to generate the
spatial-attention map Ms. The final refined features are also produced by multiplication.
The spatial-attention map is computed as follows:
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Ms(F ) = σ( f 7×7([AvgPool(F ); MaxPool(F )])

= σ( f 7×7([F s
avg;F s

max])).
(4)

where σ denotes the sigmoid function, f 7×7 represents the 7× 7 convolutional layer, and
[; ] refers to the concatenation. Ms ∈ R1×H×W represents the spatial-attention map,
F s

avg ∈ R1×H×W , and F s
max ∈ R1×H×W represent the pooled maps.

3.2.2. Structure of Cross-Modality Refine Gate

Although CBAM exhibits good performance w.r.t. the extraction and representation
of features through the channel- and spatial-attention mechanisms, it is inadequate for
the cross-modality features. Inspired by CBAM, where the channel- and spatial-attention
modules are sequentially employed (and the attention mechanisms are applied with each
modality separately), here, we design a unique attention module, the Cross-Modality
Refine Gate (CMRG), which is designed to deal with cross-modality features. The structure
of the CMRG is illustrated in Figure 7. Differing from the CBAM, the CMRG takes the
multi-modality features as the input, instead of receiving only one feature maps. The
self-attention mechanism in the CMRG utilizes the cross-modality information to produce
the attention maps, which only rely on one modality in CBAM.

RGB 
Shared 

MLP

HHA 
Shared 

MLP

RGB 
7×7

Conv

HHA 
7×7

Conv

Concatenation Element-wise addition Channel-wise mutiplication Spatial-wise mutiplication

S

S S

S

S Sigmoid

Channel Attention Module Spatial Attention Module

 

 

 

 

 

Figure 7. Structure of the Cross-Modality Refine Gate (CMRG).

As shown in Figure 7, the CMRG consists of two parts: the channel-attention mod-
ule, and the spatial-attention module. The input of the CMRG is a pair of feature maps
FRGB and FHHA, which are derived from the RGB and HHA branches, respectively.
Firstly, the CMRG utilizes the channel-attention module to infer two 1D channel-attention
maps—Mc

RGB and Mc
HHA—to refine FRGB and FHHA via channel-wise multiplication.

By the sharing of descriptors from each modality and the inference of exclusive atten-
tion maps for each modality, the cross-modality channel-attention operation primarily
filters out noisy and chaotic information and improves the effective characteristics of the
original feature maps from the channel aspect. Then, the CMRG infers two 2D spatial-
attention maps—Ms

RGB and Ms
HHA—to enhance the channel-refined feature maps F cr

RGB
and F cr

HHA via spatial-wise multiplication. The cross-modality spatial attention primarily
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strengthens the association among pixels in the feature maps in order to put more attention
on the areas with similar characteristics, even though some of them are far from each other.
Finally, the output F out is generated by adding the spatial-refined feature maps together.
This process can be formulated as follows:

F cr
RGB = Mc

RGB(FRGB,FHHA)⊗FRGB,

F cr
HHA = Mc

HHA(FRGB,FHHA)⊗FHHA,
(5)

F sr
RGB = Ms

RGB(F cr
RGB,F cr

HHA)⊗F cr
RGB,

F sr
HHA = Ms

HHA(F cr
RGB,F cr

HHA)⊗F cr
HHA,

(6)

F out = F sr
RGB +F sr

HHA, (7)

where FRGB ∈ RC×H×W and FHHA ∈ RC×H×W represent the input feature maps, Mc
RGB ∈

RC×1×1 and Mc
HHA ∈ RC×1×1 represent the channel-attention maps, Ms

RGB ∈ R1×H×W

and Ms
HHA ∈ R1×H×W represent the spatial-attention maps, F cr

RGB ∈ RC×H×W and
F cr

HHA ∈ RC×H×W represent the channel-refined feature maps, F sr
RGB and F sr

HHA represent
the spatial-refined feature maps, and ⊗ denotes element-wise multiplication. In the multi-
plication procedure, the attention values are broadcast the same as in the implementation
in CBAM.

As shown in Figure 7, the channel-attention module first aggregates each feature maps
into two 1D descriptors, totaling four via average-pooling and max-pooling, among which
F c

RGB_avg and F c
RGB_max are generated from RGB feature maps, whereas F c

HHA_avg and
F c

HHA_max are generated from HHA feature maps. Then, the descriptors from various
modalities are concatenated to produce two cross-modality channel descriptors: F c

avg
and F c

max. Both cross-modality descriptors are fed into two independent MLPs with
one hidden layer: MLPRGB and MLPHHA. After the shared network is applied to each
descriptor, element-wise summations are utilized to generate modality-specific channel-
attention maps Mc

RGB and Mc
HHA. The channel-refined procedure in CMRM can be

formulated as follows:

F c
avg = [AvgPool(FRGB); AvgPool(FHHA)]

= [F c
RGB_avg;F c

HHA_avg],

F c
max = [MaxPool(FRGB); MaxPool(FHHA)]

= [F c
RGB_max;F c

HHA_max],

(8)

Mc
RGB(FRGB,FHHA) = σ(MLPRGB(F c

avg) + MLPRGB(F c
max))

Mc
HHA(FRGB,FHHA) = σ(MLPHHA(F c

avg) + MLPHHA(F c
max))

(9)

where σ denotes the sigmoid function and [; ] denotes the concatenation. It is worth
mentioning that, different from the CBAM, both MLP have weights of W0 ∈ RC/r×2C and
W1 ∈ RC×2C/r; r is the reduction ratio. Furthermore, F c

RGB_avg ∈ RC×1×1 and F c
RGB_max ∈

RC×1×1 represent the RGB descriptors, F c
HHA_avg ∈ RC×1×1 and F c

HHA_max ∈ RC×1×1

represent the HHA descriptors, and F c
avg ∈ R2C×1×1 and F c

max ∈ R2C×1×1 represent the
cross-modality descriptors.

Following the optimization of the features by the channel-attention module, the pair of
feature maps—F cr

RGB and F cr
HHA—are fed into the spatial-attention module. Similar to the

implementation of channel attention, the spatial-attention module initially aggregates cross-
modality features via average-pooling and max-pooling along the channel axis, and infers
four 2D maps, among which F s

RGB_avg and F s
RGB_max are generated from refined RGB
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feature maps, while F s
HHA_avg and F s

HHA_max are generated from refined HHA feature
maps. Then, the concatenation is applied to combine all maps. The cross-modality map
is then convolved by two independent standard convolution layers with kernel size of
7× 7 to generate the modality-specific spatial-attention map Ms

RGB and Ms
HHA. The

spatial-refined procedure in the CMRG can be formulated as follows:

F s = [AvgPool(FRGB); MaxPool(FRGB); AvgPool(FHHA); MaxPool(FHHA)]

= [F s
RGB_avg;F s

RGB_max;F s
HHA_avg;F s

HHA_max],
(10)

Ms
RGB(F cr

RGB,F cr
HHA) = σ( f 7×7

RGB(F
s))

Mc
HHA(F cr

RGB,F cr
HHA) = σ( f 7×7

HHA(F
s)),

(11)

where σ denotes the sigmoid function, f 7×7 represents the 7× 7 convolutional layer, and
[; ] refers to the concatenation. F s

RGB_avg ∈ R1×H×W and F s
RGB_max ∈ R1×H×W repre-

sent the RGB maps, and F s
HHA_avg ∈ R1×H×W and F s

HHA_max ∈ R1×H×W represent the
HHA maps.

To refine the features by taking advantages of different physical significance, the
CMRG utilizes combined information from RGB and HHA to generate attention maps
instead of relying solely on a single modality. Due to the limited sensing capabilities of
the depth camera, this strategy improves the sturdiness and effectiveness of the backbone,
especially in the HHA branch. To be specific, for the purpose of generating fine attention
maps, the descriptors (maps) are derived using both average-pooling and max-pooling,
with average-pooling descriptors (maps) representing the global information and max-
pooling descriptors (maps) representing prominent information, thereby improving the
availability of the attention maps. In addition, the CMRG employs channel- and spatial-
attention mechanisms to improve the representation and aggregation of cross-modality
information. In this structure, the channel-attention module is primarily responsible for
capturing ’what’ is important, whereas the spatial-attention module is primarily responsible
for determining ’where’ should be prioritized.

3.2.3. Bi-Directional Multi-Step Propagation

It should be noticed that the CMRG can properly fuse the features from both branches.
Moreover, Bi-directional Multi-step Propagation (BMP) is employed to reduce model
complexity and improve propagation efficiency.

BMP propagates the refined results to the next layer in the encoder for more accurate
and efficient encoding of the RGB and HHA features by minimizing the fusion result to
half its original values rather than adding elements directly. The procedure of the BMP can
be formulated as follows:

RGBout = (REF + RGBin)/2

HHAout = (REF + HHAin)/2
(12)

where REF denotes the output of the CMRG.

3.3. Pyramid Supervision

The pyramid-supervision training strategy mitigates the gradient vanishing issue by
incorporating supervised learning over multiple levels; furthermore, it utilizes the features
in different scales to improve the final semantic performance.

As illustrated in Figure 3, four intermediate side outputs are implemented, which
are derived from the features of the four up-layers for pyramid supervision in addition to
the final output of the decoder. Each output is generated after the corresponding feature
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maps are convolved by a 1× 1 convolution layer. Unlike the final output, which has the
original spatial resolution, the four side outputs have a different spatial resolution, with
1/2, 1/4, 1/8, and 1/16 the height and width of the final output. The loss function of
pyramid supervision is formulated as follows:

Loss(O1, ...O5) =
n

∑
i=0

Loss(Oi) (13)

where

Loss(On) =
1
N ∑

i
−log(

exp(si[gi])

∑k exp(si[k])
) (14)

where Loss(On) is the loss function for the final output or the side outputs. gi ∈ R denotes
the class index on the pixel i of the groundtruth semantic map. si ∈ RNc denotes the vector
on the pixel i of the output score map and Nc denotes the class number of the dataset.

4. Experiments

In order to verify the effectiveness of our proposed method, we conduct evaluation
experiments on RGB-D public datasets NYUDv2 [20] and SUN RGB-D [21]. To evaluate
the results, we compare the semantic-segmentation performance of various methods on
three metrics: pixel accuracy, mean pixel accuracy, and mean intersection over union [4].
In addition, ablation experiments are performed on NYUDv2 with ResNet-50 [44] as the
backbone, and certain analysis and discussion are provided.

4.1. Datasets

In this section, we introduce the public datasets that are utilized in our experiment.
The two public datasets are:

NYUDv2 [20] The NYUDv2 dataset consists of 1449 indoor RGB-D images with
dense pixel-wise annotation. According to the official instructions [20], we split them into
795 training images and 654 testing images. A 40-category setting is adopted as in [46].

SUN RGB-D [21] The SUN RGB-D dataset contains 10,335 indoor RGB-D images with
37 categories, which include images from NYUDv2 [20], Berkeley B3DO [47], SUN3D [48],
and newly captured RGB-D images. We divide the dataset into 5285 training images and
5050 testing images according to the official setting.

4.2. Implementation Details

We implement our experiments with Python 3.8 in the Ubuntu 18 operating system
with Pytorch [49] framework. All models are trained on one Nvidia RTX A5000 graphics
card with batch size of 7. Additionally, we use ResNet-50 pre-trained on ImageNet [50]
as the backbone of the two branches in the encoder. We adopt the SGD optimizer with
momentum 0.9 and weight decay 0.0005. The initial learning rate is 0.001 and it decays by
a factor of 0.8 every 100 epochs. We employ the warm-up strategy in the first 15 epochs.
The network is trained for 800 epochs with the NYUDv2 and SUN RGB-D datasets. We set
the reduction ratio to 8 in all attention modules.

As for the data augmentation strategy, we utilize random rotation (with 90 or 180 de-
gree clockwise rotation), random flipping (left-right or top-bottom flip), random scaling
(with [1.0, 1.6] scale), random color jittering (brightness, saturation, contrast change), and
random cropping (to 480× 640 pixels).

4.3. Experimental Results and Comparisons

We compare our CMANet with existing semantic-segmentation methods on the
NYUDv2 and SUN RGB-D datasets. The results of the three aforementioned metrics
on the two datasets are displayed in Tables 2 and 3, whereas the details of class IoU on
NYUDv2 are displayed in Table 4.
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As shown Table 2, our CMANet outperforms most of the state-of-the-art methods in
semantic segmentation on the NYUDv2 dataset. On the three evaluation metrics, CMANet
achieves 74.2% pixel accuracy, 60.6% mean accuracy, and 47.6% mean IoU. Additionally, on
the most important metric—mean IoU—CMANet achieves a 2.7% improvement compared
to RefineNet-101 [45], 1.7% compared to LSD-GF [51], and 0.1% compared to RAFNet [43].
It is noticed that we only utilize ResNet-50 as our backbone, suggesting that CMANet is
capable of better performance with a more powerful backbone. However, the performance
of CMANet is lower than that of RDFNet on mIoU by 0.1%. Despite its slight deficiency in
segmentation performance, CMANet displays an improvement in memory and computing
complexity according to the model efficiency analysis. Furthermore, additional experiments
are conducted to compare the utilization of HHA images and depth images. The results
display that the application of HHA images can slightly improve the performance of
CMANet, with a 0.3% increase on mIoU.

Table 2. Comparison of CMANet with state-of-the-arts methods on the NYUDv2 dataset in 40 classes.
The results are reported in terms of percentage (%) of pixel accuracy, mean accuracy, and mean IoU.
The results of other methods originate from the corresponding citation.

Method Data Pixel Acc. (%) Mean Acc. (%) Mean IoU. (%)

Gupta et al. [46] RGB-D 60.3 35.1 28.6
Deng et al. [41] RGB-D 63.8 - 31.5
FCN-16s [4] RGB-HHA 65.4 46.1 34.0
Wang et al. [14] RGB-D - 47.3 -
Context [42] RGB 70.0 53.6 40.6
STD2P [52] RGB-D 70.1 53.8 40.1
3DGNN [53] RGB-HHA - 55.7 43.1
Depth-aware [54] RGB-HHA - 56.3 43.9
LSD-GF [51] RGB-HHA 71.9 60.7 45.9
RefineNet-101 [45] RGB 72.8 57.8 44.9
RDFNet-50 [13] RGB-HHA 74.8 60.4 47.7
RAFNet-50 [43] RGB-D 73.8 60.3 47.5
CMANet-50-depth (ours) RGB-D 73.9 59.8 47.3
CMANet-50 (ours) RGB-HHA 74.2 60.2 47.6

As shown in Table 4, we also compare the category-wise results on class IoU. CMANet
performs better than RefineNet-101 and LSD-GF over 28 and 22 classes (40 classes in total),
respectively. These results demonstrate the robustness and effectiveness of CMANet in
indoor-scene semantic segmentation.

Table 3. Comparison of CMANet with state-of-the-art methods on the SUN RGB-D dataset in
37 classes. The results are reported in terms of percentage (%) of pixel accuracy, mean accuracy, and
mean IoU.

Method Data Pixel Acc. (%) Mean Acc. (%) Mean IoU. (%)

SegNet [5] RGB 71.2 45.9 30.4
FuseNet [19] RGB-D 76.3 48.3 37.3
Depth-aware [54] RGB-HHA - 53.5 42.0
Context [42] RGB 78.4 53.4 42.3
3DGNN [53] RGB-D - 57.0 45.9
RefineNet-101 [45] RGB 80.4 57.8 45.7
RedNet-34 [18] RGB-D 80.8 58.3 46.8
CMANet-50 (ours) RGB-HHA 81.1 59.3 47.2

Due to the limited data scale of NYUDv2 dataset, we also compare the semantic-
segmentation performance of CMANet on the large-scale SUN RGB-D dataset with other ex-
isting methods, following the same training and testing strategy as on the NYUDv2 dataset.
The comparison results are displayed in Table 3, where CMANet achieves the best perfor-
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mance among all the methods on all three evaluation metrics. The semantic-segmentation
performance of CMANet on the SUN RGB-D dataset further verifies its validity.

Table 4. Comparison of CMANet with state-of-the-art methods on the NYUDv2 dataset in 40 classes.
The results are reported in terms of percentage (%) of IoU.

Method Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf

Gupta et al. [46] 68.0 81.3 44.9 65.0 47.9 29.9 20.3 32.6 9.0 18.1
Deng et al. [41] 65.6 79.2 51.9 66.7 41.0 55.7 36.5 20.3 33.2 32.6
FCN-16s [4] 69.9 79.4 50.3 66.0 47.5 53.2 32.8 22.1 39.0 36.1
STD2P [52] 72.7 85.7 55.4 73.6 58.5 60.1 42.7 30.2 42.1 41.9
LSD-GF [51] 78.5 87.1 56.6 70.1 65.2 63.9 46.9 35.9 47.1 48.9
RefineNet-101 [45] 77.5 82.9 58.7 65.7 59.1 57.8 40.1 36.7 45.8 42.8
CMANet-50 (ours) 77.7 86.2 59.6 72.5 60.3 61.1 43.3 35.5 43.8 38.6
Method Picture Counter Blind Desk Shelf Curtain Dresser Pillow Mirror Mat
Gupta et al. [46] 40.3 51.3 42.0 11.3 3.5 29.1 34.8 34.4 16.4 28.0
Deng et al. [41] 44.6 53.6 49.1 10.8 9.1 47.6 27.6 42.5 30.2 32.7
FCN-16s [4] 50.5 54.2 45.8 11.9 8.6 32.5 31.0 37.5 22.4 13.6
STD2P [52] 52.9 59.7 46.7 13.5 9.4 40.7 44.1 42.0 34.5 35.6
LSD-GF [51] 54.3 66.3 51.7 20.6 13.7 49.8 43.2 50.4 48.5 32.2
RefineNet-101 [45] 60.1 56.8 61.4 22.6 12.3 53.5 38.3 39.6 38.7 29.7
CMANet-50 (ours) 60.9 62.5 56.1 21.7 10.0 56.1 50.1 46.4 45.8 37.2
Method Cloths Ceiling Books Refridg TV Paper Towel Shower Box Board
Gupta et al. [46] 4.7 60.5 6.4 14.5 31.0 14.3 16.3 4.2 2.1 14.2
Deng et al. [41] 12.6 56.7 8.9 21.6 19.2 28.0 28.6 22.9 1.6 1.0
FCN-16s [4] 18.3 59.1 27.3 27.0 41.9 15.9 26.1 14.1 6.5 12.9
STD2P [52] 22.2 55.9 29.8 41.7 52.5 21.1 34.4 15.5 7.8 29.2
LSD-GF [51] 24.7 62.0 34.2 45.3 53.4 27.7 42.6 23.9 11.2 58.8
RefineNet-101 [45] 24.4 66.0 33.0 52.4 52.6 31.3 36.8 23.6 11.1 63.7
CMANet-50 (ours) 21.1 75.3 33.1 55.1 63.3 30.1 40.1 32.1 14.3 62.5
Method Person Stand Toilet Sink Lamp Bathtub Bag Othstr Othfurn Otherprop
Gupta et al. [46] 0.2 27.2 55.1 37.5 34.8 38.2 0.2 7.1 6.1 23.1
Deng et al. [41] 9.6 30.6 48.4 41.8 28.1 27.6 0.0 9.8 7.6 24.5
FCN-16s [4] 57.6 30.1 61.3 44.8 32.1 39.2 4.8 15.2 7.7 30.0
STD2P [52] 60.7 42.2 62.7 47.4 38.6 28.5 7.3 18.8 15.1 31.4
LSD-GF [51] 53.2 54.1 80.4 59.2 45.5 52.6 15.9 12.7 16.4 29.3
RefineNet-101 [45] 78.6 38.6 68.4 53.2 45.9 32.9 14.6 32.9 18.7 36.4
CMANet-50 (ours) 77.3 40.8 70.9 58.9 47.9 57.3 13.6 31.2 19.1 38.1

4.4. Ablation Study

In order to investigate the functionality of the proposed network and its processing
modules, extensive ablation experiments are performed on the NYUDv2 dataset. Each
experiment is conducted with the same hyper-parameter settings during training and
testing periods.

The ablation study w.r.t. CMRGs is performed to verify the functionality of CMRGs in
different encoding stages. As displayed in Table 5, among the first three defective models,
each of the first four defective models removes certain CMRGs, but the fifth contains them
all, i.e., the original CMANet. It is interesting to find that the second defective models
(G3, G4 and G5 are removed) outperform the first one (G1, G2 are removed). Furthermore,
with the gradual stacking of the CMRG from lower to higher stages, the performances
of the defective models become better, with the best performance using the CMRG in all
stages. From these facts, it is clear that the cross-modality fusion, i.e., the utilization of
CMRGs, plays a vital role in performance improvement, especially in the earlier stages.
This can be recognized by the fact that the low-level features are rough and compatible in a
CNN-based model. The original CMANet performs the best, proving that the multi-stage
cross-modality fusion is effective and the CMRGs are mutually reinforcing.
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Table 5. Ablation study of CMRGs on NYUDv2 dataset in 40 classes. The results are reported in
terms of percentage (%) of mean IoU. G denotes the CMRG in different encoding stage. The best
performance is marked in bold.

Backbone G1 G2 G3 G4 G5 Mean IoU. (%)

ResNet-50 X X X 46.5
ResNet-50 X X 46.7
ResNet-50 X X X 47.2
ResNet-50 X X X X 46.8
ResNet-50 X X X X X 47.6

Additionally, we also conduct an ablation study on CMRGs, skip connections, and
pyramid supervision to evaluate the effect of these strategies; the results are displayed in
Table 6. The first defective model is the baseline without any strategy; the second, third,
and fourth defective models remove one corresponding strategy at a time; the fifth is the
original model. We compare them on mean accuracy and mean IoU, showing that the order
of influence from most significant to most minor is CMRGs, skip connections, pyramid
supervision. According to the results, CMRGs can effectively improve the performance of
semantic segmentation, while skip connections and pyramid supervision provide slight
improvements.

Table 6. Ablation study of CMRGs, skip connections, and pyramid supervision on NYUDv2 dataset
in 40 classes. The results are reported in terms of percentage (%) of mean IoU. The best performance
is marked in bold.

Backbone Baseline CMRG Skip Pyramid Mean IoU. (%)

ResNet-50 X 44.2
ResNet-50 X X X 46.8
ResNet-50 X X X 45.9
ResNet-50 X X X 47.0
ResNet-50 X X X X 47.6

4.5. Model Efficiency Analysis

Complexity in terms of time and space is an important metric to evaluate the efficiency
of the model. Accordingly, we compare our CMANet with [13,53] to verify the model’s
efficiency. According to the results displayed in Table 7, our method achieves 23.8% param-
eters reduction and 19.4% FLOPs reduction compared to RDFNet [13] while maintaining
almost the same performance. Meanwhile, CMANet outperforms 3DGNN [53] with a
20.5% inference time reduction and a 4.5% mean IoU improvement. However, CMANet
has a larger number of parameters than 3DGNN and a lower mean IoU than RDFNet-50.
Consequently, it can be seen that CMANet achieves a balance between model complexity
and accuracy, which will be further improved in our future research.

Table 7. Comparison of model complexity. The results are reported in terms of the number of
parameters (million), the computing complexity of FLOPs (gigabyte), inference time (millisecond),
and mean IoU (%). The inference time and FLOPs are evaluated on an Nvidia 1660Ti GPU with the
RGB input of 3× 480× 640 and the HHA input of 3× 480× 640.

Method Backbone Params. (M) FLOPs. (G) Inference Time. (ms) Mean IoU. (%)

3DGNN [53] ResNet-101 47.3 - 492.5 43.1
RedNet-101 [18] ResNet-101 121.2 - 268.5 -
RefineNet-101 [45] ResNet-101 126.0 - 248.4 44.9
RDFNet-50 [13] ResNet-50 153.3 168.9 368.2 47.7
CMANet-50 (ours) ResNet-50 117.8 137.2 391.5 47.6
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4.6. Visualization

For the purpose of evaluating the performance of semantic segmentation the anal-
ysis is supposed to be not only quantitative but also qualitative; we should pay more
attention to the interpretability of the results. Therefore, we conduct visualizations of the
CMANet results.

Semantic Segmentation Qualitative Visual Results In Figure 8, we visualize some
typical examples of semantic segmentation with our baseline, the defective models, and our
proposed method CMANet. In Figure 8a, the bedroom has few objects on the bed, whereas
Figure 8b has disorganized items on the bed. Figure 8c represents the hallway scene with
a complex structure. Figure 8d has an obvious lighting imbalance in the bedroom. In
Figure 8e, the table is cluttered with small and numerous objects. Figure 8f presents a
scene in which there are not only strong lighting conditions, but also many overlapped
and similar-texture objects. Compared to other methods, CMANet promotes semantic-
segmentation results from the perspective of details and the misclassification phenomenon.

RGB HHA GT Baseline Skip+Pyramid CMFG+Skip CMANet

（a）

（b）

（c）

（d）

（e）

（f）

CMFG+Pyramid

Figure 8. Semantic segmentation qualitative visual results on NYUDv2 dataset. The (a) represents the
bedroom has few objects on the bed; (b) has disorganized items on the bed; (c) represents the hallway
scene with a complex structure; (d) has an obvious lighting imbalance in the bedroom; (e) represents
the table which is cluttered with small and numerous objects; (f) presents a scene in which there are
not only strong lighting conditions, but also many overlapped and similar-texture objects.

Pyramid Supervision Visualization We conduct visualizations of the pyramid super-
vision by generating semantic maps from the final output and four side outputs; meanwhile,
the performance of some randomly sampled examples is illustrated in Figure 9. The fourth
to eighth columns denote the final output, and the four side outputs have spatial resolutions
of 1/2, 1/4, 1/8, and 1/16, respectively, the height and width of the final output. As the
semantic-segmentation of the outputs progresses from right to left, the refinement of pixel
classification gradually improves. However, the results demonstrate that the output with a
lower spatial resolution has a more remarkable performance on large-object (wall, TV, etc.)
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segmentation, as well as edge extraction, owing to its larger receptive field. In this way, the
supervision in low-spatial-resolution outputs assists the higher ones via the recognition
of boundaries and large objects; meanwhile, the supervision in high-spatial-resolution
outputs can refine the semantic information. As a result, the pyramid supervision enables
the enhancement of the final result via multi-scale semantic analysis.

Channel Attention Visualization To verify the effectiveness of the channel-attention
mechanism, which can enhance the advantages and filter the drawback, we conduct
visualizations of the RGB and HHA channel-refined features. In Figure 10, we randomly
select two high-weighting feature maps from the channel-refined features. As shown
in Figure 10a, the RGB feature maps focus on the significant texture regions (e.g., the
wall hangings, the curtains), while the HHA feature maps are mainly concerned with the
significant structure regions (e.g., the office chair, the bookshelf), as illustrated in Figure 10b.
The results demonstrate that the CMRG enhances feature extraction by paying attention to
essential features.

RGB HHA GT FinalOut SideOut1 SideOut2 SideOut3 SideOut4

Figure 9. Visualization of pyramid supervision.

L

S

（a）

（b） （c）

L

S

Figure 10. Visualization of channel attention. (a) The visual results on RGB channel-refined features;
(b) the visual results on HHA channel-refined features; (c) the color bar.
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Cross-Modality Refine Gate Visualization In order to understand refinement by the
CMRG, we visualize the output of the CMRG-refined features. As illustrated in Figure 11,
we conduct visualizations on some typical feature maps on two random sampled examples.
In the first row of Figure 11, the CMRG refinement enhances the regions that share the
same labels, such as the sofa, the floor, or the wall, while in the second row, the refinement
emphasizes the table and objects on the table. As a result, the CMRG is capable of effectively
building connections among the regions with similar characteristics, even if they are
geographically dispersed.

L

S

（a） （b）

Figure 11. Visualization of the cross-modality refine gate. (a) Visual results of the output of the
CMRG; (b) the color bar.

5. Conclusions

In this paper, we proposed a novel CMANet method for indoor-scene semantic seg-
mentation, which utilizes HHA and RGB images to enhance the robustness of segmentation
in indoor scenes. According to our experiments, CMANet not only facilitates the learning
process via the enhancement of the representation, robustness, and discrimination of the
feature embedding, but also takes the advantage of cross-modality features. CMANet em-
ploys the encoder–decoder architecture. The encoder has a two-parallel-branch backbone
that can extract and aggregate the specific features from RGB and HHA; meanwhile, the de-
coder generates multi-scale semantic maps that can improve the final segmentation results.
Specifically, we designed the CMRG, which is the most crucial component in CMANet.
The CMRG employs a sequence of cross-modality channel- and spatial-attention modules.
The channel-attention module is responsible for capturing ’what’ is important, whereas the
spatial-attention module is responsible for determining ’where’ should be prioritized. The
CMRG filters the noisy information and integrates the features from different modalities
(RGB and HHA). The CMRG can effectively enhance representations from both modalities
by selecting key features and establishing connections between relevant regions. Addition-
ally, we employ a bi-directional multi-step propagation strategy to provide assistance in
propagating. The results of the ablation study and visualization demonstrate the signifi-
cance of each proposed component. The experiments on the NYUDv2 and SUN RGB-D
datasets verify the robustness and effectiveness of CMANet, and the results illustrate that
the network outperforms the existing indoor-scene semantic-segmentation methods and
achieves a new state-of-art performance. In our future research, we will focus more on
increasing the efficiency of our network by reducing time and space complexity. More-
over, we will consider applying semi-supervised or weakly-supervised learning strategies
for indoor-scene semantic segmentation due to the limited dataset scale and inaccurate
data labeling.
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