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Abstract: A high dynamic range (HDR) stereoscopic omnidirectional vision system can provide users
with more realistic binocular and immersive perception, where the HDR stereoscopic omnidirectional
image (HSOI) suffers distortions during its encoding and visualization, making its quality evaluation
more challenging. To solve the problem, this paper proposes a client-oriented blind HSOI quality
metric based on visual perception. The proposed metric mainly consists of a monocular perception
module (MPM) and binocular perception module (BPM), which combine monocular/binocular,
omnidirectional and HDR/tone-mapping perception. The MPM extracts features from three aspects:
global color distortion, symmetric/asymmetric distortion and scene distortion. In the BPM, the
binocular fusion map and binocular difference map are generated by joint image filtering. Then,
brightness segmentation is performed on the binocular fusion image, and distinctive features are
extracted on the segmented high/low/middle brightness regions. For the binocular difference map,
natural scene statistical features are extracted by multi-coefficient derivative maps. Finally, feature
screening is used to remove the redundancy between the extracted features. Experimental results on
the HSOID database show that the proposed metric is generally better than the representative quality
metric, and is more consistent with the subjective perception.

Keywords: high dynamic range (HDR); HDR stereoscopic omnidirectional vision system; image
quality assessment; visual perception

1. Introduction

Virtual reality (VR) technologies can provide users with a unique immersive experience
with their high resolution, high reproducibility, and full-field viewing [1–3]. As one of the
most important carriers of VR systems, stereoscopic omnidirectional visual signals can
provide users with 360 × 180◦ field of view (FoV) immersion, binocular perception and
view interaction [4,5]. In stereoscopic omnidirectional imaging with the FoV of 360 × 180◦,
its illumination intensity of the scene is usually very different. Thus, high dynamic range
(HDR) stereoscopic omnidirectional vision systems, combining HDR imaging [6,7] and
stereoscopic omnidirectional imaging technologies, can better describe real information
of a scene. In such a system, a HDR stereoscopic omnidirectional image (HSOI) may
suffer distortion during its generation, encoding/transmission and visualization with head-
mounted display (HMD), which results in degradation of HSOI quality. Therefore, it is
more challenging to establish efficient blind HSOI quality metrics.

Generally, related to the research of stereoscopic omnidirectional image quality assess-
ment (SOIQA), quality estimation has undergone 2D image quality assessment (2D-IQA),
stereoscopic image quality assessment (SIQA) and omnidirectional image quality assess-
ment (OIQA). Visual content quality metrics can be divided into full-reference, reduced-
reference and blind/no-reference, according to the usage of the reference image information.
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For 2D-IQA, the classic full reference quality metrics include peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) [8], and so on. When a reference image is not available,
a blind quality metric is required, and some representative metrics have been proposed,
such as OG-IQA [9], GWH-GLBP [10], BRISQUE [11], IL-NIQE [12], dipIQ [13], BMPRI [14],
SISBLIM [15], and so on. Moreover, some deep learning based 2D-IQA metrics have also
been proposed [16,17].

For SIQA, Zhang et al. [18] proposed a full reference SIQA metric with multiscale
perceptual features and genetic algorithm training-based support vector machine re-
gression. Jiang et al. [19] proposed an SIQA metric by learning non-negative matrix
factorization-based monocular perception and binocular interaction-based color visual
features. Liu et al. [20] used a spatial activity model for weighting a cyclopean image
of a stereoscopic image pair, and extracted the corresponding features to form an S3D
integrated quality (SINQ) metric. Chen et al. [21] considered binocular perception and
disparity information, and applied cyclopean images to design an SIQA metric. Li et al. [22]
established a two-channel convolutional neural network (CNN) to simulate binocular
fusion and binocular competition for SIQA. Meng et al. [23] combined a visual intersection
model, multiscale information fusion model and attention-simulated binocular fusion
model to design an SIQA metric.

The above 2D-IQA and SIQA metrics are designed for traditional 2D/3D images,
which do not take visual perception of omnidirectional images (OIs) and stereoscopic
omnidirectional image (SOI) quality assessment into account. For OIQA, initially, some
full-reference OIQA metrics based on PSNR and SSIM were proposed. After that, starting
from representations of OI, Zheng et al. [24] proposed a segmented spherical projection-
based blind OIQA metric (called SSP-OIQA), in which the bipolar and equatorial regions
of OI are obtained by the segmented spherical projection, and different feature extraction
schemes are designed for evaluating distorted OI. Jiang et al. [3] proposed a perception-
driven blind OIQA framework based on cubemap projection (CMP). Considering the HMD
viewport viewing mode of OI and the effectiveness of depth learning in visual computing,
Sun et al. [25] designed a multi-channel CNN for blind OIQA, which uses six parallel
ResNet-34 networks to process viewport images and a quality regression to predict the
quality score of distorted OIs. Li et al. [26] proposed an OI-oriented attentive deep stitching
method and presented an attention-driven OIQA metric with global and local measures.
Fu et al. [27] designed an adaptive hypergraph convolution network for OIQA, which
consists of a multi-level viewport descriptor and modeling the viewport interaction through
a hypergraph.

For SOIQA, Qi et al. [28] considered perception factors such as the viewport, user
behavior and binocular perception, and proposed a viewport perception-based blind
SOIQA metric, which mainly includes a binocular perception model and an omnidirectional
perception model. Zhou et al. [29] proposed an SOIQA metric based on projection-invariant
features and visual saliency; they combined the visual saliency model of chrominance and
contrast perception factors to improve the prediction accuracy. Xu et al. established a
stereoscopic omnidirectional image database (named SOLID) and proposed a multiple
viewports-based full-reference SOIQA metric [30], in which they used the difference map
between left and right views to estimate depth perception related features. Chen et al. [4]
further proposed a full-reference SOIQA metric based on predictive coding theory. In [31],
deep learning was used to design an SOIQA metric.

To visualize HDR images on the displays with standard dynamic range (SDR), an
efficient approach is to perform tone-mapping (TM) on HDR images, but this may result
in the corresponding degradation in visual quality. Regarding this issue, Gu et al. [32]
designed a blind tone-mapped quality index (BTMQI), which combined information en-
tropy, structure and natural scene statistics for quality evaluation. Jiang et al. [33] analyzed
texture distortion and color distortion of different brightness regions in tone-mapped HDR
images, and designed a blind tone-mapped image quality assessment (BTMIQA) metric
that considered the details of the bright and dark regions, as well as their naturalness and
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aesthetics features for quality evaluation. Fang et al. [34] proposed a tone-mapped HDR
image quality metric with gradient and color difference statistics, which used the sensitivity
of human eyes to image structure changes to measure image degradation, and used local
binary pattern to describe color distortion. Yue et al. [35] presented a tone-mapped HDR
image quality metric by extracting three quality-sensitive features, namely color, natural-
ness and structure. Zhao et al. [36] extracted features of a tone-mapped HDR image from
pixel domain, sharpness and chromaticity for predicting the quality of the tone-mapped
HDR image.

HSOI quality assessment (HSOIQA) involves not only binocular perception and OI
perception, but also HDR/TM perception. Up until now, HSOIQA has been an unstudied
and challenging issue. To solve this issue, in this paper, a client-oriented blind HSOIQA
metric based on visual perception is proposed, which includes two main modules, that is, a
monocular perception module (MPM) and a binocular perception module (BPM). In the
MPM, the global color distortion, symmetric/asymmetric distortion and scene distortion
are characterized. In the BPM, new feature extraction schemes of binocular fusion map and
a binocular difference map based on joint image filtering are designed. The corresponding
features are extracted by brightness segmentation of the binocular fusion map, and the
natural statistical features are extracted from the binocular difference map. All viewport
image-based features are aggregated according to the significance, and feature screening is
performed and an objective quality score of HSOI is predicted. Experimental results show
that the proposed metric outperforms the representative blind quality metrics. The main
contributions of this paper are as follows:

(1) A client-oriented blind HSOIQA metric based on visual perception is established for
the client’s distorted HSOI in HSOV system, which combines binocular perception,
OI perception and HDR/TM perception.

(2) New feature extraction schemes of the binocular fusion map and the binocular dif-
ference map based on joint image filtering are designed for efficiently evaluating the
quality of distorted HSOI.

(3) In feature extraction, the information expression and perception capabilities of HSOIs
at different resolutions are further explored with multiscale computing methods.

The rest of this paper is arranged as follows. Section 2 describes the proposed metric
for HSOIs at the client of the HSOV system. Section 3 gives experimental results and
analyses. Finally, Section 4 concludes the paper.

2. The Proposed Metric

This section states the research ideas from the perspective of visual perception and
gives an overview of the proposed metric; then, the proposed metric is described in detail.

2.1. Overview of the Proposed Metric

Generally, the HSOV system consists of processes such as HSOI generation, encod-
ing/decoding with JPEG XT/H.265 and visualization by using a head mounted display
(HMD) with SDR. The processes may produce corresponding distortion, such as encoding
distortion, TM distortion and mixed distortion, resulting in degradation of the quality of
the user’s visual experience.

The human binocular vision system has two visual pathways: the dorsal pathway and
the ventral pathway [37–39]. The dorsal pathway starts from the primary visual cortex V1
area, and flows through the V2, V3 and V5 areas; its function is to complete the guidance
from visual information to action [38]. The ventral pathway starts from the V1 area, and
flows through V2, V3 and V4 areas to complete the perception and recognition of visual
behaviors [39]; it is also related to long-term memory. For visual content quality assessment,
visual perception of distortion is extremely important, so the ventral pathway with the V1,
V2, V3 and V4 areas has a certain guiding significance for perceptual quality assessment.
In the visual cortex, there are two types of cells: simple cells and complex cells [40]. The
simple cells process the retinal information of the left and right views received from the
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corresponding lateral geniculate nucleus. The complex cells connect the left and right
view signals with the binocular signals. Specifically, the V1 area corresponds to the simple
features such as luminance, chromaticity, edge, spatial frequency, and the V2 area will
recognize higher level features, such as texture and shape, in addition to transmitting lower
level features of the V1 area. The V3 and V4 areas belong to the occipital cortex and actually
have little correlation with perceptual quality, but they can further encode complex image
features. The perception process of the V1, V2, V3 and V4 areas provides a theoretical basis
for the subsequent modeling of HSOIQA.

Here, based on the human visual system (HVS), the distorted HSOI is input as a
visual stimulus of HVS to simulate the left view/right view information processed by
simple cells in the V1 area to model the monocular perception of HSOI. At the same time,
it also simulates the complex cell processing process to model the binocular perception
effect, as shown in Figure 1. For the monocular perception modeling of the distorted HSOI,
it combines the symmetric/asymmetric encoding distortion characteristics, OI viewport
characteristics and scene characteristics (outdoor/indoor/night scenes) of distorted HSOI
to extract global color information, symmetric/asymmetric distortion perception and scene
distortion perception, respectively. For the binocular perception modeling of distorted
HSOI, the information transfer mechanism of the V1, V2, V3 and V4 areas is simulated.
Combined with the ventral pathway, primary features such as brightness are first perceived
in the V1 area; when the information from the V1 area is transferred to the V2 area,
higher-level features are recognized. Thereafter, color information is perceived in the
V4 area. In addition, when the user wears HMD to browse the image content in the
current viewport, the image content may guide the user’s behavior in selecting the next
viewport to be browsed. For example, when the image browsed in the current viewport is
incomplete, the user is very likely to rotate their head to observe next viewport to browse
the complete image content. This process of actively selecting the viewport for browsing
will be completed in the V5 area. After the next viewport is selected, the above process will
be repeated until the user completes their viewing of the entire HSOI.
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Figure 1. The visual perception process of user viewing HSOIs.

Based on the above analysis, for client-oriented HSOIQA in the HSOV system, we
propose a visual perception-based blind HSOIQA metric, as shown in Figure 2. The
proposed metric mainly includes viewport sampling, a monocular perception module
(MPM), a binocular perception module (BPM), feature screening and quality regression.
For the MPM, firstly, HSOI is transformed from an equirectangular projection (ERP) format
to CMP format, and then the global color features are extracted in the spatial and discrete
cosine transform (DCT) domains. Secondly, considering the unique symmetric/asymmetric
distortion of HSOI, its distorted left and right views are measured by multiscale retinex
(MSR) decomposition. Then, combining with a Laplacian pyramid decomposition model,
the distortions of the different scenes with indoor/outdoor and day/night are measured
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from the characteristics of contrast, detail and structure. For the BPM, based on joint image
filtering, a binocular fusion map is generated to represent the similarity of the HSOI’s left
and right views; the brightness-based viewport image is further segmented to distinguish
perceptual characteristics of different brightness regions, which is consistent with the
information transmission process of the V1, V2 and V4 areas in the human visual system.
The calculated binocular difference map represents the difference information between left
and right views. Before quality regression, all the extracted feature vectors are processed by
feature screening. Finally, quality regression with a random forest model is used to predict
the objective quality score of distorted HSOI.
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2.2. Viewport Sampling

Let IHSOI be the HSOI signal output from the HSOV system to user’s HMD, which
may suffer encoding distortion, TM distortion and mixed distortion, where IHSOI = {IL, IR},
IL and IR represent the left and right views of HSOI, respectively. IHSOI can be represented
by the ERP format, CMP format, spherical format and viewport images, respectively.

At the client of HSOV system, the user can actively select a viewport according to
the content of the HSOI through HMD with SDR. For HSOIQA, the HSOI can be divided
into the equatorial region and bipolar regions from the perspective of the user’s behavior.
Let M be the number of viewports uniformly sampled in the equatorial region, and the
bipolar regions are sampled according to the significance of the binocular product, and one
viewport is taken for each polar region; thus, the total number of viewports is M + 2.

Assuming that the vertical FoV of a viewport is ϕ, the equatorial region corresponds to
the latitude range of [−ϕ/2, ϕ/2], and the bipolar regions correspond to the latitude ranges
of (ϕ/2, 90◦] and [−90◦, −ϕ/2), respectively. If the vertical FoV angle of HMD device is
110◦, ϕ will be set to 110◦. In the equatorial region, M viewports are uniformly sampled at
equiangular intervals with the angle set to 2π/M. For the bipolar regions, the position with
the largest pixel value in the corresponding binocular product saliency map SLR is selected
as the center of the viewport. SLR is obtained as follows: (1) For the left and right views IL
and IR, their saliency maps SL and SR are computed by the method in [41], respectively;
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(2) SLR is viewed is the correlation measure between SL and SR after stereoscopic matching,
SLR = {SLR(i,j)}, and expressed as follows:

SLR(i,j) = SL(i,j) × SR((i,j) + di,j) (1)

where di,j denotes the disparity of SR relative to SL on the pixel at the position of (i,j), which
is calculated by the optical flow method in [42].

2.3. Monocular Perception Module (MPM) for Distorted HSOI

This subsection extracts the monocular perceptual features of the distorted HSOI
from three aspects: global color information, symmetric/asymmetric encoding distortion
perception, and scene distortion perception. Among them, the color information is a
subjective overall perception, and all viewport images need to be reconstructed first when
viewed by users, so, the CMP format of IHSOI is used for global color feature extraction.
For symmetric/asymmetric distortion perception and scene distortion perception, the
perceptual features are extracted based on the viewport images.

(1) Global color feature extraction

As the output at the client of HSOV system, the distorted HSOI may consist of encoding
distortion, TM distortion and the mixed distortion. Compared with the ERP representation
of IHSOI, its CMP representation more easily describes the monocular distortion of HSOI.
Furthermore, numerous studies have shown that color information is processed with color-
opponency in the human visual system. Therefore, the global color features are extracted
in the spatial domain and DCT domain, respectively, based on the color-opponency space.

According to the work of Hasler et al. [43], the color in an image is quantized to qualitatively
process or code the impact on color visually. Here, taking the left view IL of IHSOI as an example,
IL = (RL, GL, BL). Its CMP format can be expressed as IL = {ILi, i = 1, 2, . . . , 6}, ILi is the
i-th face of the six faces in the CMP format. First, IL is converted from RGB space to the
red–green and yellow–blue opponency channels, denoted as ρLrg and ρLyb, ρLrg = RL − GL,
ρLyb = 0.5(RL + GL) − BL. Let µLrg and µLyb denote the mean of ρLrg and ρLyb, and σLrg

and σLyb denote the variance of ρLrg and ρLyb; then, two statistic features µ2
Lrg−Lyb and

σ2
Lrg−Lyb of ρLrg and ρLyb are expressed as follows:

µ2
Lrg−Lyb = µ2

Lrg + µ2
Lyb (2)

σ2
Lrg−Lyb = σ2

Lrg + σ2
Lyb (3)

The most intuitive TM operators (TMOs) are generally to change the mean value of
the pixel value distribution, and then change the degree of numerical dispersion of pixels.
Therefore, the joint statistical measure JLrg−Lyb of ρLrg and ρLyb is expressed to describe the
spatial color feature of IL, and calculated as follows [43]:

JLrg−Lyb = σLrg−Lyb + 0.3µLrg−Lyb (4)

Similarly, for the right view IR of IHSOI, its joint statistical measure JRrg−Ryb can also
be obtained. Thus, the global spatial color feature FCS is defined for the distorted HSOI,
FCS = (JLrg−Lyb, JRrg−Ryb).

Then, the color features in the transform domain are extracted. Taking the CMP
format of IL as an example, for its two color-opponency channels, ρLrg and ρLyb, their
non-overlapping Nu × Nv blocks are transformed with DCT. Let {ξL,k(u,v); u = 1, 2, . . . , Nu,
v = 1, 2, . . . , Nv} denote DCT coefficients of a block, where k represents the color antagonist
channel ρLrg or ρLyb; here, Nu and Nv are set to 5. For {ξL,k(u,v)}, its DC component is
discarded, and its AC components are divided into three frequency bands: low frequency
(LF), middle frequency (MF) and high frequency (HF) as shown in Figure 3. The variance of
the three frequency bands of each image block is calculated separately as the band energy
feature, the mean of the three frequency bands’ variances of all image blocks is considered
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as the final energy feature of the corresponding frequency band; then, the energy features
of six faces of the CMP format of IL are averaged. For two color-opponency channels, ρLrg
and ρLyb, of IL, 6-dimensional features can be extracted. Similarly, for ρRrg and ρRyb, of IR,
6-dimensional energy features can also be obtained, which constitutes 12-dimensional color
features in the DCT domain, FCD, of HSOI.
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Finally, the global color features of HSOI are denoted as FCE, FCE = (FCS, FCD).

(2) Symmetric/asymmetric encoding distortion measure

Different from 2D image coding, a stereoscopic image can be encoded with asymmetric
encoding by using different quantization parameters (QPs) for its left and right views, so as
to improve the encoding efficiency by taking the binocular masking effect of human eyes.
The distortion-level difference between the left and right views has a great impact on the
quality of user’s experience to the encoded stereoscopic image. Here, a correlation measure
between the left and right views is designed to evaluate the information difference caused
by different distortion levels of the left and right views.

For IL and IR, viewport sampling is first performed to obtain the corresponding left and
right viewport image sets {VL,m} and {VR,m}, respectively, where m = 1, 2, . . . , M + 2. From
the multi-resolution perception of the human visual system, in the process of gradually
reducing the image resolution from high to low, the focus of the human eyes shifts from
fine textures to rough structures. MSR decomposition [44] is used for image preprocessing
in this work. The complementary information of different scales can effectively detect the
image content that is not easy to find at a single scale.

For a given image, the illumination component can be estimated by MSR decompo-
sition. Taking VL,m as an example, VL,m = {VL,m(x, y)}, its illumination component ΨL,m,
ΨL,m = { ΨL,m(x, y)} can be calculated as follows:

ΨL,m(x, y)= VL,m(x, y) ⊗ g(x, y) (5)

where ⊗ is convolution operation, g(x,y) is Gaussian function, g(x,y) = Ngexp(−(x2 + y2)/η),
Ng is normalization factor; η is the scale parameter of Gaussian function. When the value
of η is large, the detail recovery is coarse, and when the value is small, the detail recovery
is fine. Here, in order to reflect the multiscale characteristics, three scale factors with
significant differences were used: small, medium and large, η can be set to one element of
{η1, η2, η3}.

MSR decomposition can be used to describe illumination features by three different
scale filtering on the image and then weighted summation; here, the gray-scale images
of the viewport’s left and right views are directly processed to obtain the corresponding
illumination components with different η (η ∈ {η1, η2, η3}), which are, respectively, denoted
as ΨL,m and ΨR,m, where ΨL,m = {Ψ η

L,m} and ΨR,m = {Ψ η
R,m}.

Figure 4 shows an example of MSR decomposition of distorted HSOI in the HDR
stereoscopic omnidirectional image database (HSOID) [45] at the client of the HSOV system
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(here, η1 = 25, η2 = 100, η3 = 240). The original HSOI at the server in the HSOV system
is encoded with an asymmetric encoding distortion level of (L1, L3), i.e., the encoding
distortion level of the left view is L1, and the encoding distortion level of the right view is
L3. To visualize the compressed HSOI on HMD with SDR, DurandTMO [46] is used in TM
processing. It can be found as follows:

(i) For ΨL,m and ΨR,m, their MSR decomposition with η1 can show more details than
those of MSR decomposition with η2 and η3, especially in the window regions in
Figure 4. It indicates that the image’s MSR decomposition with different η values
contains different information, and three-scale MSR decomposition can complement
each other.

(ii) Compared with the viewport’s left view, the distortion level of the viewport’s right
view is lower, and its block effect is less, ΨR,m has a clearer texture than that of ΨL,m,
especially in the ceiling and ground regions. It indicates that MSR decomposition
can reflect different distortion characteristics of the left and right views with different
distortion levels to a certain extent.
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Figure 4. An example of MSR decomposition of the distorted HSOI in the HSOID database [45] at
the client of the HSOV system (η ∈ {η1, η2, η3}). (a) Left view of the distorted viewport; (a1–a3) are
three scale illumination components of (a), Ψ

η
L,m; (b) Right view of the distorted viewport; (b1–b3)

are three scale illumination components of (b), Ψ
η
R,m; (from left to right, η1 = 25, η2 = 100, η3 = 240).

For ΨL,m and ΨR,m, their feature maps are further calculated. First, de-mean normaliza-
tion is performed on them. Second, a local derivative pattern (LDP) [47] is used to measure
the texture information of ΨL,m and ΨR,m after obtaining the second derivative of ΨL,m
and ΨR,m in four directions of {0◦, 45◦, 90◦, 135◦}. The LDP map in each direction can be
quantized by a 10-dimensional histogram according to the rotation-invariant uniform local
binary pattern. After the above operations, the quantized LDP histograms of ΨL,m and ΨR,m

are obtained, and respectively expressed as Hη
L,m =

{
hη,1−10

L,m , hη,11−20
L,m , hη,21−30

L,m , hη,31−40
L,m

}
and Hη

R,m =
{

hη,1−10
R,m , hη,11−20

R,m , hη,21−30
R,m , hη,31−40

R,m

}
, η ∈ {25, 100, 240}. The correlation co-

efficient can be used to measure the correlation degree between two random variables,
and its value range is [−1, 1]; the larger the absolute value of the correlation coefficient,
the higher the correlation between the two. Then, based on Hη

L,m and Hη
R,m, the absolute

correlation coefficient CA and correlation distance CD of each 10-dimensional histogram are
calculated as the similarity features of the left and right views, CA and CD are computed
as CA =

∣∣∣corr(Hη
L,m, Hη

R,m)
∣∣∣ and CD =

∣∣∣pdist(Hη
L,m, Hη

R,m)
∣∣∣, where corr(·) represents the

correlation coefficient function, pdist(·) represents the correlation distance function, and
|·| represents the absolute operation.

Finally, the absolute correlation coefficients and correlation distances of Gaussian
functions with three scale parameters are taken as the symmetric/asymmetric encoding
distortion feature vector fccor.
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Taking the scenarios in the HSOID [45] as examples, Table 1 shows CA and CD of
the distorted viewport’s left and right views processed by DurandTMO under encoded
with 9 distortion levels (the first 5 are asymmetric encoding distortion, and the last 4 are
symmetric encoding distortion). In addition, Table 2 shows the relationship between CA
and correlation degree, which reflects the correlation degree of the left and right views with
different distortion levels. It can be found as follows:

Table 1. CA and CD of distorted viewport’ left and right views processed by DurandTMO under
encoding with 9 distortion levels.

Distortion
Level

Absolute Correlation Coefficient CA Correlation Distance CD
Correlation Degree

0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦

(L1, L3) 0.8709 0.8913 0.8876 0.8985 0.1291 0.1087 0.1124 0.1015 very strong correlation
(L1, L4) 0.4713 0.5386 0.4720 0.5588 0.5287 0.4614 0.5280 0.4412 moderately strong correlation
(L2, L3) 0.9638 0.9735 0.9709 0.9755 0.0362 0.0265 0.0291 0.0245 very strong correlation
(L2, L4) 0.6695 0.7218 0.6650 0.7330 0.3305 0.2782 0.3350 0.2670 strong correlation
(L3, L4) 0.8427 0.8631 0.8310 0.8689 0.1573 0.1369 0.1690 0.1311 very strong correlation
(L1, L1) 0.9991 0.9992 0.9992 0.9994 0.0009 0.0008 0.0008 0.0006 very strong correlation
(L2, L2) 0.9997 0.9994 0.9993 0.9995 0.0003 0.0006 0.0007 0.0005 very strong correlation
(L3, L3) 1.0000 1.0000 0.9999 0.9999 0.0000 0.0000 0.0001 0.0001 very strong correlation
(L4, L4) 0.9998 0.9998 0.9997 0.9997 0.0002 0.0002 0.0003 0.0003 very strong correlation

Table 2. Relationship between CA and correlation degree.

Absolute Correlation Coefficient CA Correlation Degree

0.8–1.0 very strong correlation
0.6–0.8 strong correlation
0.4–0.6 moderately strong correlation
0.2–0.4 weak correlation
0.0–0.2 very weak or no correlation

(i) The correlation degrees of the distorted viewport’s left and right views, encoded with
5 asymmetric distortion levels, are obviously different. Although the asymmetric
distortion levels, (L1, L3), (L3, L4) and (L2, L3), can be judged as very strong corre-
lation degrees, their absolute correlation coefficients CA are distributed in different
levels; the first two are in the range of 0.8 to 0.9, while the latter are in the range
of 0.9 to 1.0. It shows that CA and CD can effectively distinguish different levels of
asymmetric distortion.

(ii) The correlation degrees of the distorted viewport’s left and right views, encoded with
4 symmetrical distortion levels, are all very strongly correlated, and generally their
CA values tend to be larger as the distortion level is lower.

(iii) The CA values of the distorted viewports, encoded with the symmetrical distortion lev-
els, are generally larger than those with the asymmetrical distortion levels; it indicates
that CA and CD can effectively distinguish the types of symmetrical/asymmetrical
encoding distortion and their degree of distortion to a certain extent.

(3) Feature extraction with scene analysis

The HSOID [45] includes the different scenes of indoor, outdoor, day and night. In
the imaging of indoor scenes, most of the light usually comes from the ceiling light, which
may not be sufficient for outdoor scenes; at the same time, most of them contain window
regions, and the brightness of the window regions is relatively high, which is prone to loss
of details in the imaging. In the imaging of outdoor scenes during the daytime, the light
is relatively sufficient and the contrast is relatively high. There may be a large region of
sky in the outdoor imaging, because the sky region is relatively flat, the block effect caused
by encoding distortion is more perceptible. Especially when wearing an HMD to view the
HSOI, it can be seen from the near-eye perception that the distortion in this region is more
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likely to affect the subjective quality. The night scene is generally dark, with relatively low
contrast and fuzzy structure.

In summary, based on contrast, detail and structure of an image, feature extraction
can be performed to synthesize perceptual distortion features of various scenes. Among
them, the details and structures can be represented by the image’s detail layer and base
layer in combination with the idea of image decomposition.

To generate the base and detail layers of the image, Laplacian pyramid decomposi-
tion [48] can be used. Taking a distorted viewport’s left view VL,m as an example, it is
decomposed by Laplacian pyramid at three scales, and a total of three detail layers and
three base layers are obtained.

For VL,m with the resolution of NH × NV, its 3-layer detail layer set is expressed as
DL,m = {D1

L,m, D2
L,m, D3

L,m}, and the corresponding resolutions are NH × NV,
(0.5NH)× (0.5NV) and (0.25NH)× (0.25NV), respectively. The 3-layer base layer set of VL,m is
expressed as BL,m = {B1

L,m, B2
L,m, B3

L,m}, and their resolutions are
(0.5NH) × (0.5NV), (0.25NH) × (0.25NV) and (0.125NH) × (0.125NV), respectively. Con-
sidering the resolution of the viewport image, three layers of detail layers and the first two
layers of the base layers are used as the layers after Laplacian pyramid decomposition,
that is, the set of the base layers is denoted as B′L,m = {B1

L,m, B2
L,m}. The base layers of

VL,m retain most of the information of VL,m, while the detail layers of VL,m show the detail
information; and the higher the resolution, the finer the level of detail displayed.

After the above preprocessing of the distorted viewport’s left and right views, the
detail layer sets, DL,m and DR,m, and the base layer sets, B′L,m and B′R,m, can be obtained.
First, the detail features are extracted based on DL,m and DR,m. Considering that a local
binary pattern (LBP) [49] can describe spatial domain information by encoding the spatial
position relationship between the center pixel and its neighbor pixels within a certain
radius, different patterns can characterize structures such as points, lines, and edges, and a
contrast-weighted LBP (CLBP) is adopted in combination with the contrast information.
Taking DL,m as an example, its LBP can be expressed as follows:

LBPP,R =
P−1

∑
i=0

Th(DL,m,i − DL,m,c) · 2i (6)

where P is the number of neighborhoods, and R is the neighborhood radius, P and R are
set to 8 and 1 in [49]. DL,m,c and DL,m,i represent the values of the pixels in DL,m and the
pixels in the neighborhood centered on DL,m, respectively. Th(·) is the threshold function,
and expressed as follows:

Th(DL,m,i − DL,m,c) =

{
1, if (DL,m,i − DL,m,c) ≥ 0
0, otherwise

(7)

The rotation invariant uniform LBP is expressed as follows:

LBPriu2
P,R =


P−1
∑

i=0
Th(DL,m,i − DL,m,c), if u(LBPP,R) ≤ 2

P + 1, otherwise
(8)

where the superscript ‘riu2’ reflects the use of rotation invariant uniform patterns that have
u value less than 2, and u(·) is the uniform metric, and expressed as follows:

u(LBPP,R) =‖Th(DL,m,P−1 − DL,m,c)− Th(DL,m,0 − DL,m,c)‖+
P−1

∑
i=0
‖Th(DL,m,i − DL,m,c)− Th(DL,m,i−1 − DL,m,c)‖ (9)
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Generally, the rotation invariant uniform LBP has P + 2 modes, and each mode
represents different image content information. Let k be the mode index. Histogram of
CLBP is expressed as follows:

hCLBP(k) =
N

∑
i=1

Cif (LBPP,R(i),k) (10)

f (x, y) =
{

1, if x = y
0, otherwise

(11)

where N is the number of pixels of an image in DL,m, C is the contrast map of VL,m,
C = σc/(µc + ε), Ci is the i-th pixel’s value in C, C = {Ci}; µc and σc are the mean map and
standard deviation map of VL,m, and ε is a constant that prevents the denominator from
being 0, and is set to 0.00001.

Because P and R are set to 8 and 1, respectively, 30-dimensional histogram features of
DL,m are obtained after the above operations. Similarly, 30-dimensional histogram features
of DR,m can also be obtained. Finally, the detailed features of the distorted left and right
views are expressed as f CLBP.

Then, structural features are extracted from the base layer sets B′L,m and B′R,m. Here,
the global structural tensor is used for extracting the base layer’s structural features. Taking
B1

L,m in B′L,m = {B1
L,m, B2

L,m} as an example, a 2D structural tensor transformation is
performed, the structural tensor matrix is decomposed and its two eigenvalues, λL1 and
λL2, are used to describe the structural features of B1

L,m. For B2
L,m, the eigenvalues of its

structural tensor matrix can be also obtained as λL3 and λL4.
Similarly, for B′R,m, the corresponding eigenvalues of the structural tensor matrix can

be obtained as λR1, λR2, λR3 and λR4. Then, the structural features of the distorted left and
right views are denoted as f st.

Finally, the feature set extracted by the MPM is the global color feature FCE, symmet-
ric/asymmetric distortion feature f corr, detailed feature f CLBP and structural feature f st.

(4) Feature aggregation with viewport significance

When viewing omnidirectional visual contents, users are usually guided to select
viewports by the saliency as regions of interest. The contribution of different viewports to
the overall quality needs to be weighted according to their saliency. For binocular product
salience map SLR, viewport sampling is performed first to obtain a series of saliency
viewport maps, SLR

V =
{

SLR
V1

, SLR
V2

, . . . , SLR
VM+2

}
. The viewport-normalized saliency value

WS = {Wm; m = 1, 2, . . . , M + 2} is calculated as the significance weight to express user’s
preference for different viewport images, which can be calculated as follows:

Wm = ∑
p

SLR
Vm

(p)

/
M+2

∑
m=1

∑
p

SLR
Vm

(p) (12)

where SLR
Vm

(p) is the pixel’s value at the position of p.
For the above extracted features f corr, f CLBP and f st, Equation (12) is used to perform

feature aggregation on them to obtain the aggregated features, which are, finally, expressed
as Fcorr, FCLBP and Fst.

2.4. Binocular Perception Module (BPM) for Distorted HSOI

Generally, the human binocular perception has three aspects, the initial stage is binoc-
ular fusion; information that cannot be fused leads to binocular competition; in the process
of competition, if one view is completely dominant, binocular suppression occurs. The
process of binocular perception is a complex physiological mechanism. Both the user’s eyes
and brain play a role in this process, and it is difficult for traditional signal processing-based
methods to achieve this process through mathematical formulas and derivation. Therefore,
current research generally expresses the processes of fusion and competition by simulat-
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ing biological mechanisms to establish binocular effects for perceptual quality evaluation.
Based on joint image filtering, this subsection designs new binocular mechanism modeling
schemes, and combines the perceptual characteristics of the V1, V2 and V4 areas of the
cerebral cortex for feature extraction.

(1) Joint image filtering

Previous studies [50] showed that the content difference between the left and right
views of a stereoscopic image was due to the existence of parallax, but the final result of
human binocular perception undergoing three fluctuations is to form a stable stereoscopic
image. Therefore, it can be inferred that there is an interactive filtering effect between the
left and right views.

(2) Binocular fusion map and feature extraction

The traditional binocular fusion images are mainly realized based on gray-scale images.
However, Den Oudenet et al. [51] proved the contribution of color information to binocular
matching; it indicates that color information helps solve the binocular matching problem of
complex images, and color and brightness information have independent contributions.
Thus, for one of the distorted viewport images, (VL,m, VR,m), it is first converted from RGB
space to YUV space. On the channels of Y, U and V, joint image filtering fg(·) is performed on
them, respectively, and the filtered left view of the distorted viewport image is recorded as
ΦL,m = fg(VL,m, VR,m) and ΦL,m = {ΦY

L,m, ΦU
L,m, ΦV

L,m}. Similarly, the filtered right view
of the distorted viewport image is denoted as ΦR,m = fg(VR,m, VL,m) and ΦR,m = {ΦY

Rm,
ΦU

R,m, ΦV
R,m}.

Considering that a log-Gabor filter can simulate the multiscale and multi-directional
selection characteristics of the receptive field of the visual cortex. Therefore, the log-Gabor
filter amplitude responses of ΦL,m and ΦR,m are calculated as energy factors to further
fuse their information. The log-Gabor filter with the scale s and direction o is expressed

as Gs,o(ω, θ) = exp
[
− (log(ω/ωs))

2

2δ2
s

]
· exp

[
− (θ/θo)

2

2δ2
o

]
, where θ is the orientation angle, and δs

and δo are the filter strengths; and ω and ωs are the normalized filter radial frequency and
the corresponding filter center frequency, respectively.

Let [ψ̃s,o, ζ̃s,o] be a set of responses of the log-Gabor filter in different directions and
scales, then its output amplitude A is expressed as the sum of the responses of all scales
and directions, and expressed as follows:

A =
√
(∑s ∑o ψ̃s,o)

2
+(∑s ∑o ζ̃s,o)2 (13)

Calculate the log-Gabor filtering output amplitudes of ΦL,m and ΦR,m, respectively,
and denote them as AL,m and AR,m. Then, their energy weighting factors, EL,m and ER,m,
are expressed as follows:

EL,m = AL,m/(AL,m + AR,m + ε) (14)

ER,m = AR,m/(AL,m + AR,m + ε) (15)

ΦL,m and ΦR,m are further weighted by EL,m and ER,m, respectively. Thus, the fusion
image Φm is expressed as follows:

Φm = EL,m · ΦL,m + ER,m · ΦR,m (16)

For Φm = {ΦY
m, ΦU

m, ΦV
m}, the final binocular fusion map Φ′m is generated by using

the Y, U and V channels of Φm.
Figure 5 shows an example of binocular fusion map obtained by taking Figure 4 as the

test viewport images, including the single-channel fusion map of the Y, U, or V channel
and the fusion map Φ′m after the combination of the three channels. Because YUV space is
used in Figure 5, the color of the map in Figure 5d is pseudo-color and different from the
RGB image. The red part in Figure 5d is the high brightness region, which corresponds
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to the white highlight part of the general RGB image, and the green part in Figure 5d
corresponds to the low brightness region of the RGB image. The channels of Y, U, and V
display different information, respectively. After combining the three channels, both color
information and fused image information are displayed.
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Figure 5. An example of binocular fusion map. (a) Y channel, (b) U channel, (c) V channel, (d) three-
channel combination with the visualization of pseudo color.

Figure 6a1–a5 show the binocular fusion maps of the viewport processed by five
TM operators (from left to right is DurandTMO [46], Khan [52], KimKautz [53], Rein-
hard02 [54] and Reinhard05 [55]), where the high brightness and low brightness re-
gions are marked with red rectangular boxes and orange rectangular boxes, respectively.
Figure 6b1–b5 and Figure 6c1–c5, respectively, correspond to their local enlarged maps. It
can be seen that different TM operators have different degrees of information retention in
the global color and local high/low brightness regions, especially in the window regions of
Figure 6b1–b5. Accordingly, brightness-based segmentation can be performed, and differ-
entiated feature extraction can be performed according to the characteristics exhibited by
different brightness regions.
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Figure 6. The binocular fusion maps of the viewport images processed by five TMOs (from left
to right is DurandTMO [46], Khan [52], KimKautz [53], Reinhard02 [54] and Reinhard05 [55]).
(a1–a5) Binocular fusion maps; (b1–b5) Partially enlarged maps of highlighted regions, correspond-
ing to the red rectangular boxes in (a1–a5); (c1–c5) Partially enlarged maps of low–dark regions,
corresponding to the orange rectangular boxes in (a1–a5).

To sum up, the brightness segmentation based on the maximum entropy thresh-
old [56] is performed on the fusion map Φ′m, and the high brightness region Φ′m,H, the
low brightness region Φ′m,L and the middle brightness region Φ′m,M can be also obtained.
The maximum entropy threshold segmentation can relatively completely separate the three
different brightness regions, and is in line with the subjective brightness perception of the
human eyes.
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Some studies have shown that visual perception of bright/dark information is un-
balanced [57], so different feature extraction schemes should be designed for high/low
brightness regions of TM-distorted images; for example, combining the functions of cones
and rod cells on retinal photoreceptors, as cone cells mainly work in bright regions and
can recognize texture information, while in dark regions, rod cells will work and recog-
nize contour features. Thus, texture features can be extracted for high brightness regions,
and contour features can be extracted for low brightness regions. To ensure information
integrity, chrominance features are extracted in the middle brightness region. In particular,
the process from brightness segmentation to feature extraction of texture, contour and
chromaticity is in line with the human vision system, that is, the V1 area perceives primary
luminance features, the V2 area perceives high-level features such as texture and shape,
and the V4 area perceives color information delivery mechanism.

For the high brightness region Φ′m,H of the binocular fusion map Φ′m, its gray-gradient
co-occurrence matrix (GGCM) is calculated to characterize its texture features. GGCM
combines image’s gray-scale elements and gradient elements. It can clearly describe the
statistical characteristics of gray-scale values and gradients of each pixel in an image and the
spatial position relationship between each pixel and its neighboring pixels. Here, gradient
is added to the gray level co-occurrence matrix to make it accurate for describing texture.
Let Y denote the gray-scale map of Φ′m,H, and GY denote the gradient map of Y. First,
gradient normalization G′Y is performed on GY as follows:

G′Y(i, j) = INT[(GY(i, j)− GYmin)/(GYmax − GYmin)(Lg − 1)] (17)

where INT(·) is the rounding function, (i,j) is the position of pixel in GY, GYmax and GYmin
are the maximum and minimum values of GY, respectively, and Lg is set to 32.

Similarly, gray-scale normalization Y ′ is performed on Y as follows:

Y′(i, j) = INT[(Y(i, j)−Ymin)/(Ymax −Ymin)(Lx − 1)] (18)

where Ymax and Ymin are the maximum and minimum values of Y, and Lx is set to 32.
Let P denote a GGCM, then, its normalized GGCM, PN, can be expressed as follows:

PN(a, b) = P(a, b)/∑a ∑b P(a, b) (19)

where a and b are the pixel values at the same position in Y ′ and G′Y, respectively.
Based on GGCM, a series of statistical features are derived to describe the image’s

texture features. Here, five important statistical measures are adopted to describe texture
features, namely, gray mean square deviation T1, gradient mean square deviation T2, gray
entropy T3, gradient entropy T4 and mixed entropy T5, and calculated as follows:

T1 =
√

∑Lx
a=1 (a− µY′)

2(∑Lg
b=1 PN(a, b)) (20)

T2 =
√

∑Lg
b=1 (b− µG′)

2(∑Lx
a=1 PN(a, b)) (21)

T3 = −∑Lx
a=1 (∑

Lg
b=1 PN(a, b)) · log(∑Lg

b=1 PN(a, b)) (22)

T4 = −∑Lg
b=1 (∑

Lx
a=1 PN(a, b)) · log(∑Lx

a=1 PN(a, b)) (23)

T5 = −∑Lx
a=1 (∑

Lg
b=1 PN(a, b)) · log(PN(a, b)) (24)

where µY ′ and µG ′ are the mean values of Y ′ and G′Y, respectively.
Then, T1, T2, T3, T4 and T5 are taken as the texture features f GGCM of the high bright-

ness region Φ′m,H.
For the low brightness region Φ′m,L of Φ′m, its narrow-sense contour feature is ex-

tracted. The contour feature is usually an efficient representation of the shape of an object
in an undistorted image. However, considering that the encoding distortion in the low
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brightness region appears as the block effect, which visually represents the rectangular
outline information. The narrow-sense contour feature is defined here to describe the visual
distortion phenomenon of the object shape and the block effect. Because different TMOs
change the image information in their own ways, when performing brightness segmenta-
tion on the TM image, it first appears that the segmented edges are inconsistent; second,
different TMOs will cause different visual effects of encoding distortion in low brightness
region. In Figure 6, the encoding distortion of DurandTMO in Figure 6c1 is more obvious in
the low brightness region, and its block effect outline is more obvious, resulting in drastic
changes in the gray-scale value of edge pixels; the block effect caused by Reinhard05 in
Figure 6c2 is the second. The results of the other three TMOs in Figure 6c1–c5 are visually
similar. Based on this, the energy of gradient (EoG) function is used to measure this change.
Let Eog denote EoG of Φ′m,L, then, it is calculated as follows:

Eog = ∑x ∑y

{
(Φ′m,L(x + 1, y)−Φ′m,L(x, y))2

+ (Φ′m,L(x, y + 1)−Φ′m,L(x, y))2
}

(25)

Here, the average value Eog of Eog is defined as the narrow-sense contour feature.
Considering that the block effect at different resolutions may be different, Φ′m,L is down-
sampled with three scales, and the Eog values at the four scales are taken as the final
narrow-sense contour features f EOG of the low brightness region Φ′m,L. Obviously, f EOG is
a multiscale feature vector.

Table 3 lists the Eog values of the five TMOs at four scales of Φ′m,L. Obviously, the Eog
values with DurandTMO [46] and Reinhard05 [55] are in the top two positions, followed
by Reinhard02 [54]; while Khan [52], KimKautz [53] are numerically similar. According to
Figure 6c1–c5, DurandTMO and Reinhard05 lead to an obvious block effect visually; for
Reinhard02, a small amount of block effect can be observed, while the block effect can be
hardly observed for Khan [52], KimKautz [53]. It means that it is effective to use EoG to
measure narrow-sense contour features, which is consistent with subjective perception.

Table 3. Average EoG values of five TMOs at four scales.

Scales DurandTMO [46] Khan [52] KimKautz [53] Reinhard02 [54] Reinhard05 [55]

Full resolutions 164.9714 23.5691 26.1970 31.9404 50.2103
downsampling 1 172.6434 24.0845 25.9556 32.3332 49.0806
downsampling 2 274.2219 36.4036 37.8075 49.0397 71.1724
downsampling 3 429.1500 53.0810 53.3329 72.3733 101.0040

For the middle brightness region Φ′m,M, chrominance statistical features are extracted.
Considering that the image distortion changes the natural scene statistical distribution of
its mean subtracted contrast normalized (MSCN) coefficients, the asymmetric generalized
Gaussian distribution (AGGD) model can fit this distribution, and the difference in the
fitting parameters represents the statistical distribution changes. Thus, the four parameters
after AGGD fitting, that is, mean δm, shape parameter θm, left scale parameter φ2

l and right
scale parameter φ2

r , are used as chrominance statistical features. The chrominance statistical
features of the U and V channels are used as the natural statistical features f AGGD of the
middle brightness region Φ′m,M.

In summary, the above features extracted are expressed as the texture features f GGCM,
narrow-sense contour features f EoG and natural scene statistical features f AGGD. These
features are all based on viewport images, so according to Equation (12), they are aggregated
according to the viewport saliency to obtain FGGCM, FEoG and FAGGD, respectively. Thus,
the final features extracted by the binocular fusion model are Ffus = {FGGCM, FEOG, FAGGD}.

(3) Binocular difference map and feature extraction

Because the left and right views of HSOI’s viewpoints are processed by the same
TMO for viewing HSOI by user’s HMD with SDR, generally speaking, there is no new
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color difference between the left and right views after TM. Whereby, the binocular dif-
ference information is directly described in the gray-scale channel. Based on joint image
filtering, let ĤL,m and ĤR,m be the viewport’s left and right views after the joint image
filtering of their gray-scale channel, respectively. ĤL,m and ĤR,m can be regarded as image
contents that can be initially fused during binocular matching. The absolute difference
maps produced by subtracting the distorted viewport images (VL,m, VR,m) from their jointly
filtered viewport images are taken as the left and right monocular difference maps (MDL,m,
MDR,m), where MDL,m =

∣∣VL,m − ĤL,m
∣∣ and MDR,m =

∣∣VR,m − ĤR,m
∣∣. The monocular dif-

ference map represents the information that cannot be fused between left and right views,
and the information that cannot be fused may lead to binocular competition.

The related studies [58] showed that binocular competition occurs in all contrast,
and the higher the contrast of a monocular stimuli, the stronger its dominant perception.
Therefore, a contrast map is calculated as the competition factor, which weights the left and
right monocular difference maps (MDL,m, MDR,m) to obtain the binocular difference map
BDm. As mentioned, the contrast map is expressed as C = σe/(µe + ε). Let CEL,m and CER,m
be the contrast maps of MDL,m and MDR,m, respectively, then, the binocular difference map
BDm is computed as follows:

BDm =
CEL,m

CEL,m + CER,m + ε
·MDL,m +

CER,m

CEL,m + CER,m + ε
·MDR,m (26)

Considering that the binocular difference map mainly represents the contour infor-
mation dominated by structure, discrete multidimensional differentiators [59] are used
to characterize the binocular difference map BDm, in which five types of derivative maps
on BDm are computed, that is, first-order horizontal derivative map gx, first-order verti-
cal derivative map gy, second-order horizontal derivative map gxx, second-order vertical
derivative map gyy and second-order mined derivative map gxy.

Figure 7a shows the MSCN coefficient distribution curves of the five derivative maps
of the HSOI which is first compressed by JPEG XT and then processed by DurandTMO.
Figure 7b shows the MSCN distribution curves of gx of the HSOI which is first compressed
by JPEG XT and then processed by the five TMOs. In order to describe their MSCN
coefficient distribution, the generalized Gaussian distribution (GGD) model, f (x; αg, σ2

g), is
used for fitting, where αg and σ2

g represent the shape and variance parameters of the GGD
model, respectively.
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Figure 7. MSCN coefficient distribution curves of derivative maps. (a) MSCN coefficient distribution
curves of the five derivative maps of the HSOI, which is first compressed by JPEG XT and then
processed by DurandTMO, (b) MSCN distribution curves of gx of the HSOI which is first compressed
by JPEG XT and then processed by the five TMOs.

For BDm, the shape and variance parameters of the GGD model of its five types of
derivative maps are extracted as the binocular difference features, and expressed as f dif.
With Equation (12), f dif is further weighted by viewport significance, and the aggregated
features are generated as Fdif.
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2.5. Feature Screening and Quality Prediction

As mentioned above, a total of 133 dimensional features are extracted and denoted as
FHSOI = {Fec, Fcorr, Fclbp, Fst, Ffus, Fdif}, as shown in Table 4. The proposed metric designs a
variety of feature extraction processes for visual perception of the distorted HSOI, however,
there may be redundancy in FHSOI. Therefore, by performing feature screening on FHSOI, we
can obtain a screened feature vector that is conducive to achieve the best performance, and
seek a balance between the feature dimension and objective quality evaluation performance.

Table 4. The features extracted in the proposed metric.

Feature Extraction Model Feature Representation Dimensions

Monocular Perception Module (MPM)

Global color features Fec 14
Symmetric/asymmetric distortion

features Fcorr
24

detailed features Fclbp 60
structural features Fst 8

Binocular Perception Module (BPM) binocular fusion features Ffus 17
binocular difference features Fdif 10

All FHSOI 133

The Gini coefficient of random forest [60] can be used to calculate the contribution of a
single feature on each decision tree. The average contribution of all decision trees is the
contribution value of this feature and also the weight of this feature in regression prediction.
The contribution values of all feature vectors are arranged in descending order, and the
features with high contribution values are selectively retained for feature screening. The
screened feature vector after feature screening is recorded as FFS_HSOI.

The screened feature vector FFS_HSOI is used as input, and the random forest model
RF(·) is used as the quality regression model to realize the mapping from the screened
feature vector to predict the objective quality score of distorted HSOI, and expressed
as follows:

QHSOI = RF(FFS_HSOI) (27)

3. Experimental Results and Analyses

To verify the effectiveness of the proposed HSOIQA metric, it is tested on the HDR
stereoscopic omnidirectional image database (HSOID) [45]. The HSOID includes ten scenes
(i.e., indoor, outdoor and night scenes), Figure 8 shows ten scenes with the ERP format
in the HSOID, which are generated from the stereoscopic omnidirectional video dataset
VRQ-TJU [61], the SOLID dataset [62], NBU-SOID dataset [28] and the YouTube. The
HSOID includes nine JPEG XT encoding distortion levels and five kinds of TM distortions
resulted from five different TMOs; thus, a total of 450 distorted images are contained.

For the distorted HSOI with the JPEG XT encoding, nine encoding distortion levels are
designed, including five asymmetric encoding distortions and four symmetric encoding
distortions. While for TM distortion, five representative TMOs are selected to map HSOI
to SDR domain, and five TMOs are DurandTMO [46], Khan [52], KimKautz [53], Rein-
hard02 [54] and Reinhard05 [55], respectively. The distortion-produced process includes
JPEG XT coding and TM. JPEG XT technology decomposes HSOI into the base layer and
extension layer. Distortion degree of the base layer is determined by one quality factor q,
and that of the extension layer is determined by another quality factor Q. Four quality factor
pairs are set for compressing each view of HSOI with the JPEG XT, and the corresponding
distortion level is represented by L1, L2, L3 and L4, respectively, from high to low. The four
quality factor pairs (q, Q) are set to (16, 9), (30, 19), (50, 30) and (90, 72), which correspond
to L1, L2, L3 and L4, respectively. Considering the stereoscopic perception of HSOI, the left
view or right view is, respectively, compressed with one of the four quality factor pairs to
produce nine distortion levels, including four symmetric encoding distortion levels and five
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asymmetric encoding distortion levels, as shown in Table 5. Thirty subjects were invited
to participate in the subjective experiment. The subjective experiment was conducted in
Ningbo University. A total of 30 subjects aged between 20 and 30 years old, including
male and female, professional and non-professional, were invited to participate in the
experiment to ensure that the experimental data was completely authentic and reliable. The
experimental equipment is the HTC Vive Pro HMD with a monocular (left view or right
view) viewport resolution of 1440 × 1600 and its FoV angle is 110◦. In the experiments, a
rotatable seat was provided for the subject, and the subjects wore the HMD to view the
omnidirectional images from various viewing angles. Oral guidance was given first before
the subjective evaluation, and the subjects were informed of the characteristics of JPEG
distortion, TM distortion, mixed distortion and the relevant information such as the scoring
standard. To prevent the subjects from being unable to give accurate scores due to discomfort
such as visual fatigue and dizziness, when the subjects finished evaluating 45 test images, they
rested for 10 min to improve the reliability of the scores as much as possible [45].
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Table 5. Quality factors of nine encoding distortion levels.

Distortion
Type

Symmetric Encoding Distortion Asymmetric Encoding Distortion

Symbol Left View Right View Symbol Left View Right View

Distortion
level

sd1 L1 L1 ad1 L1 L3
sd2 L2 L2 ad2 L1 L4
sd3 L3 L3 ad3 L2 L3
sd4 L4 L4 ad4 L2 L4

- - - ad5 L3 L4

The subjective score has nine quality levels, and the higher the score, the better the
quality. The outliers in the subjective scores were eliminated in strict accordance with the
screening criteria, and the average value of the remaining effective scores of each HSOI was
taken as its MOS value [45]. Figure 9a–j show MOS values of symmetric distorted HSOIs
of ten scenes, and Figure 9k–t are those of asymmetric distorted HSOIs. Here, the MOS
curves shown in Figure 9 are the same as the results in [45], where the subjective scoring
values of the distorted HSOIs in the HSOID are displayed in different visual ways. It can
be found that: (1) For symmetric/asymmetric distortion in all scenarios, the MOS values
of the HSOIs processed with DurandTMO and Khan operators are relatively low, while
the other three TMOs have little difference. This may be because DurandTMO will “create
an illusion” in color, and the TM distortion with Khan is more easily perceived. (2) For
symmetric distortion, the MOS values of all scenes increase with the reduction of distortion,
and the change trend of MOS among different levels is relatively “steep”, which indicates
the rationality of quality factor setting. (3) For asymmetric distortion, the change of MOS
values between ad1–ad2 is gentler than those among ad2–ad4–ad5, as shown in Figure 9l,q.



Sensors 2022, 22, 8513 19 of 27

Referring to Table 5, it can be found that when the distortion level of the left view is L1
and the distortion level of the right view changes from L3 to L4, the human eyes are not
sensitive to this change. When the distortion level of the right view is L4 and that of the
left view changes from L1 to L3, the MOS values increase rapidly. This phenomenon is
consistent with the fact that JPEG XT coding belongs to information additive distortion,
and generally the party with more serious distortion is dominant, and this phenomenon
will exist even after TM processing.
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In the experiments, the random forest model is used to complete the regression
prediction task, and the K-fold cross validation is used to divide the test and training sets.
Specifically, the HSOID database is divided into K subsets, where K = 10, corresponding to
the number of scenes in the dataset. All images with the same scene form a subset to ensure
that the training set does not overlap with the test set. The model trained using the K − 1
subset is tested on the remaining subset, iterating from the first scenario until all scenarios
are traversed. Finally, the average performance of the K cross validation is reported. The
accuracy of the proposed metric is evaluated based on three classic indexes: PLCC, SROCC
and RMSE. PLCC is the correlation between subjective and objective scores, and SROCC is
the monotonicity correlation index between two ordered variables. Both values are between
[−1,1], and the closer the absolute value is to one, the higher the accuracy of the regression
task is, and the closer the RMSE is to zero, the better.

Here, the relevant results of the influence of feature screening on the performance of
the proposed metric are first discussed. Then, the proposed metric is compared with several
representative 2D-IQA metrics as well as some blind IQA metrics which consider at least
one feature of HSOI. The effects of different feature sets involved in the proposed metric
are also analyzed, the symmetric/asymmetric distortion is discussed, and the influence of
the number of viewports is analyzed.

3.1. Feature Screening in the Proposed Metric

The main purpose of feature screening is to select the feature vector from the fea-
tures extracted by the proposed perceptual modules, so as to optimize the performance
of objective quality metrics. Figure 10a depicts a descending arrangement of contribution
values of all extracted features in the proposed metric. As shown in Table 4, the initial
extracted feature set has 133 dimensions in total. When the feature dimensions drop to
106 dimensions, the contribution of the remaining features has dropped below 0.2, indicat-
ing that most of the extracted features are relatively effective. In order to further select the
best feature set, the quality regression is conducted with features of different dimensions
to test the objective quality evaluation performance. The results are shown in Figure 10b.
Through experiments and verification, when the first 54 features screened according to
feature importance are selected, the selected features cover all perceptual modules and
achieve the better performance. Thus, the first 54 dimensional features are selected as the
final feature set FFS_HSOI in the proposed metric.
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3.2. Overall Performance of the Proposed Metric

In order to illustrate the effectiveness of the proposed metric, in addition to some rep-
resentative 2D-IQA metrics, the proposed metric is compared with four types of blind IQA
metrics, namely, one SIQA metric (i.e., SINQ [20]), one OIQA metric (i.e., SSP-OIQA [24]),
two TM-IQA metrics (i.e., BTMQI [32], BTMIQA [33]), and one SOIQA metric (i.e., Qi’s met-
ric [28]). These four types of metrics involve HSOI’s one or more perception characteristics
including binocular perception, OI viewport perception and HDR/TM visual perception.
All supervised learning-based metrics are trained by K-fold cross validation. To ensure
the fairness and reliability of the data, all metrics are tested with the codes released by the
corresponding authors.

Table 6 shows the objective assessment results of different metrics on the HSOID
dataset, and highlights the best performance indicators in bold. SINQ [20] takes into
account the perceptual features of stereovision, SSP-OIQA [24] considers the characteristics
of OIs, and two TM-IQA metrics take into account the perceptual features of TM distortion;
each of them belongs to one of the perceptual features of HSOI. It is obvious that the TM-
IQA metrics (BTMQI and BTMIQA) outperform SINQ; moreover, the PLCC and SROCC of
Qi’s metric are almost equal to those of BTMQI; it indicates that TM distortion plays an
important role in visual perception of HSOI. This may be because human eyes are extremely
sensitive to color changes in TM distortion, and color is an intuitive global attribute. SSP-
OIQA uses the SSP format to evaluate the OI quality. The reason for poor performance
may be that it does not consider the stereoscopic perception and the TM distortion. It
can be found from Table 6 that the performance of the proposed metric is the best, with
PLCC and SROCC values reaching 0.8766 and 0.8724, respectively. This is because the
proposed metric is based on the characteristics of stereoscopic perception, combined with
HDR/TM perception and omnidirectional perception, and utilizes a series of effective
feature extraction schemes to evaluate various distortions. Therefore, the proposed metric
has better performance of HSOIQA.

Table 6. Objective assessment results of different metrics on the HSOID dataset.

Type of Metrics Metrics PLCC SROCC RMSE

2D-IQA

OG-IQA [9] 0.7741 0.7649 1.1595

GWH-GLBP [10] 0.6677 0.6652 1.3634

BRISQUE [11] 0.7273 0.7230 1.2571

IL-NIQE [12] 0.5452 0.5424 1.5354

dipIQ [13] 0.6290 0.6193 1.4238

BMPRI [14] 0.4837 0.4495 1.6030

SISBLIM [15] 0.5928 0.5725 1.4750

SIQA SINQ [20] 0.6804 0.6732 1.3422

OIQA SSP-OIQA [24] 0.6413 0.6339 1.4054

TM-IQA
BTMQI [32] 0.7720 0.7690 1.1629

BTMIQA [33] 0.7067 0.7037 1.2959

SOIQA Qi′ metric [28] 0.7614 0.7532 1.1873

HSOIQA Proposed 0.8766 0.8724 0.8814

3.3. Performance Analysis of Different Feature Sets

There are six perceptual feature sets involved in the proposed metric, i.e., FHSOI =
{Fec, Fcorr, Fclbp, Fst, Ffus, Fdif}, specifically, global color feature Fec, symmetric/asymmetric
coding distortion feature Fcorr, detail contrast feature Fclbp, structural feature Fst, binocular
fusion feature Ffus and binocular difference feature Fdif. The random forest model is used to
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train each feature set or combined feature separately, and then its performance is reported,
as shown in Table 7, from which the observations can be obtained as follows.

Table 7. Performance of different feature sets and their combination.

Feature Extraction Mode Features PLCC SROCC RMSE

Single feature set

Fec 0.6885 0.6685 1.3283
Fcorr 0.4717 0.3494 1.6150
Fclbp 0.7580 0.7572 1.1946
Fst 0.3730 0.3591 1.6994
Ffus 0.4896 0.4673 1.8525
Fdif 0.3506 0.3033 1.7153

Monocular perception
Fclbp + Fst 0.7799 0.7753 1.1464

Fec + Fclbp + Fst 0.8453 0.8393 0.9786
Fcorr + Fec + Fclbp + Fst 0.8525 0.8474 0.9753

Binocular perception Ffus + Fdif 0.5564 0.5259 1.5219

All FHSOI 0.8535 0.8488 0.9545

All with feature screening FFS_HSOI 0.8766 0.8724 0.8814

(1) For the proposed six perceptual feature sets, the performance of using global color
feature Fec and detail contrast feature Fclbp is relatively good. This may be because
Fec is combined with the spatial domain and transform domain for feature extraction,
and color distortion is one of the obvious distortions in the HSOID dataset. The
performance of detail contrast feature Fclbp benefits from its combination of contrast
and image content in the detail layer. The performance of Ffus and Fdif based on
the BPM is general. This may be because the binocular fusion maps and binocular
difference maps of the viewports can be regarded as local images compared with the
entire images in ERP format, so that the image content information is relatively small,
and the subsequent extracted features can only measure part of the image distortion.

(2) For the MPM, Fclbp and Fst are the features based on the scene distortion perception.
Although the PLCC value of Fst itself is only 0.3730, the combination of Fclbp and
Fst has further increased by 0.0219, and the SROCC value by 0.0181 on the basis
of Fclbp, which is quite impressive. It shows that the design of Laplacian pyramid
decomposition combined with image detail contrast and structure is effective. The
PLCC value of the global color feature Fec reaches 0.6885, and the addition of Fec
increases 0.0654 on the basis of Fclbp + Fst, while for the SROCC improvement is
0.0640. It implies that measuring color characteristics is very important for HSOIQA.
Although the PLCC value of symmetric/asymmetric encoding distortion feature Fcorr
designed for binocular characteristics is only 0.4717, it is further increased by 0.0072
and the SROCC value by 0.0081 on the basis of Fec + Fclbp + Fst. It can be found that the
features extracted by the proposed method for asymmetric distortion in the HSOID
dataset are effective and necessary.

(3) For the BPM, the PLCC and SROCC values of the binocular fusion feature Ffus are
0.4896 and 0.4673, respectively, while the PLCC and SROCC values of the binocular
difference feature Fdif are 0.3506 and 0.3033, respectively. The PLCC and SROCC
values of Ffus + Fdif reach 0.5564 and 0.5259, respectively. This means that these two
feature sets are complementary, and the binocular perception is also one of the factors
that can be considered for HSOIQA.

(4) The PLCC value of the MPM is 0.8525, while that of the BPM is 0.5564; when they
are combined, the PLCC value reaches 0.8535. Although the performance of the
BPM is general, it further strengthens the prediction ability of the overall model,
which means that the MPM and BPM have a positive complementary role. After
feature screening, the PLCC and SROCC values of the overall model reach 0.8766
and 0.8724, respectively. It indicates that feature screening removes the redundancy
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among the initial extracted features and further improves the prediction accuracy of
the proposed metric.

3.4. Performance Analysison Symmetric/Asymmetric Distortions

For HSOIQA, the binocular perception is one of the important characteristics to be
considered. A symmetric/asymmetric distortion measurement model is purposely de-
signed to measure the asymmetric encoding distortion in the HSOID dataset. To verify the
effectiveness of the proposed metric, it is compared with the other metrics in Table 6 except
the 2D-IQA metrics. The HSOID dataset is divided into the symmetric distorted HSOIs and
asymmetric distorted HSOIs to form two sub-datasets so that the relevant metrics can be
tested on the two kinds of HSOIs separately. Table 8 lists the performance results of these
metrics, where ∆PLCC is the PLCC value of the sub-dataset of the symmetric distorted
HSOIs minus the overall PLCC value. ∆PLCC indicates the performance degradation
caused by the sub-dataset of the asymmetric distorted HSOIs; and the smaller the ∆PLCC
value, the better the performance. In Table 8, the best performance values are shown in bold.
It can be found that: (1) The performance of all metrics for the symmetric distorted HSOIs
is better than that for asymmetric distorted HSOIs, and the overall performance is between
the two ones; and the better the performance of asymmetric distorted HSOIs, the better
the overall performance, which implies that asymmetric distortion has to be characterized.
(2) For symmetric/asymmetric distortion, all indexes of the proposed metric are signifi-
cantly better than those of the other metrics, this means that the presented feature extraction
schemes for symmetric/asymmetric distortions in the proposed metric is reasonable.

Table 8. Objective quality assessment results of symmetric/asymmetric distortions in the HSOID dataset.

Metrics
Symmetric Distortion Asymmetric Distortion Overall

∆PLCC
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

SINQ 0.7802 0.7760 1.3006 0.5841 0.5671 1.3033 0.6804 0.6732 1.3422 0.0998

SSP-OIQA 0.7502 0.7428 1.3748 0.5349 0.5276 1.3567 0.6413 0.6339 1.4054 0.1089

BTMQI 0.8092 0.8061 1.2217 0.7310 0.7225 1.0957 0.7720 0.7690 1.1629 0.0372

BTMIQA 0.7686 0.7696 1.3300 0.6383 0.6267 1.2361 0.7067 0.7037 1.2959 0.0619

Qi 0.8161 0.8006 1.2015 0.6877 0.6936 1.1657 0.7614 0.7532 1.1873 0.0547

Proposed 0.9086 0.8972 0.8685 0.8225 0.8172 0.9131 0.8766 0.8724 0.8814 0.0320

3.5. Effect of the Number of Viewports

As described in the Section 2.2, there are totally M + 2 viewports sampled from HSOI
in the proposed metric, M viewports in the equatorial region and two in the bipolar regions.
Here, the effect of M on the performance of the proposed metric will be tested, where
M ∈ {4, 6, 8, 10}. When M≥ 4, all image information of the equatorial region can be covered.
In the experiment, the performance of single feature set as well as the combined feature
sets under different viewport numbers are compared, that is, Fcorr, Fclbp, Fst, Ffus, Fdif, FV
(FV = Fcorr + Fclbp + Fst + Ffus + Fdif), all initial extracted feature sets FHSOI and the screened
feature vector FFS_HSOI. Table 9 shows the experimental results with respect to different M.
The best performance of the same feature set is shown in bold, and the optimal number is
the number of times that the corresponding M achieves the best performance highlighted
with bold. It can be found from Table 9 that when M is 8, the optimal number is 17, in which
the viewport model and overall performance are the best. Therefore, the total number of
viewports is finally determined to be 10, including 8 viewports in the equatorial region and
2 viewports sampled in the polar region. On the other hand, the difference in viewport
performance may be due to the redundant information brought by overlapping viewport
sampling and the sensitivity of the extracted features to viewport content.
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Table 9. Objective quality assessment results with respect to different M values.

M Feature Type Features PLCC SROCC RMSE Optimal
Number

4

Viewport-based features

Fcorr 0.3789 0.2865 1.6950

0

Fclbp 0.7542 0.7517 1.2026
Fst 0.3607 0.3240 1.7083
Ffus 0.3849 0.3162 1.6904
Fdif 0.2845 0.2378 1.7559
FV 0.7961 0.7924 1.1085

All FHSOI 0.8454 0.8404 0.9782 0

All with FS FFS_HSOI 0.8584 0.8523 0.9396 0

6

Viewport-based features

Fcorr 0.4423 0.3646 1.6427

4

Fclbp 0.7578 0.7565 1.1951
Fst 0.3978 0.3644 1.6804
Ffus 0.4605 0.4337 1.6258
Fdif 0.2844 0.2443 1.7559
FV 0.7917 0.7889 1.1188

All FHSOI 0.8478 0.8421 0.9713 0

All with FS FFS_HSOI 0.8688 0.8644 0.9068 0

8

Viewport-based features

Fcorr 0.4717 0.3494 1.6150

11

Fclbp 0.7580 0.7572 1.1946
Fst 0.3730 0.3591 1.6994
Ffus 0.4896 0.4673 1.8525
Fdif 0.3506 0.3033 1.7153
FV 0.8051 0.8044 1.0863

All FHSOI 0.8535 0.8488 0.9545 3

All with FS FFS_HSOI 0.8766 0.8724 0.8814 3

10

Viewport-based features

Fcorr 0.4292 0.3585 1.6543

3

Fclbp 0.7532 0.7516 1.2048
Fst 0.3740 0.3355 1.6987
Ffus 0.4898 0.4611 1.5968
Fdif 0.3376 0.2953 1.7240
FV 0.7937 0.7923 1.1141

All FHSOI 0.8447 0.8401 0.9804 0

All with FS FFS_HSOI 0.8625 0.8568 0.9267 0

4. Conclusions

From the perspective of perception of high dynamic range (HDR) stereoscopic omnidi-
rectional vision system, a visual perception based blind HDR stereoscopic omnidirectional
image (HSOI) quality assessment metric has been proposed in this paper. The proposed
metric can be divided into two main modules, that is, monocular perception module, and
binocular perception module. For the monocular perception module, firstly, the projection
format of HSOI is transformed, and then the metric of combining spatial domain and
discrete cosine transform domain based on antagonistic channel is designed to measure
the global color distortion. Secondly, to measure the symmetric/asymmetric distortion,
the absolute correlation coefficient and correlation distance of the left and right views are
calculated based on multiscale retinex decomposition; then, considering the characteristics
of the indoor, outdoor and night scenes, the detail contrast features and structural features
are extracted with Laplacian pyramid decomposition. In the binocular perception module,
based on joint image filtering, the binocular fusion map and binocular difference map
are calculated. Further, brightness segmentation is performed based on the binocular
fusion map, so that the texture, narrow-sense and chromaticity statistical features can
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be extracted separately for the high, low and middle brightness regions. This process
conforms to the information transmission mechanism of the V1, V2 and V4 areas of the
human vision system. For binocular difference map, the derivative map is calculated
and natural statistical features are extracted. The effectiveness of the proposed metric is
compared and analyzed on the HSOID dataset. The experimental results show that the
proposed metric is an effective HSOI quality evaluator. In this work, we have presented a
comprehensive analysis and empirical study on the problem of HSOI quality assessment,
and proposed a new metric. The experimental results also verify its effectiveness. In future
work, the performance of HSOI quality evaluation can be improved in two aspects. Firstly,
we will further explore the mechanism whereby the visual system perceives the HSOI.
Meanwhile, compared with hand-crafted feature extraction, the learning-based feature
extraction can be more consistent with the process of the brain processing information.
Therefore, a deep learning-based method can be integrated into the evaluation model for
performance improvement. In future work, we will consider combining deep learning and
visual perception to propose a new network to improve the performance of HSOIQA.
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