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Abstract: Exploration is an important aspect of autonomous robotics, whether it is for target searching,
rescue missions, or reconnaissance in an unknown environment. In this paper, we propose a solution
to efficiently explore the unknown environment by unmanned aerial vehicles (UAV). Innovatively,
a topological road map is incrementally built based on Rapidly-exploring Random Tree (RRT) and
maintained along with the whole exploration process. The topological structure can provide a set
of waypoints for searching an optimal informative path. To evaluate the path, we consider the
information measurement based on prior map uncertainty and the distance cost of the path, and
formulate a normalized utility to describe information-richness along the path. The informative path
is determined in every period by a local planner, and the robot executes the planned path to collect
measurements of the unknown environment and restructure a map. The proposed framework and
its composed modules are verified in two 3-D environments, which exhibit better performance in
improving the exploration efficiency than other methods.

Keywords: informative path planning; exploration; autonomous robot; navigation

1. Introduction

Recently, autonomous robots have begun to be used to replace human work [1–4], even
in harsh environments, such as battlefields, caves, and extraterrestrial environments [5,6].
In such scenarios, communication is infrequent or limited, manual operation is difficult for
persistently collecting environmental data. A robot’s perception of the unknown environ-
ment and independent planning ability in such scenarios is particularly important [7].

The process of robot autonomous movement and environment map building is called
unknown environment exploration [8]. Using a Micro Aerial Vehicle (MAV) to explore
in an unstructured environment is common research. Due to its high degree of motion
flexibility, it is able to complete the motion track with high maneuver requirements [9].
A MAV equipped with computing units, vision, and positioning sensors can collect the
information measurements to perceive and map the environment in real-time. MAV moves
independently without prior information on the global environment but the real-time map
is based on records from an airborne sensor.

If the environment is completely unknown in advance, it is difficult to formulate
a globally optimal solution to control the MAV by a series of inputs at one time. The
most common method is receding horizon control [10–12], which iteratively determines
a control input to navigate the robot to scan unknown space. For the navigation that
leads to information measurements, a seminal method is detecting the frontier, which is
identified as the boundary between the known and unknown regions of the map [13,14].
Even if a robot greedily seeks the frontiers, it indicates a series of feasible exploring actions.
However, it is so simple that it lacks a comprehensive evaluation of the candidate region.
The robot works without considering the information gathered, some decisions that execute
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an information-less path will cause reverse and high path distance costs [15]. And the
frontiers detection process is time-consuming in a largely high-dimensional environment
map, so it is difficult to guarantee real-time performance in local planning [16]. The sample-
based method is commonly used for high-dimensional planning efficiency. It samples
the candidate viewpoint and raw path and considers the utility along each candidate
path. Information measurement and path cost are considered in the utility calculation
to determine an informative path. An informative path which navigates the robot to
information-rich areas can improve the efficiency of exploration [17].

In this article, we propose an efficient exploration solution based on informative
path planning via normalized utility. A road map is extended by generating viewpoints
randomly, it is maintained through the whole exploring process to utilize prior information
in path decisions. Information measurements at the candidate viewpoints are pre-calculated
to judge the potential unknown space volume, the posterior map entropy decline value is
used to evaluate the information-richness of the measurements. A utility normalizing the
information measurements by the path cost is proposed for deciding an optimal informative
path. For a smooth motion, a minimum snap [18] trajectory is generated from the waypoints
set that map out the optimal path. Octomap [19] is used to map the environment and divide
the space into occupied, free, and unknown states. Overall, our contributions mainly lie in
three aspects:

• An Efficient information richness judgment from posterior map entropy decline value
is proposed, which formulates the potential unknown detection volume for navigating
robots to visit unknown space efficiently.

• An informative path utility calculation method that normalizes information measure-
ments by path distance is proposed; the normalized utility leads to fewer local opti-
mums.

• The proposed method has been extensively validated in two realistic simulation envi-
ronments.

The rest of this article is organized as follows. In Section 2, we introduce related work
in autonomous robotic exploration. A Problem Statement is proposed in Section 3. In
Section 4, we present our proposed method. Experiments and results are given in Section 5.
We conclude our work and provide future directions in Section 6.

2. Releated Work

Autonomous exploration is the main prerequisite for robots to build a map of unknown
environments to provide relevant data. Although there are many techniques for efficient
and autonomous exploration in recent research, it is still challenging to decide on an
informative path for measurement collection.

The major approaches can be grouped into the frontier [20–23] and sample-based [24–26]
methods. The boundary between observed and unobserved space is called the frontier.
Frontier-based exploration computes the frontiers periodically to maintain a candidate
goal set and navigates the robot to a goal that optimally trades off the path cost and
frontiers cover. Detecting frontiers as a goal guarantees full coverage of the area [13],
but the detection calculation is time-expensive for travel space voxels in a map of large
environments. To relieve the time-consumption of detection in [8], frontiers outside of the
FOV (field of View) are a secondary priority to decrease computation and maintain faster
motion. Similarly, searching the region for frontier detection is bound in [15]; however, the
advantage of coverage guarantee is weakened, and the reverse becomes general. Another
disadvantage of the frontier-based method is its lack of consideration of information
measurements. Navigation following the frontiers indeed guarantees full coverage but
ignores information-richness. Even if a robot wanders greedily, in an information-richness
space, it can still collect many information measurements. Sample-based approaches sample
viewpoints, paths, or control inputs, e.g., RRT [27–31], PRM (Probabilistic Roadmap) [32–34].
The optimal goal is chosen by comparing the utility estimation of each sampled candidate.
The utility formation permits a broad range of utility objectives to adopting different
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kinds of task requirements. In [10], Bircher et al. use the exponential utility to decide a
next-best-view path; unknown volume in the FOV at the viewpoint is considered to be
an award, an exponent tuning factor is used to penalize high path costs. However, the
behavior of exploration is sensitive to the size of the factor; too large or too small a value
will result in repetitive exploration trajectories [27]. In [9], the frontiers are considered
to be awards. Eungchang et al. use the exponential utility in path decision and active
loop-closing planning, a likelihood-based selection is developed to reduce the drift of
pose estimation, and motion velocity is considered to prevent inappropriate loop-closing,
which may cause repetitive motion. In [35,36], the linear utility trade-off between path
cost and frontiers award linearly, but it needs to adjust the parameters carefully to avoid
inefficient back-traveling [37]. To relieve the repetition path problem, a well-designed
utility is supposed to be modeled. In this paper, as a trial, we employ a normalized utility,
for which we use the notion of efficiency, i.e., the accumulated gain per cost, as a central
idea for the value.

The above research neglects information uncertainty of some voxel when only con-
sidering the frontiers or the unknown volume to be the award, and it will also result in
repetitive exploring. Driving the robot to information-rich areas can prevent repetitive
paths, and help to escape from the local optimum. For an information-richness-oriented
exploration strategy, recent research thus oftentimes supports a sample-based local planner
with additional global information to improve coverage [38,39]. Several methods have
been proposed that maximize the information-gathered volume. This predicts a decreasing
volume of uncertainty by future sensor measurements. For example, in [40], the unknown
volume and quality of the reconstructed surfaces are both considered to lead an efficient
exploration. In [27], a global planner considers the frontiers to be the global goals, and a
local planner uses sample-based method combined with the evaluation by information
gain. To evaluate the information gain more efficiently, in [27,41], the Gaussian process
is used to build a continuous and differentiable gain space. Charrow et al. [17] consider
a sample-based method as a local exploring planner, the frontier as a global planner to
make up the local minimum disadvantage, and use Cauchy–Schwarz quadratic mutual
information (MI), which is more computing-efficient. However, these methods evaluate
information gain in the whole grid environment map [15]; although they optimize more
accurately, it is time expensive to search over all the 3-dimensional maps. In this paper, we
calculate the information measurements by only evaluating the voxels in the FOV at the
viewpoint. The Shannon entropy is calculated to evaluate the uncertainty.

In summary, in this paper, we focus on the planning, and use the sample-based
method for its efficiency and maintain an incremental topological road map, formulate the
information measurement of each sampled viewpoint by calculating the decreasing map
entropy. The raw path is sought in the roadmap, guaranteeing the fast informative path
decision. To avoid the local minimum, a normalized utility is used, it calculates average
information on each unit path distance.

3. Problem Statement

The task of UAV exploration in an unknown environment performs the process of
exploring and mapping iteratively. A 3D workspaceW of known size is given before the
task for establishing the concerned area; all UAVs will explore the workspace. Exploration
processing by identical UAVs with four degrees of freedom, at the 3D position [x, y, z]T ∈ R3

and the yaw angle ψ ∈ S1. The UAV state can be described as ξ = [x, y, z, ψ]T . In each
platform, a depth camera is equipped to collect the environment information with a certain
field of view.

A 3-D occupancy grid mapping is run for reconstructing a volumetric mapM of the
environment. The occupancy probability of each gird m ∈ M is initialized as P(m) = 0.5.
The posterior occupancy probability P(m | ξ1:t, z1:t) is updated by the depth measure-
ment z1:t and the UAV state ξ1:t from initial time to current time t. The grids in the map
will be gradually scanned by the sensor and identified as either free grids M f = {m |
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P(m | ξ1:t, z1:t) < Pf ree, m ∈ M} or occupied grids Mo = {m | P(m | ξ1:t, z1:t) > Pocc,
m ∈ M}. Pf and Po are the given thresholds.

Given a mapMt at time t, its map uncertainty can be denoted by entropy [42]:

H(Mt) = ∑
m∈Mt

−p(m) log2 p(m)− (1− p(m)) log2(1− p(m)). (1)

The predicted information measurement I(Mt; ξi, zi) [42] at state ξi is formulated as:

I(Mt; ξi, zi) = H(Mt)− H(Mt | ξi, zi). (2)

It can be used to quantify the information measurement at a waypoint pi = ξi and
evaluate the path P , which is determined by key waypoints. In the informative path
planning process, the receding horizon exploration planner decides an optimal path P∗
in every period. To seek the P∗ for the UAV so that it gathers measurements that reduce
unknown space with less consumption, a cost function is formulated to measure the value
of the candidate path, considering the uncertainty of mapM, the location of waypoints in
path P , and the time cost of the path c(P).

P∗ = argmaxP f (Mt,P , c(P)) = argmaxP
I(P)
c(P) , s.t. c(P) ≤ B, (3)

where B denotes a time budget. I(P) defines the collected information measurements
along the path P , and is defined in more detail in (11).

UAVs visit unknown spaces independently according to the outputs of the exploration
planner. We assume that the UAVs are equipped with an accurate localization system. The
core parts of our proposed modules are as follows.

4. Method
4.1. System Overview

The system overview of the proposed autonomous exploration framework is shown in
Figure 1. The Depth sensor is a depth camera with a FOV of [60, 90]◦, which is equipped on
the UAV. The localization in this paper is assumed to be perfect and can provide real-time
odometry of the UAV. The 3-D occupancy grid-mapping thread is run to build the model of
the environment during the exploration, providing the information of interest. A sample-
based exploration local planner builds a topological road map via RRT incrementally; the
road map provides a candidate goal set. Periodically, the planner determines an optimal
informative path via normalized utility; the utility is considered to trade off the information
measurements and path cost along the navigation route.

Figure 1. The system overview. The modules of localization, mapping, and planner are run on the UAV.
The UAV visits unknown spaces independently according to the outputs of the exploration planner.

4.2. Mapping

A numerically environmental expression is necessary for exploring. In a unified space,
the environment could be divided into the unknown, occupied, or free parts. Due to its
simple and fast searching character, the OctoMap [19] is adopted in our method.
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If the up-to-date sensor measurements z1:t are given, the probability updating of a
voxel L(v | z1:t) can be formulated:

L(v | Z1:t) = max(min(L(n | Z1:t−1) + L(n | Zt), lmax), lmin), L(v) = log
[

P(v)
1− P(v)

]
. (4)

After every depth measurement is received, a ray-casting operation is used to update
the occupancy probabilities of voxels along the beams. The probability map provides the
uncertainty information and guarantees the calculation basis for navigation.

L(v | Zt) =

{
locc = 0.85 if reflected
lfree = −0.4 if traversed

. (5)

4.3. Topological Road Map

To build a road map T = [n0, n1, ..., nN ], the node ni = [nparent, nchild, ξni , I(Mt; ξni , zni )],
ξni is the robot state of the ni, nparent is the parent node of ni, and nchild is the child node
of ni. Initially, the first node is initialized as n0 = [∅, ∅, ξinit, I(Mt; ξinit, zinit)], while ξinit
represents the start state of the robot for the exploration.

According to Algorithm 1, until the termination of the exploration, the road map is
maintained by extending new nodes which are generated from random sampling. The
candidate is randomly placed inW . The FindNearest(C, T ) finds a nearest node of C in
3-dimensional euclidean space:

nnear = arg minn∈T ‖[I3, 0]4×3ξn − C‖. (6)

Algorithm 1 Road Map Extension

1: T = [∅].
2: for Exploration is not over do
3: C ← X ∼ Uni f orm(W), X ∈ R3.
4: nnear ← FindNearest(C, T ).
5: success← CollsionFree(C, nnear).
6: if success then
7: ξ ← (C, BestYaw(C)).
8: z← Predict(Mt, ξ).
9: nnew ← [nnear, ∅, ξ, I(Mt; ξ, z)].

10: nnear ← [nparent, nnew, ξnnear , I(Mt; ξnnear , znnear )]
11: T ← Extend(nnew, T ).
12: end if
13: end for

Then, collision detection is supposed to be done by connecting them in 3-dimensional
euclidean space, as Figure 2 shows, the blue point shows the position of the candidate, and
the blue dotted line indicates that the collision detection result is free. If it is collision-free,
then BestYaw is used to get the best yaw to scan unknown space. The future state ξ is fixed
and nnew is defined and extended to the road map.
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Figure 2. Roadmap is built as a living RRT. We keep the tree alive and maintain it through the whole
exploration process. The green triangle represents the current state of the robot, while the green sector
represents the FOV. The red lines represent the maintained roadmap, and the red dots represent the
nodes. The blue point shows the position of the candidate, and the blue dotted line indicates that
the collision detection result is free. The white, gray, and black grids represent free, unknown, and
occupied space respectively.

The BestYaw uses a method based on the gradient of the weight function, which is
inspired from [34], and can be computed as:

nview = ∑
c∈N

w′(c)
c− x
‖c− x‖ , x = [I3, 0]4×3ξ. (7)

w′(c) =

{
1 if voxel c is unknown,
0 otherwise.

(8)

where N = ∑v∈M∩A v is the set of the voxel in an area delineated by a circle, x is the
center, and the perception range is the radius. A new sensor configuration is generated
along the direction nview at point x, and it can be denoted as a state ξ. The unknown
voxels mentioned later are of the highest information uncertainty, which means that more
information may be observed in the corresponding space. And otherwise, space states
no longer have high uncertainty because they have reached the threshold of occupancy
probability. Two intuitive examples are given in Figure 3.
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Figure 3. Example of best yaw in two scenarios, each gray point depicts the position of an unknown
voxel; a green arrow with an orange dot shows the best scanning direction. (a) Scenario one.
(b) Scenario two.
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To navigate, the robot arrives at the location with rich information and the information
measurement I(Mt; ξ, z) is used to formulate the information-richness. It is calculated
after z is predicted according to the current mapMt and ξ. As the Figure 2 shows, when
the ξ is fixed, the map voxel m ∈ Mz = FOV ∩Mt can be confirmed. According to (2):

I(M; ξ, z) =H
(
Mz,M−

z
)
− H

(
Mz,M−

z | ξ, z
)

=H(Mz) + H
(
M−

z
)
− H(Mz | ξ, z)− H

(
M−

z | ξ, z
)

=H(Mz)

'− ∑
m∈FOV∩Mt

p(m) log(p(m)) + (1− p(m)) log(p(m)).

(9)

We make H(Mz | ξ, z) = 0, and H(M−
z ) = H(M−

z | ξ, z), as we assume the robot
can perfectly decrease the uncertainty ofMz when it is at state ξ, the voxels in the FOV
will be fully known with future observation. The voxels out of the FOV will not be scanned
and the posterior occupancy probability will not change.

As the (9) shows, the ideal decrease of map uncertainty can be seen as a sum of binary
entropy. For one voxel, its occupancy probability increases from 0 to 1. It becomes flat
when the logarithm base increases; and when probability increases, the entropy reaches
the maximum at 0.5. This means that when a voxel v is unknown, v = 0.5 and it is in the
most uncertain state, from the perspective of information measurement, we can scan more
information here.

4.4. Informative Path Decision

In the proposed informative path planner, an optimal informative path is decided in
every period. Both the information measurements and path cost are considered to judge
how worthy to execute is a given candidate path; in other words, how information-rich
the path. The path decision process can be denoted by (3). And f (Mt,P , c(P)) can be
formulated as a kind of normalized utility:

f (Mt,P , c(P)) = I(P)
c(P) , (10)

specifically:

P∗ = arg maxP
I(P)
c(P) = arg maxP

∑k
i=1 I(Mt; pi, zi)

∑k−1
i=0 c(pi+1, pi)

. (11)

The path P = [p0, p1, ..., pk], k ∈ Z+, pi ∈ T , is the sum of segments < pj, pj+1 >,
where j = 0, 1, 2, ..., k− 1. < pj, pj+1 > denotes a raw collision-free path between node pj
and pj+1. P is the variable in the optimization process, while k is not a constant number, it
changes with the node corresponding to the end of the candidate path. The zi corresponds
to observation at state ξpi . The c(pi+1, pi) denotes the distance between pi and pi+1 in
3-dimensional euclidean space:

c(pi+1, pi) = ‖[I3, 0]4×3ξpi+1 − [I3, 0]4×3ξpi‖. (12)

An intuitive example can be given by Figure 4, and c(P∗) = ∑k−1
i=0 c(pi+1, pi) is equal to the

total length of green line segment. The k = 5 in P∗ in first row, k = 6 for the second row.
There are also other common formations of utility, e.g., Exponential [27,40] and Lin-

ear [36]:

f (Mt,P , c(P)) =

 ∑k
i=1 I(M; pi, zi)− λ ∑k−1

i=1 ‖pi+1 − pi‖ Linear.

∑k
i=1 I(M; pi, zi) · e−λ‖pi−p0‖ Exponential.

(13)
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The Linear method linearly combines information measurements and path cost. The
Exponential method formulates the utility of the next step as a Markov iteration process;
I(M; pi, zi) along the path will be multiplied by an exponential attenuation term decreasing
with increasing distance. Both of them are sensitive to λ, with bigger or smaller λ. The
robot, using Linear, will reverse very frequently. For Exponential, the exploring behavior
becomes very limited to the current region, and more likely to ignore available unknown
space located far away from the current location. The normalized utility calculates average
information on each unit path distance; it has very intuitive physical significance and
avoids the parameter problem.

The I(Mt; pi, zi) is restored in T , the T is maintained and updated constantly. The
P∗ is decided from the current T , see Figure 4. Each node n ∈ T will be traveled and
a candidate path that starts from the current state to the ξn along the segments will be
calculated to judge how information-rich it is. The best path with maximal utility will be the
decided informative path. To realize a receding horizon control, the first segment < p0, p1 >
will be executed; see the blue segment in Figure 4, the green best path corresponds to the
predicted result in a period, and the blue is the motion control input.

Figure 4. Process the planning loops till the termination of the exploration. The green triangle represents
the current state of the robot, while the green lines represent the optimal informative path and the blue
line represents the executive path in one period. The red lines depict the maintained roadmap. The
red and green dots represent the nodes. The white, gray, and black grids represent free, unknown, and
occupied space respectively.

4.5. Continuous Trajectory

Given the raw path P∗, continuous trajectories are required for smooth navigation.
Our UAV trajectory planning is based on a method [18] that generates smooth and dy-
namically feasible trajectories. The trajectory is essentially a high-order polynomial spline,
all parameters of the high-order splines are optimized, so that the total trajectory time is
minimized to enable the quadrotor to fully utilize its dynamic capability.

These high-order splines are generally used for local trajectory generation and have
many advantages, including the ability to specify velocities, accelerations, and lower
derivatives at waypoints, very fast evaluation times, and compact representation of long
and complex trajectories. While a closed-form solution exists to minimize the sum of
squared derivatives of such a spline, the concerned freedom of motion contains four
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degrees ξ = x, y, z, φ; it can be considered as only planned outputs in a reduced space of
differentially flat outputs [43].

5. Experiments

In order to verify the efficacy and efficiency of the proposed method, extensive ex-
periments using the Gazebo simulation engine are conducted, in which the experimental
environment and simulation robot share the same physical properties as that of the real
world [44]. The software system is implemented on ROS Melodic release on top of an
Ubuntu version 18.04LTS operating system, with a laptop with Intel Core i7-12700H CPU
at 2.6 GHz, 32-GB memory.

Exploration is evaluated in an indoor flat environment of size 20× 12× 3 m3 and a
maze scenario of 15× 15× 2 m3(Figure 5). The planner parameters in both environments
are given in (Table 1). The mapping process, exploration completion, and total completion
time are recorded to evaluate the methods.

Table 1. Parameters of the proposed planner.

Maximum segment length lmax 1.2 m
Sensor range dsensor 5 m
Field of View FOV [60, 90]◦

Maximum velocity vmax 1.5 m/s
Maximum acceleration amax 1 m/s2

Maximum yaw velocity φmax 1 rad/s
Exponential parameter λ 0.5
Linear parameter λ 0.4

(a) (b)

Figure 5. Two scenarios in Gazebo, (a) 20× 12× 3 m3 indoor scenario. (b) 15× 15× 2 m3 maze
scenario, the green box depicts the initial position of the UAV.

5.1. Effect of Normalized Utility

We first compare our normalized utility with both the Exponential and Linear in two
scenarios. Except for different formations, all other settings are the same. Every planner
has been run 20 times in two scenarios with the same initial position.
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Exploring processes at three common time points of algorithms are given to show the
dynamic process in indoor exploring (Figure 6). The exploring completion degree curves
are also given in (Figure 7). As Figure 6 shows, at 300 s, the Exponential and Normalized
complete the exploration, but the Linear only completes about 80%. The trajectory is
smooth, but frequent local backtracking appears in the Exponential, especially in the lower
right corner, see Figure 6b, the frequent reversing makes a bottleneck of exploration. In
Figure 7, the area from about 50 s to 150 s reflects the global backtracking, that the robot
travels along a long path without new information. From about 185 s to 230 s reflects the
local backtracking that the robot frequently reverses in a short distance. As for Linear,
it traps at about 80% completion. See Figure 6a where the robot is trapped in repeated
reversing more than 300 s, and always performs a breadth-first behavior. The normalized
method is 12 s faster than the Exponential. The Exponential is faster in the first 60 s, but
falls into the local minimum, the Normalized keeps a high exploring speed till about 75 s,
and starts backtracking to scan the last unknown space in a far distance. The Normalized is
better both in mean and standard deviation of completion, see Figure 7b, the Linear always
fails to complete the exploration so it is not depicted. The exploring completion rate of each
stage is shown more clearly in Figure 8. Obviously, Linear performs at a lower rate in the
whole process. The Exponential falls into a platform period earlier from 65 s to 150 s, and
the corresponding percentage completed is nearly equal to zero. Although the Normalized
falls into the platform period later, it performs similarly to the Exponential.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. Exploration in indoor scenario, the three utility formations are compared, the color of the
grid changes from blue to red as the height increases. (a) Exploartion using linear utility. (b) Exploar-
tion using exponential utility. (c) Exploartion using normalized utility.
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Figure 7. Algorithm comparsion in indoor scenario. (a) Exploring completion degree curve. (b) Total
completion time.
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Figure 8. The increment of completion percent for three algorithms in the indoor scenario.

The proposed Normalized method is more efficient because it is not easy to get
stuck in the local minimum, the Exponential always focuses on the local area and fails to
detect tasks far away, and the Linear prefers a breadth-first search and may fail a local
reverse. When exploring, some voxels are unknown and counted in a utility calculation
but cannot be scanned as occlusion, imperfect perception of the depth sensor, or failure of
map update. Especially, the occlusion will cause the local reverse, the voxels that cannot
be updated immediately make some corresponding viewpoints maintain valuable for
information measurements.
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The maze is explored with the same configuration. It is more challenging due to the
narrow corridors, closed dead corners, and looping space. The same experimental method
is carried out and the same key data are recorded. The Normalized performs better in this
scenario. As Figure 9 shows, both the Linear and Exponential fail to complete the scanning
of the whole maze when the Normalized finished. The Linear performs breadth-first
search behavior and frequently backtracks through the maze. The Exponential falls into
the local minimum in the narrow gap in the lower left corner of the map; see Figure 9b.
Repeated wandering corresponds to the exploring bottleneck that lasted for a long time;
see Figure 10a, the red curve from about 185 s to 230 s. Not surprisingly, the Exponential is
the fastest at the beginning until 150 s, while the Normalized maintains a persistently high
rate until 200 s, and completes it about 90 s ahead of the Exponential. It can be seen clearly
in Figure 11.

The maze is more challenging, and the algorithm that focuses on local scanning may
fall into the local minimum and waste time. As Figure 10b shows, the minimum completion
time difference between Normalized and Exponential is small (about 15 s); but on the
whole, its standard deviation and mean are bigger, and the performance gap is larger than
in the indoor scenario.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. Exploration in maze scenario, the three utility formations are compared, the color of the grid
changes from blue to red as the height increases. (a) Exploartion using linear utility. (b) Exploartion
using exponential utility. (c) Exploartion using normalized utility.
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Figure 10. Algorithm comparison in maze scenario. (a) Exploring completion degree curve. (b) Total
completion time.
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Figure 11. The increment of completion percentage for three algorithms in the maze scenario.

5.2. Viewpoint Evaluation

To validate the efficiency of the proposed viewpoint-information-richness-evaluation
method, the frontier-based evaluation method [13] is compared in the above two different
simulation environments. The frontiers in the FOV are counted for evaluating the viewpoint.
All comparative experiments use the Normalized method for path utility calculation. Except
that the evaluation process is different, the other configuration is the same.
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Table 2. Comparison of evaluation method.

Indoor Maze

Method Evaluation (ms) Total (s) Trajectory (m) Evaluation (ms) Total (s) Trajectory (m)

Frontiers [13] 0.8± 0.2 280.2± 30.3 120.2± 21.9 0.5± 0.1 330.3± 42.1 149.8± 31.5
Information 3.1± 2.7 220.5± 21.8 115.1± 20.2 2.1± 1.7 225.8± 35.2 127.2± 20.6

The results are shown in Table 2. The frontier calculation in a limited FOV consumes
less than the information uncertainty calculation. In the above two scenarios, the evaluation
computation time of a viewpoint is less than 1 ms, while the information uncertainty
computation time is about 1 ∼ 5 ms. However, the exploration using frontier to guide
consumes more. In the indoor scenario, the total time is 280.2± 30.3 s for frontier, and it
only consumes 220.5± 21.8 s for ours. In the maze scenario, the total time is 330.3± 42.1 s,
and it only consumes 225.8± 35.2 s for ours.

Our information-based navigation is better than the frontier-based method in overall
efficiency, although it costs more time in one evaluation. Actually, the inefficient navigation
to the unknown-less space is more time-expensive. Figure 12 shows the process of exploring
using frontier and our information. Especially, the difference in the maze is quite obvious.
Using frontier as a judgment of unknown space cannot guarantee the information content
around the goal state; it navigates the robot to a local minimum sometimes due to the
rarefied information content around the goal. As Figure 12a shows, from about 100 s to
210 s, the exploring rate suddenly descends compared with the rate before 100 s. Also,
in the maze, as Figure 12b shows, the robot falls into a stage of low efficiency from 100 s
to 210 s. The information uncertainty calculation in FOV guides the robot to a space that
is unknown-rich. This guarantees efficiency in exploring, and this advantage is more
prominent in the maze. A suboptimal decision is more likely to be determined in this
challenging scenario, especially, when a frontier evaluation method is used.
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Figure 12. Algorithm comparison in maze scenario. (a) Exploring completion degree curve. (b) Total
completion time.

6. Conclusions

In this paper, a novel informative path-planning method is proposed to realize the
unknown exploration. To validate the efficiency of the proposed method and the system,
extensive experiments were conducted. The proposed solution uses an RRT based method
to incrementally build and maintain a topological road map and evaluates the path by
normalized utility considering the information-richness and the traveling cost, which
improves the exploring efficiency in general. The road map efficiently provides us with
an initial raw path for receding horizon control. Overall, the proposed method performs
better than other common approaches.

In the future, it is suggested that the utility of the coverage of candidate nodes should
be considered, as a path that guarantees a certain coverage guides the robot to visit more
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valuable nodes at once, and so may reduce the backtracks in the later stage of exploration.
The information-driven method should be improved by considering the probabilistic corre-
lation, which may enhance efficiency and decreases the time consumption of evaluation.
The frontier-based method should be considered to ensure coverage in the later stage.
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5. Petráček, P.; Krátkỳ, V.; Petrlík, M.; Báča, T.; Kratochvíl, R.; Saska, M. Large-scale exploration of cave environments by unmanned

aerial vehicles. IEEE Robot. Autom. Lett. 2021, 6, 7596–7603. [CrossRef]
6. Tabib, W.; Goel, K.; Yao, J.; Boirum, C.; Michael, N. Autonomous cave surveying with an aerial robot. IEEE Trans. Robot. 2021,

38, 1016–1032. [CrossRef]
7. Kompis, Y.; Bartolomei, L.; Mascaro, R.; Teixeira, L.; Chli, M. Informed sampling exploration path planner for 3d reconstruction

of large scenes. IEEE Robot. Autom. Lett. 2021, 6, 7893–7900. [CrossRef]
8. Cieslewski, T.; Kaufmann, E.; Scaramuzza, D. Rapid exploration with multi-rotors: A frontier selection method for high speed

flight. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
Canada, 24–28 September 2017; pp. 2135–2142.

9. Lee, E.M.; Choi, J.; Lim, H.; Myung, H. REAL: Rapid Exploration with Active Loop-Closing toward Large-Scale 3D Mapping
using UAVs. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September–1 October 2021; pp. 4194–4198.

10. Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding horizon path planning for 3D exploration and surface
inspection. Auton. Robot. 2018, 42, 291–306. [CrossRef]

11. Respall, V.M.; Devitt, D.; Fedorenko, R.; Klimchik, A. Fast sampling-based next-best-view exploration algorithm for a MAV. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May 2021–5 June
2021; pp. 89–95.

12. Papachristos, C.; Mascarich, F.; Khattak, S.; Dang, T.; Alexis, K. Localization uncertainty-aware autonomous exploration and
mapping with aerial robots using receding horizon path-planning. Auton. Robot. 2019, 43, 2131–2161. [CrossRef]

13. Schmid, L.; Reijgwart, V.; Ott, L.; Nieto, J.; Siegwart, R.; Cadena, C. A Unified Approach for Autonomous Volumetric Exploration
of Large Scale Environments Under Severe Odometry Drift. IEEE Robot. Autom. Lett. 2021, 6, 4504–4511. [CrossRef]

14. Brunel, A.; Bourki, A.; Demonceaux, C.; Strauss, O. Splatplanner: Efficient autonomous exploration via permutohedral frontier
filtering. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May
2021–5 June 2021; pp. 608–615.

15. Wang, C.; Ma, H.; Chen, W.; Liu, L.; Meng, M.Q.H. Efficient autonomous exploration with incrementally built topological map in
3-D environments. IEEE Trans. Instrum. Meas. 2020, 69, 9853–9865. [CrossRef]

16. Gao, W.; Booker, M.; Adiwahono, A.; Yuan, M.; Wang, J.; Yun, Y.W. An improved frontier-based approach for autonomous
exploration. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV),
Singapore, 18–21 November 2018; pp. 292–297.

17. Charrow, B.; Kahn, G.; Patil, S.; Liu, S.; Goldberg, K.; Abbeel, P.; Michael, N.; Kumar, V. Information-Theoretic Planning with
Trajectory Optimization for Dense 3D Mapping. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July
2015; Volume 11, pp. 3–12.

http://doi.org/10.1109/TASE.2019.2914113
http://dx.doi.org/10.1016/j.ins.2018.04.044
http://dx.doi.org/10.1109/LRA.2021.3074883
http://dx.doi.org/10.3390/s22145217
http://dx.doi.org/10.1109/LRA.2021.3098304
http://dx.doi.org/10.1109/TRO.2021.3104459
http://dx.doi.org/10.1109/LRA.2021.3101856
http://dx.doi.org/10.1007/s10514-016-9610-0
http://dx.doi.org/10.1007/s10514-019-09864-1
http://dx.doi.org/10.1109/LRA.2021.3068954
http://dx.doi.org/10.1109/TIM.2020.3001816


Sensors 2022, 22, 8429 16 of 17

18. Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In
Robotics Research; Springer: Berlin/Heidelberg, Germany, 2016; pp. 649–666.

19. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

20. Zhou, B.; Zhang, Y.; Chen, X.; Shen, S. FUEL: Fast UAV Exploration Using Incremental Frontier Structure and Hierarchical
Planning. IEEE Robot. Autom. Lett. 2021, 6, 779–786. [CrossRef]

21. Lu, L.; Redondo, C.; Campoy, P. Optimal frontier-based autonomous exploration in unconstructed environment using RGB-D
sensor. Sensors 2020, 20, 6507. [CrossRef] [PubMed]

22. Dai, A.; Papatheodorou, S.; Funk, N.; Tzoumanikas, D.; Leutenegger, S. Fast frontier-based information-driven autonomous
exploration with an mav. In Proceedings of the 2020 IEEE international conference on robotics and automation (ICRA), Paris,
France, 31 May 2020–31 August 2020; pp. 9570–9576.

23. Williams, J.; Jiang, S.; O’Brien, M.; Wagner, G.; Hernandez, E.; Cox, M.; Pitt, A.; Arkin, R.; Hudson, N. Online 3D frontier-based
UGV and UAV exploration using direct point cloud visibility. In Proceedings of the 2020 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 14–16 September 2020; pp. 263–270.

24. Lindqvist, B.; Agha-Mohammadi, A.A.; Nikolakopoulos, G. Exploration-RRT: A multi-objective Path Planning and Exploration
Framework for Unknown and Unstructured Environments. In Proceedings of the 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September 2021–1 October 2021; pp. 3429–3435.

25. Xu, J.; Park, K.S. A real-time path planning algorithm for cable-driven parallel robots in dynamic environment based on artificial
potential guided RRT. Microsyst. Technol. 2020, 26, 3533–3546. [CrossRef]

26. Oleynikova, H.; Taylor, Z.; Siegwart, R.; Nieto, J. Safe local exploration for replanning in cluttered unknown environments for
microaerial vehicles. IEEE Robot. Autom. Lett. 2018, 3, 1474–1481. [CrossRef]

27. Selin, M.; Tiger, M.; Duberg, D.; Heintz, F.; Jensfelt, P. Efficient autonomous exploration planning of large-scale 3-d environments.
IEEE Robot. Autom. Lett. 2019, 4, 1699–1706. [CrossRef]

28. Pérez-Higueras, N.; Jardón, A.; Rodríguez, Á.; Balaguer, C. 3D exploration and navigation with optimal-RRT planners for ground
robots in indoor incidents. Sensors 2019, 20, 220. [CrossRef]

29. Tian, Z.; Guo, C.; Liu, Y.; Chen, J. An improved RRT robot autonomous exploration and SLAM construction method. In
Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China,
19–20 September 2020; pp. 612–619.

30. Lau, B.P.L.; Ong, B.J.Y.; Loh, L.K.Y.; Liu, R.; Yuen, C.; Soh, G.S.; Tan, U.X. Multi-AGV’s Temporal Memory-Based RRT Exploration
in Unknown Environment. IEEE Robot. Autom. Lett. 2022, 7, 9256–9263. [CrossRef]

31. Wu, C.Y.; Lin, H.Y. Autonomous mobile robot exploration in unknown indoor environments based on rapidly-exploring random
tree. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15
February 2019; pp. 1345–1350.

32. Xu, Z.; Deng, D.; Shimada, K. Autonomous UAV Exploration of Dynamic Environments Via Incremental Sampling and
Probabilistic Roadmap. IEEE Robot. Autom. Lett. 2021, 6, 2729–2736. [CrossRef]

33. Wang, C.; Chi, W.; Sun, Y.; Meng, M.Q.H. Autonomous Robotic Exploration by Incremental Road Map Construction. IEEE Trans.
Autom. Sci. Eng. 2019, 16, 1720–1731. [CrossRef]

34. Hardouin, G.; Morbidi, F.; Moras, J.; Marzat, J.; Mouaddib, E.M. Surface-driven Next-Best-View planning for exploration of
large-scale 3D environments. IFAC-PapersOnLine 2020, 53, 15501–15507. [CrossRef]

35. Yoder, L.; Scherer, S. Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In Field and Service Robotics;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 427–440.

36. Corah, M.; O’Meadhra, C.; Goel, K.; Michael, N. Communication-efficient planning and mapping for multi-robot exploration in
large environments. IEEE Robot. Autom. Lett. 2019, 4, 1715–1721. [CrossRef]

37. Schmid, L.; Pantic, M.; Khanna, R.; Ott, L.; Siegwart, R.; Nieto, J. An efficient sampling-based method for online informative path
planning in unknown environments. IEEE Robot. Autom. Lett. 2020, 5, 1500–1507. [CrossRef]

38. Tabib, W.; Goel, K.; Yao, J.; Dabhi, M.; Boirum, C.; Michael, N. Real-Time Information-Theoretic Exploration with Gaussian
Mixture Model Maps. In Proceedings of the Robotics: Science and Systems, Breisgau, Germany, 22–26 June 2019; pp. 1–9.

39. Saulnier, K.; Atanasov, N.; Pappas, G.J.; Kumar, V. Information theoretic active exploration in signed distance fields. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May 2020–31
August 2020; pp. 4080–4085.

40. Song, S.; Jo, S. Surface-based exploration for autonomous 3d modeling. In Proceedings of the 2018 IEEE International Conference
on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 4319–4326.

41. Budd, M.; Lacerda, B.; Duckworth, P.; West, A.; Lennox, B.; Hawes, N. Markov decision processes with unknown state feature
values for safe exploration using gaussian processes. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 7344–7350.
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