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Abstract: Brain structural morphology varies over the aging trajectory, and the prediction of a
person’s age using brain morphological features can help the detection of an abnormal aging process.
Neuroimaging-based brain age is widely used to quantify an individual’s brain health as deviation
from a normative brain aging trajectory. Machine learning approaches are expanding the potential
for accurate brain age prediction but are challenging due to the great variety of machine learning
algorithms. Here, we aimed to compare the performance of the machine learning models used to
estimate brain age using brain morphological measures derived from structural magnetic resonance
imaging scans. We evaluated 27 machine learning models, applied to three independent datasets
from the Human Connectome Project (HCP, n = 1113, age range 22–37), the Cambridge Centre for
Ageing and Neuroscience (Cam-CAN, n = 601, age range 18–88), and the Information eXtraction
from Images (IXI, n = 567, age range 19–86). Performance was assessed within each sample using
cross-validation and an unseen test set. The models achieved mean absolute errors of 2.75–3.12,
7.08–10.50, and 8.04–9.86 years, as well as Pearson’s correlation coefficients of 0.11–0.42, 0.64–0.85,
and 0.63–0.79 between predicted brain age and chronological age for the HCP, Cam-CAN, and IXI
samples, respectively. We found a substantial difference in performance between models trained
on the same data type, indicating that the choice of model yields considerable variation in brain-
predicted age. Furthermore, in three datasets, regularized linear regression algorithms achieved
similar performance to nonlinear and ensemble algorithms. Our results suggest that regularized
linear algorithms are as effective as nonlinear and ensemble algorithms for brain age prediction,
while significantly reducing computational costs. Our findings can serve as a starting point and
quantitative reference for future efforts at improving brain age prediction using machine learning
models applied to brain morphometric data.

Keywords: brain age prediction; structural magnetic resonance imaging; machine learning; brain
morphometry

1. Introduction

Neuroimaging-based brain age is widely used as a biomarker to quantify the progress
of brain diseases and aging [1]. The biological age of the brain (“brain age”) is estimated
typically by applying a machine learning approach to magnetic resonance imaging (MRI)
data to predict chronological age. The difference between an individual’s predicted brain
age and actual chronological age is referred to here as brain-predicted age difference
(brainPAD) [2,3], which is also known as brain age gap [4,5] or brain age delta [6]. This
metric reflects the deviation from expected age trajectories and is often used to index brain
health [1]. A positive brainPAD indicates that an individual’s brain age is higher than
their actual age, which is referred to as accelerated aging [5]. A negative brainPAD reflects
a lower brain-predicted age, referred to as delayed aging [5]. This empirical measure
of brainPAD derived from the general population has proven to be a useful marker of
neurodegeneration and cognitive decline in clinical populations [7–10]. Elevated brain
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age relative to chronological age has been associated with lower cognitive capacity, well-
being and general health [11], adverse physical [8], and mental health phenotypes [2,12].
Collectively, these studies provide evidence to support the use of brain-predicted age as a
biomarker for brain health.

A number of machine learning studies have been conducted to predict brain age, most
commonly based on structural MRI data [2,13–16]. Brain morphological features extracted
from structural MRI scans have been widely used, since they allow the morphological age-
related brain changes to be examined in a great variety of disorders and conditions [17–21].
The literature shows great variability in methods, including the choice of machine learning
algorithms and their parameters, sample size, sample composition, and the type of input
features [5,13]. Many different machine learning approaches exist for brain age prediction.
Typically, a single machine learning algorithm, such as Support Vector Regression (SVR),
Relevance Vector Regression (RVR), and Gaussian Process Regression (GPR), has been
commonly used for brain age prediction [8,14,15,22,23]. Previous studies have compared
different machine learning models applied to the same data [2,14–16]. However, there is a
significant gap regarding the accuracy of various machine learning algorithms in brain age
prediction, and comparative performance of different machine learning algorithms has not
been comprehensively evaluated.

Here, we focus exclusively on the evaluation of various machine learning algorithms
used to predict brain age using brain morphological features derived from structural MRI
data. To this end, we used publicly available samples of healthy individuals from the
Human Connectome Project (HCP), the Cambridge Centre for Ageing and Neuroscience
(Cam-CAN), and the Information eXtraction from Images (IXI). Three independent datasets
were used to test the robustness of the results to sample composition. We evaluated
27 machine learning algorithms applied to the same morphometric data and then assessed
their performance in a hold-out test set within each sample. The algorithms tested included
parametric and nonparametric, linear and nonlinear, and Bayesian, kernel-based and tree-
based models. This study aims at providing a guide for choosing the appropriate machine
learning models when predicting brain age based on brain morphometric data, due to its
enormous benefits in age-related disorders.

2. Materials and Methods
2.1. Datasets

Three independent datasets were considered: the Human Connectome Project (HCP)
S1200 release (n = 1113, 606 females, age range 22–37 years) [24], the Cambridge Centre for
Ageing and Neuroscience (Cam-CAN) (n = 601, 302 females, age range 18–88 years) [25], and
the Information eXtraction from Images (IXI) (n = 567, 316 females, age range 19–86 years)
(https://brain-development.org, accessed on 1 September 2020). All individuals were
screened according to local study protocols to ensure they had no history of neurological,
psychiatric, or major medical conditions. T1-weighted MRI scans were acquired at 1.5T
or 3T scanners with standard T1-weighted MRI sequences. Details about the acquisition
protocol and pipelines are described elsewhere for HCP [26], Cam-CAN [25], and IXI
(https://brain-development.org, accessed on 1 September 2020). We used deidentified
data from publicly available repositories. Ethical approvals and informed consents were
obtained locally for each study, covering both participation and subsequent data sharing.

2.2. Image Processing and Feature Extraction

Structural T1-weighted images were processed as described previously [2]. The same
preprocessing pipeline was applied in the three datasets to extract brain morphometric
measures using FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu, accessed on 1 Septem-
ber 2020). Briefly, the cortical surface for each participant was reconstructed from their
T1-weighted image by the following steps: skull stripping, segmentation of cortical gray
and white matter, separation of the two hemispheres and subcortical structures, and con-
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struction of smooth representation of the gray/white matter boundary and the pial surface.
Further technical details about the pipeline were described elsewhere [27,28].

Consistent with our previous study [2], the features were derived using the Desikan-
Killiany cortical atlas [29], including global and region-specific measures of cortical thick-
ness and surface area, in addition to the classic set of subcortical volume parcellation and
summary statistics based on the automatic segmentation in FreeSurfer (Supplementary
Figure S1). We chose to use the Desikan-Killiany parcellation as it is amongst the most
widely used atlases in neuroimaging studies [30]. In each participant’s dataset, this pro-
cedure generated measures of total intracranial volume (ICV) and regional measures of
cortical thickness (n = 68), surface area (n = 68), and subcortical volumes (n = 16) (for the
complete list, see Supplementary Table S1). A feature matrix consisting of brain morpho-
logical measures (cortical thickness, surface area, subcortical volume, and total intracranial
volume) was used for brain age prediction.

2.3. Machine Learning Algorithms

Brain age prediction was conducted using the Python machine learning framework
PyCaret, which is an open-source, low-code machine learning library that automates
machine learning workflow [31]. The PyCaret library was chosen because it requires
significantly fewer lines of code to run various machine learning models and forms a
pipeline consisting of all necessary blocks of functions or modules that can simplify the
model training process. We employed 27 machine learning algorithms as described below.

2.3.1. Parametric Algorithms
Linear Models

• Linear Regression (LR) [15,32]: this is an approach to fit a linear model by minimizing
the residual sum of squares between the observed value and the value predicted by
the ordinary least squares regression model.

• Least Absolute Shrinkage and Selection Operator (Lasso) Regression [2,33]: this is a
linear algorithm that minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a constant. This algorithm tends to
produce some coefficients that are exactly zero.

• Ridge Regression [2,15,32]: this is a model tuning approach that is used to analyze
the data that suffer from multi-collinearity. This method uses L2-norm regularization.
When the issue of multi-collinearity occurs, least squares are unbiased and variance is
significant. This algorithm shrinks the coefficients and it helps to reduce the model
complexity and multi-collinearity.

• Elastic Net Regression [2,34]: this is a regularized linear regression model that com-
bines both the L1 and L2 penalty functions. This algorithm performs variable selection
and regularization simultaneously. This method is most appropriate where the num-
ber of features is greater than the number of samples. This allows the number of
selected features to be larger than the sample size while achieving a sparse model.

• Least Angle Regression (LAR) [35]: this algorithm is similar to forward stepwise
regression. It finds a variable that is most highly correlated with the target. When
we have multiple variables having the same correlation, it extends in a direction
that is equiangular (has the same angle) to the variables. It can compute the entire
regularization path for approximately the same computational cost as a single least-
squares fit.

• Lasso Least Angle Regression (Lasso LAR) [35]: this algorithm computes the Lasso
path along the regularization using the Least Angle Regression algorithm. The Lasso
parameters are solved using the Least Angle Regression algorithm, which yields
piecewise linear solution paths as a function of the norm of its coefficients.

• Orthogonal Matching Pursuit (OMP) [36]: this algorithm starts the search by finding
a column with maximum correlation with measurements at the first step, and then,
at each iteration, it searches for the column with maximum correlation with current
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residual. The residuals after each step are orthogonal to all the selected columns.
This algorithm is iteratively updated till a stopping criterion is met or the number of
iterations passes a limit.

• Bayesian Ridge Regression [37]: this algorithm allows a natural mechanism to survive
insufficient data or poorly distributed data by formulating linear regression using
probability distributions rather than point estimates. It makes use of conjugate priors
for the precision of the Gaussian and, because of that, is restricted to use gamma prior,
which requires four hyperparameters chosen arbitrarily to be small values. It also
requires initial values for parameters and alpha and lambda that are then updated
from the data.

• Automatic Relevance Determination (ARD) [32]: this algorithm is very similar to
the Bayesian Ridge Regression, but ARD makes the coefficients sparser. This is also
known as sparse Bayesian learning and Relevance Vector Machine that ranks input
variables in the order of their importance on predicting the output. It uses a parame-
terized, data-dependent prior distribution that effectively prunes away redundant or
superfluous features.

• Passive Aggressive Regression (PAR) [38]: this algorithm is generally used for large-
scale learning. It is one of the few online-learning algorithms. In online learning, the
input data come in sequential order and the machine learning model is updated step
by step, where the entire training dataset is used at once. This is suitable in situations
where there is a large amount of data and it is computationally infeasible to train
the entire dataset because of the sheer size of the data. If the prediction is correct,
the model is kept and no changes are made (passive). If the prediction is incorrect,
changes are made to the model (aggressive).

• Random Sample Consensus (RANSAC) [39]: this is an iterative method that is used to
estimate parameters of a model from a set of data containing outliers. This algorithm
assumes that all of the data consist of inliers and outliers. Inliers can be explained by a
model with a particular set of parameter values, while outliers do not fit that model in
any circumstance. This model can optimally estimate the parameters of the chosen
model from the determined inliers.

• Huber Regression [40]: this is a regression method that is robust to outlier. It uses the
Huber loss function rather than the least squares error. This function is identical to the
least squares penalty for small residuals but, on large residuals, its penalty is lower
and increases linearly rather than quadratically. It is, thus, more forgiving of outliers.

Nonlinear Model

• Multi-layer Perceptron (MLP) Regression [41]: this is an artificial neural network that
has three or more layers of perceptrons. These layers are a single input layer, one
or more hidden layers, and a single output layer of perceptrons. This has multiple
layers of neurons with an activation function and a threshold value. Backpropagation
is a technique where the multi-layer perceptron receives feedback on the error in its
results and the MLP adjusts its weights accordingly to make more accurate prediction
in the future.

2.3.2. Nonparametric Algorithms
Linear Models

• Relevance Vector Regression (RVR) [2,14,16,22,42]: this is a Bayesian framework for
learning sparse regression models. RVR has an identical functional form to SVR, but
the Bayesian formulation of the RVR avoids the set of free parameters of the SVR. The
sparsity of the RVR is induced by the hyperpriors on model parameters in a Bayesian
framework, with the maximum a posteriori (MAP) principle. The behavior of the RVR
is controlled by the type of kernel, which has to be selected, while all other parameters
are automatically estimated by the learning procedure itself.
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• Theil–Sen Regression [43]: this algorithm is a nonparametric method that determines
the slope of the regression line via the median of the slopes of all lines that can be
drawn through the data points. Alternative to least squares for simple linear regression,
it uses a generalization of the median in multiple dimensions and is, thus, robust to
multivariate outliers.

Nonlinear Models

• Support Vector Regression (SVR) [14–16,23,44]: this is characterized by the use of
kernels, sparsity, control of the margin of tolerance (epsilon, ε), and the number of
support vectors. SVR supports both linear and nonlinear regression. A kernel helps us
find a hyperplane in the higher dimensional space without increasing the computation
cost. This algorithm constructs a hyperplane or a set of hyperplanes in a high or even
infinite dimensional space. There are two lines that are drawn around the hyperplane
at a distance of ε, which is used to create a margin between the data points. It identifies
a symmetrical ε-insensitive region (ε-tube). We can choose any kernel, such as sigmoid
kernel, polynomial kernel, and radial basis function kernel. A linear kernel was chosen
for SVR.

• Gaussian Processes Regression (GPR) [8,16,45]: this is a nonparametric kernel-based
probabilistic approach. GPR model can make predictions incorporating prior knowl-
edge (kernels) and provide uncertainty measures over predictions. The Gaussian
processes conduct regression by defining a distribution over an infinite number of
functions.

• Kernel Ridge Regression (KRR) [32]: this algorithm combines Ridge Regression with
the kernel trick. It uses squared error loss, whereas Support Vector Regression uses
ε-insensitive loss, both combined with L2 regularization. A polynomial kernel was
chosen for KRR.

• K-Nearest Neighbors (kNN) Regression [15,46]: this algorithm uses feature similarity
to predict the values of any new data points, which means that the new point is
assigned a value based on how closely it resembles the points in the training set. This
method uses Euclidean distance to find the nearest neighbors to an object. The closest
“k” data points are selected based on the distance. The average value of these data
points is the final prediction for the new point.

Ensemble Models

• Decision Tree (DT) Regression [41]: this is a decision-making algorithm that uses a
flowchart-like tree structure. This algorithm observes features of an object that train a
model in the structure of a tree to predict data in the future to produce meaningful
continuous output. Starting from a root node, it builds a decision tree with decision
nodes and leaf nodes, which employs a top-down, greedy search through the space
of possible branches with no backtracking. A decision tree is built top-down from a
root node and involves partitioning the data into subsets that contain instances with
similar values.

• Random Forest (RF) Regression [15,47]: this is a supervised learning algorithm that
uses ensemble learning method for regression. It operates by constructing multiple
decision trees during training time and determining the final output rather than relying
on individual decision trees. Each tree is constructed by bootstrapping that performs
row sampling and features a sample from the dataset. The final output is the mean of
all the outputs (aggregation).

• Extra Trees (ET) Regression [48]: this is an ensemble machine learning algorithm that
combines the predictions from many decision trees. It is similar to other methods,
such as decision trees and random forests, but it uses extra information about the data
to improve predictive accuracy. This method aggregates the results of multiple decor-
related decision trees collected in a forest to output. Random forests use bootstrapping
that subsamples the input data with replacement, whereas extra trees use the entire
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original dataset. In terms of the selection of cut-points to split nodes, random forests
choose the optimum split, while extra trees choose it randomly.

• Adaptive Boosting (AdaBoost) Regression [49,50]: this algorithm involves using very
short (one-level) decision trees as weak learners that are added sequentially to the
ensemble. This is a boosting ensemble algorithm where models are added sequentially
and later models in the sequence correct the predictions made by earlier models in
the sequence.

• Multi-layer Perceptron (MLP) Regression [41]: this is an artificial neural network that
has three or more layers of perceptrons. These layers are a single input layer, one
or more hidden layers, and a single output layer of perceptrons. This has multiple
layers of neurons with an activation function and a threshold value. Backpropagation
is a technique where the multi-layer perceptron receives feedback on the error in its
results and the MLP adjusts its weights accordingly to make more accurate prediction
in the future.

• Gradient Boosting Machine (GBM) [51]: this is an ensemble algorithm that fits boosted
decision trees by minimizing an error gradient. Models are fit using any arbitrary
differentiable loss function and gradient descent optimization algorithm. The general
concept of gradient boosting and adaptive boosting is essentially the same: they are
both ensemble models boosting (stacking) trees on top of each other based on the
model mistakes. The main difference is that, in gradient boosting, each new weak
learner is stacked directly on the model’s current errors rather than on a weighted
version of the initial training set.

• Extreme Gradient Boosting (XGBoost) [52]: this is an optimized distributed gradient
boosting algorithm designed to be highly efficient, flexible, and portable. Both XGBoost
and gradient bosting algorithm are ensemble tree methods that apply the principle of
boosting weak learners using the gradient descent architecture. However, XGBoost
improves upon the base gradient boosting framework through systems optimization
and algorithmic enhancements.

• Light Gradient Boosting Machine (LightGBM) [53]: this extends the gradient boosting
algorithm by adding a type of automatic feature selection and focusing on boosting
examples with large gradients. It is based on decision trees to increase the efficiency of
the model and reduces memory usage using gradient-based one side sampling (GOSS)
and exclusive feature bundling (EFB), which fulfills the limitations of a histogram-
based algorithm.

• Category Boosting (CatBoost) Regression [54]: this algorithm is another member of
the gradient boosting technique on decision trees. CatBoost provides an inventive
method for processing categorical features, based on target encoding. This method,
named ordered target statistics, tries to solve a common issue that arises when using
such a target encoding, which is target leakage. It uses oblivious decision trees, where
the same splitting criterion is used across an entire level of the tree. Such trees are
balanced, less prone to overfitting, and allow speeding up prediction significantly at
testing time.

2.4. Brain Age Prediction Framework

We applied 27 machine learning algorithms separately to each sample (HCP, Cam-
CAN, and IXI) using identical procedures. Each of the samples was divided into a training
set (80%) and a test set (20%) by a conditionally random method, such that the distributions
of age and sex in the two sets were statistically identical. Details about sample and
demographic information for the three samples are provided in Supplementary Table
S3. Prior to building a model, each morphological measure was standardized so that the
data have a mean of zero and a standard deviation of one. For each algorithm, we tuned
hyperparameters using 10-fold cross-validation to learn the model parameters and evaluate
the model. Each algorithm was trained using grid search to find the best parameters
that give the highest accuracy. The performance of each algorithm was quantified by the
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Pearson’s correlation coefficient (r) and mean absolute error (MAE) between predicted brain
age and chronological age [6]. We also reported weighted MAE for comparison between
studies with different sample age ranges. We divided the MAE value by the age range of the
hold-out test set to calculate the weighted MAE value [13]. Finally, computational efficiency
for each algorithm was assessed by recording the total computational time to train the
model via 10-fold cross-validation on the training data. All models were implemented in
Python and trained on a machine with AMD Ryzen 9 5900X CPU and 32 GB RAM.

2.5. Age-Bias Correction

BrainPAD was computed for each algorithm by subtracting the chronological age
of each individual from their brain age predicted by that algorithm. BrainPAD is often
overestimated in younger individuals and underestimated in older individuals due to
general statistical features of the regression analysis [55]. To account for age bias, we
used an approach introduced by de Lange and colleagues [6]. A correction procedure
was applied by using Y = αΩ + β, where Y is the modeled predicted age as a function
of chronological age (Ω), and α and β denote the slope and intercept, respectively. The
α and β coefficients form a linear fit and were used to correct predicted brain age with
“corrected predicted brain age” = “predicted brain age” + [Ω − (αΩ + β)]. A bias-free
brainPAD was then calculated as “corrected brainPAD” = “corrected predicted brain age”
− “chronological age”.

2.6. Comparative Evaluation of the Algorithms

We performed comparative evaluation of the algorithms within each sample, sepa-
rately (i.e., HCP, Cam-CAN, and IXI) based on the within-sample similarity in predicted
brain age using the Pearson’s correlation analyses and hierarchical clustering with Ward’s
minimum variance methods for Euclidian distances [2]. The statistical comparison of
algorithms was performed by an analysis of variance (ANOVA) test followed by post hoc
analyses using Tukey’s honestly significant difference at a significance level of 5%.

2.7. Feature Importance

To identify the contribution of individual morphological features to brain age predic-
tion, we chose three different model types of models with high accuracy (one for linear
model, one for nonlinear model, and one for ensemble model). For each of the three best
performing algorithms, we employed kernel Shapley additive explanation (SHAP) [56] to
examine regional morphological features that contribute to model prediction error (or brain-
PAD). For each sample, we estimated the SHAP values to identify important features in the
three selected models separately. The sum of SHAP values across all features is equal to the
difference between the predicted output and the expected model output from the entire
training data. Here, we defined the baseline set using 10 nearest neighbors in the training
sample to compute age-specific feature importance values for each test subject [57]. This
resulted in a “model error explanation” matrix with size of subject × feature, where each
column represents the importance of a given regional feature to an individual’s brainPAD,
relative to the age-matched training samples, and each row reflects an individual’s feature
importance. The sum of all SHAP values across features corresponds to the individual’s
model prediction error or brainPAD.

3. Results
3.1. Algorithm Performance for Brain Age Prediction

The performance for each of the 27 algorithms in the HCP, Cam-CAN, and IXI samples
are shown in Tables 1–3 for the training sets (model performance) and the hold-out test
sets (prediction performance). The prediction accuracy varied by regression algorithms.
Correlations between chronological age and predicted brain age across 27 algorithms for
each of the three samples are provided in detail in Supplementary Figures S2–S4.
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Table 1. Algorithm performance based on the structural features from the HCP individuals entered
in the model for model performance in the training data (n = 890) and prediction performance in the
hold-out test data (n = 223).

Algorithm
Model Performance Prediction Performance

r MAE Weighted MAE r MAE Weighted MAE

Lasso 0.4921 2.6444 0.1763 0.4258 2.7565 0.1838

Lasso LAR 0.4921 2.6444 0.1763 0.4258 2.7565 0.1838

SVR 0.4515 2.6981 0.1799 0.4268 2.7756 0.1850

LAR 0.4723 2.6933 0.1796 0.4124 2.7896 0.1860

Elastic Net 0.4714 2.6737 0.1782 0.4199 2.7919 0.1861

Bayesian Ridge 0.4712 2.6745 0.1783 0.4182 2.7927 0.1862

Ridge 0.4698 2.6797 0.1786 0.4255 2.7941 0.1863

ARD 0.4973 2.6373 0.1758 0.3991 2.8251 0.1883

Random Forest 0.4245 2.7785 0.1852 0.4131 2.8304 0.1887

PAR 0.4563 2.7231 0.1815 0.4010 2.8322 0.1888

CatBoost 0.4282 2.7631 0.1842 0.4069 2.8328 0.1889

RVR 0.4498 2.7148 0.1810 0.4021 2.8371 0.1891

LightGBM 0.4273 2.7457 0.1830 0.4016 2.8418 0.1895

GBM 0.4458 2.7149 0.1810 0.4000 2.8437 0.1896

kNN 0.3768 2.8367 0.1891 0.3801 2.8591 0.1906

AdaBoost 0.3982 2.8003 0.1867 0.4188 2.8595 0.1906

Extra Trees 0.4224 2.7738 0.1849 0.4197 2.8674 0.1912

XGBoost 0.4201 2.7726 0.1848 0.3859 2.8771 0.1918

Kernel Ridge 0.4417 2.7495 0.1833 0.3878 2.8775 0.1918

GPR 0.4735 2.7199 0.1813 0.3689 2.9420 0.1961

MLP 0.4744 2.7216 0.1814 0.3675 2.9450 0.1963

OMP 0.4790 2.6927 0.1795 0.3590 2.9457 0.1964

LR 0.4736 2.7244 0.1816 0.3679 2.9474 0.1965

Huber 0.4705 2.7366 0.1824 0.3674 2.9484 0.1966

Theil–Sen 0.4663 2.7544 0.1836 0.3398 2.9724 0.1982

RANSAC 0.4553 2.8094 0.1873 0.3627 3.0015 0.2001

Decision Tree 0.1694 3.0653 0.2044 0.1122 3.1206 0.2080
Lasso = Least Absolute Shrinkage and Selection Operator; Lasso LAR = Lasso Least Angle Regression;
SVR = Support Vector Regression; LAR = Least Angle Regression; Elastic Net = Elastic Net Regression; Bayesian
Ridge = Bayesian Ridge Regression; Ridge = Ridge Regression; ARD = Automatic Relevance Determination;
Random Forest = Random Forest Regression; PAR = Passive Aggressive Regression; CatBoost = Category Boosting
Regression; RVR = Relevance Vector Regression; LightGBM = Light Gradient Boosting Machine; GBM = Gradient
Boosting Machine; kNN = K-Nearest Neighbors; AdaBoost = Adaptive Boosting Regression; Extra Trees = Extra
Trees Regression; XGBoost = Extreme Gradient Boosting; Kernel Ridge = Kernel Ridge Regression; GPR = Gaus-
sian Processes Regression; MLP = Multi-layer Perceptron Regression; OMP = Orthogonal Matching Pursuit;
LR = Linear Regression; Huber = Huber Regression; Theil–Sen = Theil–Sen Regression; RANSAC = Random
Sample Consensus; Decision Tree = Decision Tree Regression.
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Table 2. Algorithm performance based on the structural features from the Cam-CAN individuals
entered in the model for model performance in the training data (n = 500) and prediction performance
in the hold-out test data (n = 101).

Algorithm
Model Performance Prediction Performance

r MAE Weighted MAE r MAE Weighted MAE

Lasso LAR 0.8952 6.6767 0.0954 0.8589 7.0830 0.1012

ARD 0.8992 6.5372 0.0934 0.8585 7.1040 0.1015

Lasso 0.8943 6.6898 0.0956 0.8567 7.1757 0.1025

Elastic Net 0.8960 6.6632 0.0952 0.8548 7.1816 0.1026

Huber 0.8938 6.7060 0.0958 0.8455 7.4663 0.1067

Bayesian Ridge 0.8927 6.7691 0.0967 0.8445 7.4698 0.1067

RVR 0.8824 6.9355 0.0991 0.8378 7.5311 0.1076

PAR 0.8877 6.9834 0.0998 0.8395 7.5762 0.1082

Ridge 0.8906 6.8230 0.0975 0.8432 7.5865 0.1084

OMP 0.8827 7.0357 0.1005 0.8437 7.6179 0.1088

GPR 0.8839 7.0175 0.1003 0.8377 7.7190 0.1103

LR 0.8826 7.0582 0.1008 0.8366 7.7432 0.1106

MLP 0.8831 7.0570 0.1008 0.8364 7.7450 0.1106

SVR 0.8887 6.8523 0.0979 0.8309 7.7551 0.1108

RANSAC 0.8789 7.2202 0.1031 0.8282 7.8652 0.1124

Theil–Sen 0.8791 7.1771 0.1025 0.8366 7.8698 0.1124

GBM 0.8681 7.3435 0.1049 0.8368 7.9222 0.1132

CatBoost 0.8667 7.3767 0.1054 0.8230 8.1285 0.1161

XGBoost 0.8552 7.5686 0.1081 0.8167 8.3920 0.1199

LightGBM 0.8646 7.1822 0.1026 0.8040 8.4686 0.1210

Kernel Ridge 0.876 7.2091 0.1030 0.7022 8.6938 0.1242

Extra Trees 0.8565 7.7800 0.1111 0.8050 8.8377 0.1263

Random Forest 0.8410 8.0043 0.1143 0.7955 8.9883 0.1284

AdaBoost 0.8405 8.0458 0.1149 0.7725 9.4055 0.1344

LAR 0.8378 8.3740 0.1196 0.7577 9.5307 0.1362

kNN 0.8234 8.7403 0.1249 0.7709 9.6734 0.1382

Decision Tree 0.7259 9.7473 0.1392 0.6430 10.5017 0.1500
Lasso = Least Absolute Shrinkage and Selection Operator; Lasso LAR = Lasso Least Angle Regression;
SVR = Support Vector Regression; LAR = Least Angle Regression; Elastic Net = Elastic Net Regression; Bayesian
Ridge = Bayesian Ridge Regression; Ridge = Ridge Regression; ARD = Automatic Relevance Determination;
Random Forest = Random Forest Regression; PAR = Passive Aggressive Regression; CatBoost = Category Boosting
Regression; RVR = Relevance Vector Regression; LightGBM = Light Gradient Boosting Machine; GBM = Gradient
Boosting Machine; kNN = K-Nearest Neighbors; AdaBoost = Adaptive Boosting Regression; Extra Trees = Extra
Trees Regression; XGBoost = Extreme Gradient Boosting; Kernel Ridge = Kernel Ridge Regression; GPR = Gaus-
sian Processes Regression; MLP = Multi-layer Perceptron Regression; OMP = Orthogonal Matching Pursuit;
LR = Linear Regression; Huber = Huber Regression; Theil–Sen = Theil–Sen Regression; RANSAC = Random
Sample Consensus; Decision Tree = Decision Tree Regression.
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Table 3. Algorithm performance based on the structural features from the IXI individuals entered in
the model for model performance in the training data (n = 453) and prediction performance in the
hold-out test data (n = 114).

Algorithm
Model Performance Prediction Performance

r MAE Weighted MAE r MAE Weighted MAE

ARD 0.8268 7.4790 0.1133 0.7998 8.0453 0.1219

Lasso LAR 0.8290 7.4126 0.1123 0.7981 8.0473 0.1219

Lasso 0.8290 7.4129 0.1123 0.7981 8.0477 0.1219

MLP 0.7939 8.1039 0.1228 0.7779 8.0675 0.1222

PAR 0.8171 7.8135 0.1184 0.7902 8.2368 0.1248

XGBoost 0.8160 7.7096 0.1168 0.7918 8.2664 0.1252

Bayesian Ridge 0.8308 7.4376 0.1127 0.7945 8.2785 0.1254

GBM 0.8161 7.5873 0.1150 0.7818 8.3159 0.1260

Elastic Net 0.8343 7.3865 0.1119 0.7947 8.3217 0.1261

SVR 0.8303 7.5350 0.1142 0.7904 8.3845 0.1270

Ridge 0.8329 7.4285 0.1126 0.7934 8.3912 0.1271

GPR 0.7866 8.4452 0.1280 0.7719 8.3925 0.1272

LAR 0.8132 7.7176 0.1169 0.7837 8.4347 0.1278

LR 0.7832 8.5274 0.1292 0.7692 8.4450 0.1280

Huber 0.7966 8.1947 0.1242 0.7704 8.5157 0.1290

CatBoost 0.8299 7.6574 0.1160 0.7918 8.6085 0.1304

Theil–Sen 0.7862 8.4097 0.1274 0.7534 8.6277 0.1307

RVR 0.8322 7.4849 0.1134 0.7766 8.6291 0.1307

OMP 0.8029 7.9480 0.1204 0.7603 8.8267 0.1337

LightGBM 0.8196 7.6084 0.1153 0.7475 8.8588 0.1342

Extra Trees 0.8257 7.7683 0.1177 0.7876 8.9449 0.1355

Random Forest 0.8118 7.9223 0.1200 0.7679 8.9912 0.1362

Kernel Ridge 0.8316 7.5138 0.1138 0.7230 9.0415 0.1370

RANSAC 0.7772 8.655 0.1311 0.7384 9.1059 0.1380

AdaBoost 0.8211 7.7603 0.1176 0.7402 9.2366 0.1399

kNN 0.7769 8.3113 0.1259 0.7027 9.2521 0.1402

Decision Tree 0.7066 9.3118 0.1411 0.6315 9.8640 0.1495
Lasso = Least Absolute Shrinkage and Selection Operator; Lasso LAR = Lasso Least Angle Regression;
SVR = Support Vector Regression; LAR = Least Angle Regression; Elastic Net = Elastic Net Regression; Bayesian
Ridge = Bayesian Ridge Regression; Ridge = Ridge Regression; ARD = Automatic Relevance Determination;
Random Forest = Random Forest Regression; PAR = Passive Aggressive Regression; CatBoost = Category
Boosting Regression; RVR = Relevance Vector Regression; LightGBM = Light Gradient Boosting Machine;
GBM = Gradient Boosting Machine; kNN = K-Nearest Neighbors; AdaBoost = Adaptive Boosting Regression;
Extra Trees = Extra Trees Regression; XGBoost = Extreme Gradient Boosting; Kernel Ridge = Kernel Ridge
Regression; GPR = Gaussian Processes Regression; MLP = Multi-layer Perceptron Regression; OMP = Orthog-
onal Matching Pursuit; LR = Linear Regression; Huber = Huber Regression; Theil–Sen = Theil–Sen Regression;
RANSAC = Random Sample Consensus; Decision Tree = Decision Tree Regression.

In the HCP, the MAE values ranged between 2.75 and 3.12 (weighted MAE = 0.18–0.21)
and the r values ranged between 0.11 and 0.43. The highest and lowest prediction accuracies
were achieved by Lasso (MAE = 2.75; r = 0.43) and decision tree (MAE = 3.12; r = 0.11),
respectively. In the Cam-CAN, the MAE values ranged between 7.08 and 10.50 (weighted
MAE = 0.10–0.15) and the r values ranged between 0.64 and 0.86. The highest and lowest
prediction accuracies were achieved by Lasso LAR (MAE = 7.08; r = 0.86) and decision
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tree (MAE = 10.50; r = 0.64), respectively. In the IXI, the MAE values ranged between 8.04
and 9.86 (weighted MAE = 0.12–0.15) and the r values ranged between 0.63 and 0.80. The
highest and lowest prediction accuracies were achieved by ARD (MAE = 8.04; r = 0.80) and
decision tree (MAE = 9.86; r = 0.63), respectively. Overall, the regularized linear models
(e.g., Lasso, Lasso LAR, and ARD), followed by the ensemble models (e.g., GBM, CatBoost,
and LightGBM), achieved a good performance in the hold-out test sets across three samples.
In spite of nominal ranking of the algorithms, the top 10 algorithms performed comparably
well (Tables 1–3). Specifically, based on algorithm performance, we identified three different
model types of models, namely Lasso for regularized linear model, GPR for nonlinear
model, and GBM for ensemble model, which we evaluated further for quantifying feature
importance in the subsequent section.

3.2. Comparative Performance of the Algorithms for Brain Age Prediction

In the HCP, pairwise correlations in predicted brain ages between algorithms ranged
from 0.1 to 0.97 (Table 1; Figure 1a). Hierarchical clustering of the individual predicted brain
ages identified three clusters (Figure 1b): ensemble models and kNN formed one cluster,
GPR, MLP, and the seven linear models formed another cluster (RANSAC, Theil–Sen,
Huber, Linear Regression, OMP, ARD, and PAR), and kernel ridge regression and the eight
linear models (LAR, Lasso, Lasso LAR, RVR, SVR, Ridge, Elastic Net, and Bayesian Ridge)
formed a third cluster. In the Cam-CAN, pairwise correlations in predicted brain ages
between algorithms ranged from 0.64 to 0.99 (Table 2; Figure 1c). Hierarchical clustering
of the individual predicted brain ages identified four clusters (Figure 1d): one cluster
included the nine linear models (PAR, Huber, Elastic Net, Lasso LAR, Lasso, ARD, RVR,
Bayesian Ridge, and SVR). GPR, MLP, and the five linear models (LR, RANSAC, Theil–Sen,
Ridge, and OMP) formed another cluster. KNN, LAR, and ensemble models formed a
third cluster. Kernel ridge and decision tree regressions together formed a fourth cluster,
where decision tree showed the lowest similarity with all the other algorithms. In the IXI,
pairwise correlations in predicted brain ages between algorithms ranged from 0.6 to 0.99
(Table 3; Figure 1e). In Figure 1f, hierarchical clustering analyses showed that ensemble
models, kNN, OMP, kernel ridge, and MLP formed one cluster. A second cluster included
the 10 linear models (ARD, PAR, Lasso, Lasso LAR, Elastic Net, LAR, RVR, SVR, Ridge,
and Bayesian Ridge). GPR and the four linear models (RANSAC, Theil–Sen, Huber, and
LR) formed a third cluster. Similarly, decision tree regression showed the lowest similarity
with all the other algorithms, as shown in the HCP and Cam-CAN samples.
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Figure 1. Similarity in predicted brain age in the hold-out test sets for the HCP, Cam-CAN, and
IXI samples across 27 algorithms. For the HCP sample, (a) similarity matrix representing between-
algorithm correlations of individual predicted brain age and (b) distance matrix and dendrogram
resulting from hierarchical clustering of the individual brain age results of the 27 algorithms. For
the Cam-CAN sample, (c) similarity matrix representing between-algorithm correlations of indi-
vidual predicted brain age and (d) distance matrix and dendrogram resulting from hierarchical
clustering of the individual brain age results of the 27 algorithms. For the IXI sample, (e) similarity
matrix representing between-algorithm correlations of individual predicted brain age and (f) distance
matrix and dendrogram resulting from hierarchical clustering of the individual brain age results
of the 27 algorithms. lasso = Least Absolute Shrinkage and Selection Operator; llar = Lasso Least
Angle Regression; svr = Support Vector Regression; lar = Least Angle Regression; en = Elastic Net
Regression; br = Bayesian Ridge Regression; ridge = Ridge Regression; ard = Automatic Relevance
Determination; rf = Random Forest Regression; par = Passive Aggressive Regression; cat = Category
Boosting Regression; rvr = Relevance Vector Regression; lgbm = Light Gradient Boosting Machine;
gbm = Gradient Boosting Machine; knn = K-Nearest Neighbors; ada = Adaptive Boosting Regres-
sion; et = Extra Trees Regression; xgb = Extreme Gradient Boosting; kr = Kernel Ridge Regression;
gp = Gaussian Processes Regression; mlp = Multi-layer Perceptron Regression; omp = Orthogonal
Matching Pursuit; lr = Linear Regression; huber = Huber Regression; tr = Theil–Sen Regression;
ransac = Random Sample Consensus; dt = Decision Tree Regression.

3.3. Computational Speed of the Algorithms

The total computation time to train the model using 10-fold cross-validation for
each algorithm is shown in Table 4. Among algorithms, Ridge (0.06 ± 0.01 s) and OMP
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(0.07 ± 0.01 s) were the fastest algorithms, whereas Theil–Sen (58.31 ± 0.59 s) and CatBoost
(45.97 ± 1.28 s) were the slowest algorithms. As expected, the linear algorithms (0.06–4.87 s),
with the exception of Theil–Sen, took less than the ensemble models (0.07–47.67 s) for model
training. Most of the linear algorithms, such as Lasso, OMP, LAR, and PAR, took less than
1 s. Among ensemble algorithms, LightGBM took less than 1 s, while CatBoost took the
longest training time (45.97 ± 1.28 s).

Table 4. Comparison of computational speed of the algorithms for model training.

Algorithm
Training Time (s) Average (SD) Training

Time (s)HCP (n = 223) Cam-CAN (n = 101) IXI (n = 114)

Automatic Relevance Determination 2.22 1.78 2.28 2.09 (0.27)

Bayesian Ridge Regression 0.79 0.77 0.75 0.77 (0.02)

Elastic Net Regression 1.09 0.34 0.15 0.53 (0.50)

Huber Regression 0.50 0.25 0.33 0.36 (0.13)

Least Angle Regression 0.18 0.07 0.13 0.13 (0.04)

Lasso Regression 0.55 0.34 0.22 0.37 (0.17)

Lasso Least Angle Regression 0.17 0.24 0.16 0.19 (0.04)

Linear Regression 0.61 0.58 0.55 0.58 (0.03)

Orthogonal Matching Pursuit 0.08 0.08 0.06 0.07 (0.01)

Passive Aggressive Regression 0.19 0.18 0.15 0.17 (0.02)

Random Sample Consensus 1.11 1.10 1.07 1.09 (0.02)

Ridge Regression 0.07 0.06 0.06 0.06 (0.01)

Relevance Vector Regression 4.87 3.56 2.25 3.56 (1.31)

Support Vector Regression 0.71 0.29 0.21 0.40 (0.27)

Theil-Sen Regression 58.41 58.84 57.67 58.31 (0.59)

Adaptive Boosting Regression 29.57 7.95 14.28 17.27 (11.12)

Category Boosting Regression 45.67 44.58 47.67 45.97 (1.28)

Decision Tree Regression 0.07 0.16 1.31 0.51 (0.69)

Extra Trees Regression 7.19 9.07 9.16 8.47 (1.11)

Gradient Boosting Machine 4.42 2.58 8.50 5.17 (3.03)

Light Gradient Boosting Machine 0.73 0.62 0.68 0.68 (0.06)

Random Forest Regression 5.49 7.43 9.18 7.37 (1.85)

Extreme Gradient Boosting 3.59 1.09 4.70 3.12 (1.51)

Gaussian Process Regression 0.82 0.31 0.26 0.46 (0.31)

K-Nearest Neighbors Regression 0.49 0.31 0.32 0.37 (0.10)

Kernel Ridge Regression 0.23 0.11 0.10 0.15 (0.07)

Multi-layer Perceptron Regression 3.91 4.94 6.08 4.98 (1.09)

3.4. Comparison of the BrainPAD of the Algorithms

Figure 2 shows the distributions of individual corrected brainPAD values in the
hold-out test sets for the HCP, Cam-CAN, and IXI samples. Statistical analyses revealed
that none of the algorithms show significant differences in corrected brainPAD between
algorithms (F = 8 × 10−20, p > 0.05 for the HCP; F = 7 × 10−29, p > 0.05 for the Cam-CAN;
F = 1 × 10−28, p > 0.05 for the IXI). Nevertheless, we observed a substantial variation in
corrected brainPAD: the range of corrected brainPAD for the HCP, Cam-CAN, and IXI
samples was −7.17–8.08, −25.40–40.22, and −29.69–36.10, respectively. In particular, in the
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HCP, decision tree had the narrowest brainPAD range of −2.32–2.01, whereas RANSAC
had the broadest brainPAD range of −6.41–6.61. In the Cam-CAN, GBM had the narrowest
brainPAD range of −15.73–19.75, whereas decision tree had the broadest brainPAD range
of −25.40–27.16. In the IXI, extra trees had the narrowest brainPAD range of −16.02–15.72,
whereas decision tree had the broadest brainPAD range of −26.06–36.10.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
 

 

3.4. Comparison of the BrainPAD of the Algorithms 
Figure 2 shows the distributions of individual corrected brainPAD values in the hold-

out test sets for the HCP, Cam-CAN, and IXI samples. Statistical analyses revealed that 
none of the algorithms show significant differences in corrected brainPAD between algo-
rithms (F = 8 × 10−20, p > 0.05 for the HCP; F = 7 × 10−29, p > 0.05 for the Cam-CAN; F = 1 × 
10−28, p > 0.05 for the IXI). Nevertheless, we observed a substantial variation in corrected 
brainPAD: the range of corrected brainPAD for the HCP, Cam-CAN, and IXI samples was 
−7.17–8.08, −25.40–40.22, and −29.69–36.10, respectively. In particular, in the HCP, decision 
tree had the narrowest brainPAD range of −2.32–2.01, whereas RANSAC had the broadest 
brainPAD range of −6.41–6.61. In the Cam-CAN, GBM had the narrowest brainPAD range 
of −15.73–19.75, whereas decision tree had the broadest brainPAD range of −25.40–27.16. 
In the IXI, extra trees had the narrowest brainPAD range of −16.02–15.72, whereas decision 
tree had the broadest brainPAD range of −26.06–36.10. 

 
(a) 

 
(b) 

 
(c) 
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Figure 2. Corrected brainPAD (corrected predicted brain age–chronological age) in the HCP, Cam-
CAN, and IXI samples. Violin plots showing the distributions of individual corrected brainPAD
values in the hold-out test sets for the (a) HCP, (b) Cam-CAN, and (c) IXI samples. Box plot within
each violin plot shows the first quartile (Q1) and third quartile (Q3) of the corrected brainPAD val-
ues. White circle within each boxplot indicates the median corrected brainPAD value. lasso = Least
Absolute Shrinkage and Selection Operator; llar = Lasso Least Angle Regression; svr = Support
Vector Regression; lar = Least Angle Regression; en = Elastic Net Regression; br = Bayesian Ridge
Regression; ridge = Ridge Regression; ard = Automatic Relevance Determination; rf = Random Forest
Regression; par = Passive Aggressive Regression; cat = Category Boosting Regression; rvr = Relevance
Vector Regression; lgbm = Light Gradient Boosting Machine; gbm = Gradient Boosting Machine;
knn = K-Nearest Neighbors; ada = Adaptive Boosting Regression; et = Extra Trees Regression;
xgb = Extreme Gradient Boosting; kr = Kernel Ridge Regression; gp = Gaussian Processes Regression;
mlp = Multi-layer Perceptron Regression; omp = Orthogonal Matching Pursuit; lr = Linear Regres-
sion; huber = Huber Regression; tr = Theil–Sen Regression; ransac = Random Sample Consensus;
dt = Decision Tree Regression.



Sensors 2022, 22, 8077 15 of 22

3.5. Regional Contributions to Brain Age Prediction

We estimated SHAP values to examine to what extent regional features contribute to
brain age prediction error or brainPAD. Figure 3 shows the regional feature importance to
brainPAD for each model, based on mean absolute SHAP values averaged across subjects.
In the HCP, features with the highest average contribution to brainPAD for all models
included total intracranial volume, cortical thickness of regions in the left superior frontal
gyrus and the left caudal middle fontal gyrus, surface area of regions in the right inferior
parietal lobule, as well as subcortical regions in the left pallidum and right putamen. In
the Cam-CAN, features with the highest average contribution to brainPAD for all models
included total intracranial volume, cortical thickness of regions in the left superior frontal
gyrus, the left precuneus, and the left supramarginal gyrus, surface area of regions in the
left superior fontal gyrus and the right precentral gyrus, as well as subcortical regions
in the left thalamus and the left amygdala. In the IXI, features with the highest average
contribution to brainPAD for all models included total cranial volume, cortical thickness of
regions in the left superior frontal gyrus and the right pars triangularis, and surface area of
regions in the right middle temporal gyrus, as well as subcortical regions in left thalamus
and right putamen. The top 20 regional features for all models are shown in Supplementary
Tables S4–S6.
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Figure 3. SHAP feature importance quantified as the mean absolute SHAP value for the (a) HCP,
(b) Cam-CAN, and (c) IXI samples. Mean absolute feature importance (SHAP value) averaged
across all subjects for regional cortical thickness, surface area, and subcortical volume for Least
Absolute Shrinkage and Selection Operator (Lasso) Regression, Gaussian Process Regression (GPR),
and Gradient Boosting Machine (GBM). Darker colors indicate higher feature importance in the
explanation of model prediction error or brainPAD. The relative feature importance values shown
are rescaled such that the feature with the maximum average absolute SHAP value in each model
is assigned a value of 1. The top 20 regional features for all models are shown in Supplementary
Tables S4–S6.

For each sample, we compared three different types of model, namely Lasso, GPR,
and GBM. Across all samples, a high correspondence in average feature importance was
observed between Lasso and GPR (r = 0.89–0.95). We also found a moderate correlation
between Lasso and GBM (r = 0.3–0.55) and a low similarity between GPR and GBM
(r = 0.17–0.38). Details about pairwise correlations between models for each sample are
provided in Supplementary Figure S5. Furthermore, supplemental analyses for the three
algorithms were also conducted to examine the effects of feature selection on regression
performance (see Supplementary Materials for more details).

4. Discussion

In this study, we applied 27 different machine learning algorithms based on brain
morphological features to predict brain age. We conducted a comprehensive evaluation of
machine learning algorithms using three different independent datasets. We demonstrated
that different machine learning algorithms applied to the same brain morphological data
led to a substantial variation in predicted brain age. This finding was replicated across
three datasets and 27 regression algorithms.

Our previous study showed that brain age prediction with the morphological features
was substantially influenced by the choice of algorithm [2]. In this study, we expanded
our prior work by evaluating 27 machine learning algorithms and showing computational
efficiency for each algorithm. We also replicated our prior results not just in the young
adult HCP participants, but also in the Cam-CAN and the IXI datasets, which focused
on elderly participants. We found that algorithm choice yielded variations in brain age
estimates despite being applied to the same morphological data. In the HCP, the models
achieved an MAE of between 2.75 and 3.12 and a correlation coefficient of between 0.11 and
0.42. In the Cam-CAN dataset, the models achieved an MAE of between 7.08 and 10.50 and
a correlation coefficient of between 0.64 and 0.85. In the IXI dataset, the models achieved
an MAE of between 8.04 and 9.86 and a correlation coefficient of between 0.63 and 0.79.
Across three datasets, we found a similar trend that the performance of the regularized
linear regression models (weighted MAE = 0.10–0.20) were as good as the nonlinear and
ensemble regression models (weighted MAE = 0.11–0.20). Our results showed that Lasso
LAR, Lasso, and ARD performed best but there were minimal differences in accuracy when
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comparing with other ensemble models. Our results showed that the ensemble models
are not always better than the regularized regression models. The regularized algorithms
tend to make the coefficients sparser by shrinking irrelevant feature weights to zero, so the
brain age prediction was performed based on relatively few brain morphological features.
Moreover, model complexity can be controlled by including the regularization (or penalty)
term in the models (e.g., L1-norm for Lasso, L2-norm for Ridge, and both L1-norm and
L2-norm for Elastic Net). This helps the models less vulnerable to the collinearity among the
predictor variables [2]. Meanwhile, ensemble methods can be useful in reducing variance
and making more robust models. The aggregated results of multiple models are always less
noisy than the individual models, which leads to model stability and robustness. However,
using ensemble methods reduces model interpretability due to increased complexity. The
ensemble models perform better when the predictors are independent. As a consequence,
the performance of the regularized models was similar to that of the ensemble models.
Decision tree algorithms achieved the lowest accuracies across all samples. Evaluation of
the 27 regression models in three sizable samples of healthy individuals from the HCP, Cam-
CAN, and IXI yielded reproducible results with regards to the similarity among the linear
regression models (e.g., Lasso, Lasso LAR, RVR, and SVR), as well as among the ensemble
models (e.g., AdaBoost, CatBoost, GBM, LightGBM, RF, and XGBoost) that consistently
clustered together. Individual brain age predicted by decision tree was least correlated with
all the other regression algorithms. We also evaluated the machine learning models for
their sensitivity to different sample characteristics. We found differences in accuracy due to
different age range in the test sample. These results indicate that model generalizability to
unseen samples is likely sensitive to the age composition in the sample [6].

There are relatively few studies comparing between brain age prediction models with
brain morphological features. Two recent studies undertook comparative evaluations of
several machine learning algorithms on the basis of brain morphological data. Valizadeh
et al. examined the performance of six algorithms, namely Multiple Linear Regression,
Ridge Regression, Neural Network, K-Nearest Neighbors, Support Vector Regression, and
Random Forests, in 3144 healthy participants from multiple cohorts, aged 7–96 years [15].
They reported that Multiple Linear Regression approach with a smaller set of morpholog-
ical measures, consisting of only 11 larger brain regions, resulted in a higher prediction
accuracy (R2 = 0.73). They also showed that Neural Network approach performed best
based on a combination of different morphological features (R2 = 0.83). Baecker et al.
tested the performance of three algorithms tested here, namely Support Vector Regression,
Relevance Vector Regression, and Gaussian Process Regression, in 10,824 participants in
the UK Biobank, aged 47–73 years [16]. They reported minimal differences in accuracy
with the MAE values, ranging from 3.7 to 4.7 years, in the three algorithms tested. Our
results showed that prediction accuracies with regularized linear regression models across
three datasets (weighted MAE = 0.10–0.20) only marginally differed from those with en-
semble regression models (weighted MAE = 0.11–0.20). These results are in line with a
previous study, which showed that a simple multiple linear regression model with fewer
morphological features achieved a good performance in prediction accuracy [15]. More-
over, in 768 typically developing children and adolescents (aged 3–21 years), Elastic Net
Regression, Gaussian Process Regression, and XGBoost applied to the same cortical features
had similar performance (MAE = 1.75–1.92; R2 = 0.78–0.81) in brain age prediction [57].
Thus, it may not be necessary to use more complicated, computationally expensive models
(e.g., tree-ensemble model types) to achieve accurate brain age prediction when using the
morphological features as input data. It is worth noting that the regularized linear models
offer good performance in brain age prediction, with low computational costs.

We applied the kernel SHAP approach to three different model types (Lasso, GPR, and
GBM) for the purpose of estimating individual-level explanations for model-predicted error
(brainPAD). This helps understand to what extent different regional features contribute
to brainPAD across all three different model types [57]. We chose three representative
regression models with high accuracy, since these have been widely used approaches
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for brain age prediction [8,14,15,22,23,57] and provided a high prediction accuracy. In
the regularized linear models, the regularization parameters (e.g., L1-norm for Lasso
Regression, L2-norm for Ridge Regression) make the models have fewer features, so that
brain age prediction models with linear algorithms are more simple and interpretable.
On the other hand, complex regression models with nonlinear combinations of features
are less interpretable. In three datasets, we showed the relative contribution of each
brain region to brain age prediction for each of the three selected models. Our SHAP
analyses revealed a similar correspondence between Lasso and GPR (r = 0.89–0.95) but a
low similarity between GPR and GBM (r = 0.17–0.38). Multiple morphological features
were identified as predictive regions for brain age prediction (Figure 3; Supplementary
Tables S4–S6). Overall, the most important features that explain brainPAD were total
intracranial volume, cortical thickness of frontal (superior frontal gyrus, caudal middle
frontal gyrus, and pars triangularis) and parietal regions (precuneus and supramarginal
gyrus), and surface area of regions in the superior frontal gyrus, the lateral orbitofrontal
gyrus, and the middle temporal gyrus. The features least contributing to brainPAD were
cortical thickness of region in the caudal anterior cingulate cortex and surface area of region
in the parahippocampal gyrus. However, we note that our results were partly inconsistent
with that of Ball and colleagues, who found that the contributions of cortical features
(cortical thickness and surface area) that explain model predictions were consistent across
model types [57]. One possible reason for this discrepancy might be due to the choice of
model types (Elastic Net Regression, GPR, and XGBoost). Another possible reason might
be related to differences between sample composition. They found a high correspondence
in average feature importance across different model types in typically developing children
(age = 3–21 years) [57]. Other reasons might be parcellation choice and the exclusion of
subcortical volume as input feature.

We acknowledge several limitations that could be addressed in future studies. The
focus of this study was on the evaluation of the different machine learning algorithms in
predicting brain age on the basis of brain morphological features, not on the examination
of functional significance of brainPAD on behavioral and clinical scores [3–5,8,12,22,23,58].
Nevertheless, individualized prediction of brain age presented in this work can be easily
used to calculate brainPAD (predicted brain age–chronological age), and then applied to test
for its association with behavioral and clinical scores in clinical populations [3–5,8,12,22,23,58].
In this study, we have focused on brain age prediction using the 68 cortical regions of
interest (ROIs) from the Desikan-Killiany parcellation, as well as the 16 subcortical volumes,
which is a widely used approach in larger neuroimaging studies [30]. Future research
should replicate the current findings in independent datasets, across different atlases and
at different spatial resolutions (e.g., the Schaefer parcellation [59]). Here, we have shown
that different machine learning models applied to the same anatomical features yielded
variations in predicted brain age across three different samples. However, several studies
have started to explore the value of multimodal brain age prediction performance in healthy
participants and in disease populations, showing improved prediction of clinical markers
with multimodal imaging [11,23]. The benefits of multimodal imaging could be further
examined in future work, focusing on the identification of disease and aging markers
that can benefit from multimodal imaging, and comparing the utility of each modality
in predicting these markers. Finally, we showed the performance of different machine
learning models that provide a good coverage of many models that are presently available.
It is also important to note that deep learning models have surpassed classical machine
learning approaches in brain age prediction. Previous studies have proved that brain age
estimation using deep learning algorithms, such as simple fully convolutional network
(SFCN) [60], deep brain network (DeepBrainNet) [58], and attention-driven multi-channel
fusion neural network (FiA-Net) [61], outperform traditional machine learning methods
when processing large and diverse MRI datasets. Future work could assess advanced deep
learning models but at the cost of interpretability and model complexity.



Sensors 2022, 22, 8077 19 of 22

5. Conclusions

Through applying 27 machine learning algorithms to the same morphological features
in the HCP, Cam-CAN, and IXI datasets, we showed that algorithm choice introduces
a substantial variation in predicted brain age. By evaluating various regression models
for brain age prediction across three independent datasets, we showed that the regular-
ized linear models might be just as effective as the nonlinear and ensemble models for
predicting brain age based on brain morphological features, while significantly reducing
computational costs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22208077/s1, Figure S1: Definition of the Desikan-Killiany atlas,
Figure S2: Scatter plots showing pairwise correlations between chronological age and predicted brain
age across 27 algorithms for the HCP cohort, Figure S3: Scatter plots showing pairwise correlations
between chronological age and predicted brain age across 27 algorithms for the Cam-CAN cohort,
Figure S4: Scatter plots showing pairwise correlations between chronological age and predicted
brain age across 27 algorithms for the IXI cohort, Figure S5: Scatter plots showing correlations of
mean absolute SHAP values (feature importance) between models (Lasso, GPR, and GBM), Figure S6:
Average accuracies of different feature dimensionality in the test sets for each algorithm (Lasso,
GPR, and GBM) in the HCP, Cam-CAN, and IXI, Table S1: List of the anatomical regions of the
Desikan-Killiany atlas, Table S2: Brain morphometric characteristics for the three cohorts, Table S3:
Sample and demographic information for the three cohorts used for brain age prediction, Table S4:
List of the top 20 regional features by mean absolute SHAP value for the HCP cohort, Table S5: List
of the top 20 regional features by mean absolute SHAP value for the Cam-CAN cohort, Table S6: List
of the top 20 regional features by mean absolute SHAP value for the IXI cohort. Table S7: Algorithm
performance based on the structural features from the HCP individuals entered in the model for
model performance in the training data (n = 890) and prediction performance in the hold-out test
data (n = 223), Table S8: Algorithm performance based on the structural features from the Cam-CAN
individuals entered in the model for model performance in the training data (n = 500) and prediction
performance in the hold-out test data (n = 101), Table S9: Algorithm performance based on the
structural features from the IXI individuals entered in the model for model performance in the
training data (n = 453) and prediction performance in the hold-out test data (n = 114).

Author Contributions: Conceptualization, W.H.L.; methodology, J.H., S.Y.K., J.L. and W.H.L.; soft-
ware, J.H., S.Y.K., J.L. and W.H.L.; validation, J.H. and W.H.L.; formal analysis, J.H., S.Y.K. and W.H.L.;
investigation, J.H., S.Y.K. and W.H.L.; resources, W.H.L.; data curation, J.H. and W.H.L.; writing—
original draft preparation, J.H., S.Y.K. and W.H.L.; writing—review and editing, J.H. and W.H.L.;
visualization, J.H., S.Y.K. and W.H.L.; supervision, W.H.L.; project administration, W.H.L.; funding
acquisition, W.H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1C1C1009436) and by a grant of the Korea Health
Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded
by the Ministry of Health & Welfare, Republic of Korea (grant number: HI22C0108). The funding
agencies had no role in the study design, the collection, analysis, or interpretation of data, the writing
of the report, or the decision to submit the article for publication.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this study are publicly available and can be accessed
directly from the Human Connectome Project (https://www.humanconnectome.org/study/hcp-
young-adult, accessed on 1 September 2020), the Cambridge Centre for Ageing and Neuroscience
(https://www.cam-can.org, accessed on 1 September 2020), and the Information eXtration from
Images (https://brain-development.org, accessed on 1 September 2020) websites.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/s22208077/s1
https://www.mdpi.com/article/10.3390/s22208077/s1
https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study/hcp-young-adult
https://www.cam-can.org
https://brain-development.org


Sensors 2022, 22, 8077 20 of 22

References
1. Cole, J.H.; Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci. 2017, 40,

681–690. [CrossRef] [PubMed]
2. Lee, W.H.; Antoniades, M.; Schnack, H.G.; Kahn, R.S.; Frangou, S. Brain age prediction in schizophrenia: Does the choice of

machine learning algorithm matter? Psychiatry Res. Neuroimaging 2021, 310, 111270. [CrossRef] [PubMed]
3. Wrigglesworth, J.; Yaacob, N.; Ward, P.; Woods, R.L.; McNeil, J.; Storey, E.; Egan, G.; Murray, A.; Shah, R.C.; Jamadar, S.D.; et al.

Brain-Predicted age difference is associated with cognitive processing in later-Life. Neurobiol. Aging 2022, 109, 195–203. [CrossRef]
[PubMed]

4. Anaturk, M.; Kaufmann, T.; Cole, J.H.; Suri, S.; Griffanti, L.; Zsoldos, E.; Filippini, N.; Singh-Manoux, A.; Kivimaki, M.; Westlye,
L.T.; et al. Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging. Hum. Brain Mapp.
2021, 42, 1626–1640. [CrossRef]

5. Baecker, L.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Mechelli, A. Machine learning for brain age prediction: Introduction to
methods and clinical applications. EBioMedicine 2021, 72, 103600. [CrossRef]

6. de Lange, A.G.; Anaturk, M.; Rokicki, J.; Han, L.K.M.; Franke, K.; Alnaes, D.; Ebmeier, K.P.; Draganski, B.; Kaufmann, T.;
Westlye, L.T.; et al. Mind the gap: Performance metric evaluation in brain-age prediction. Hum. Brain Mapp. 2022, 43, 3113–3129.
[CrossRef]

7. Gonneaud, J.; Baria, A.T.; Pichet Binette, A.; Gordon, B.A.; Chhatwal, J.P.; Cruchaga, C.; Jucker, M.; Levin, J.; Salloway, S.; Farlow,
M.; et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease. Nat. Commun. 2021, 12, 5346. [CrossRef]

8. Cole, J.H.; Ritchie, S.J.; Bastin, M.E.; Valdes Hernandez, M.C.; Munoz Maniega, S.; Royle, N.; Corley, J.; Pattie, A.; Harris, S.E.;
Zhang, Q.; et al. Brain age predicts mortality. Mol. Psychiatry 2018, 23, 1385–1392. [CrossRef]

9. Smith, S.M.; Elliott, L.T.; Alfaro-Almagro, F.; McCarthy, P.; Nichols, T.E.; Douaud, G.; Miller, K.L. Brain aging comprises many
modes of structural and functional change with distinct genetic and biophysical associations. Elife 2020, 9, e52677. [CrossRef]

10. Hogestol, E.A.; Kaufmann, T.; Nygaard, G.O.; Beyer, M.K.; Sowa, P.; Nordvik, J.E.; Kolskar, K.; Richard, G.; Andreassen, O.A.;
Harbo, H.F.; et al. Cross-Sectional and Longitudinal MRI Brain Scans Reveal Accelerated Brain Aging in Multiple Sclerosis. Front.
Neurol. 2019, 10, 450. [CrossRef]

11. Cole, J.H. Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors.
Neurobiol. Aging 2020, 92, 34–42. [CrossRef] [PubMed]

12. Kaufmann, T.; van der Meer, D.; Doan, N.T.; Schwarz, E.; Lund, M.J.; Agartz, I.; Alnaes, D.; Barch, D.M.; Baur-Streubel, R.;
Bertolino, A.; et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci.
2019, 22, 1617–1623. [CrossRef] [PubMed]

13. Cole, J.H.; Franke, K.; Cherbuin, N. Quantification of the Biological Age of the Brain Using Neuroimaging. In Biomarkers of Human
Aging; Moskalev, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 293–328.

14. Franke, K.; Ziegler, G.; Klöppel, S.; Gaser, C.; Initiative, A.s.D.N. Estimating the age of healthy subjects from T1-weighted MRI
scans using kernel methods: Exploring the influence of various parameters. Neuroimage 2010, 50, 883–892. [CrossRef] [PubMed]

15. Valizadeh, S.; Hänggi, J.; Mérillat, S.; Jäncke, L. Age prediction on the basis of brain anatomical measures. Hum. Brain Mapp. 2017,
38, 997–1008. [CrossRef]

16. Baecker, L.; Dafflon, J.; Da Costa, P.F.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Calhoun, V.D.; Sato, J.R.; Mechelli, A.; Pinaya, W.H.
Brain age prediction: A comparison between machine learning models using region-and voxel-based morphometric data. Hum.
Brain Mapp. 2021, 42, 2332–2346. [CrossRef]

17. van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Busatto, G.F.; Calderoni, S.; Daly, E.; Deruelle, C.; Di
Martino, A.; et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder
and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am. J. Psychiatry 2018, 175,
359–369. [CrossRef]

18. Corps, J.; Rekik, I. Morphological Brain Age Prediction using Multi-View Brain Networks Derived from Cortical Morphology in
Healthy and Disordered Participants. Sci Rep.-UK 2019, 9, 9676. [CrossRef]

19. Boedhoe, P.S.W.; van Rooij, D.; Hoogman, M.; Twisk, J.W.R.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anikin, A.; Anticevic,
A.; et al. Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the
ENIGMA ADHD, ASD, and OCD Working Groups. Am. J. Psychiatry 2020, 177, 834–843. [CrossRef]

20. Han, L.K.M.; Dinga, R.; Hahn, T.; Ching, C.R.K.; Eyler, L.T.; Aftanas, L.; Aghajani, M.; Aleman, A.; Baune, B.T.; Berger, K.; et al.
Brain aging in major depressive disorder: Results from the ENIGMA major depressive disorder working group. Mol. Psychiatry
2021, 26, 5124–5139. [CrossRef]

21. Seidlitz, J.; Vasa, F.; Shinn, M.; Romero-Garcia, R.; Whitaker, K.J.; Vertes, P.E.; Wagstyl, K.; Kirkpatrick Reardon, P.; Clasen, L.;
Liu, S.; et al. Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive
Variation. Neuron 2018, 97, 231–247. [CrossRef]

22. Gaser, C.; Franke, K.; Kloppel, S.; Koutsouleris, N.; Sauer, H.; Alzheimer’s Disease Neuroimaging, I. BrainAGE in Mild Cognitive
Impaired Patients: Predicting the Conversion to Alzheimer’s Disease. PLoS ONE 2013, 8, e67346. [CrossRef]

23. Liem, F.; Varoquaux, G.; Kynast, J.; Beyer, F.; Kharabian Masouleh, S.; Huntenburg, J.M.; Lampe, L.; Rahim, M.; Abraham, A.;
Craddock, R.C.; et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 2017, 148,
179–188. [CrossRef] [PubMed]

http://doi.org/10.1016/j.tins.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29074032
http://doi.org/10.1016/j.pscychresns.2021.111270
http://www.ncbi.nlm.nih.gov/pubmed/33714090
http://doi.org/10.1016/j.neurobiolaging.2021.10.007
http://www.ncbi.nlm.nih.gov/pubmed/34775210
http://doi.org/10.1002/hbm.25316
http://doi.org/10.1016/j.ebiom.2021.103600
http://doi.org/10.1002/hbm.25837
http://doi.org/10.1038/s41467-021-25492-9
http://doi.org/10.1038/mp.2017.62
http://doi.org/10.7554/eLife.52677
http://doi.org/10.3389/fneur.2019.00450
http://doi.org/10.1016/j.neurobiolaging.2020.03.014
http://www.ncbi.nlm.nih.gov/pubmed/32380363
http://doi.org/10.1038/s41593-019-0471-7
http://www.ncbi.nlm.nih.gov/pubmed/31551603
http://doi.org/10.1016/j.neuroimage.2010.01.005
http://www.ncbi.nlm.nih.gov/pubmed/20070949
http://doi.org/10.1002/hbm.23434
http://doi.org/10.1002/hbm.25368
http://doi.org/10.1176/appi.ajp.2017.17010100
http://doi.org/10.1038/s41598-019-46145-4
http://doi.org/10.1176/appi.ajp.2020.19030331
http://doi.org/10.1038/s41380-020-0754-0
http://doi.org/10.1016/j.neuron.2017.11.039
http://doi.org/10.1371/journal.pone.0067346
http://doi.org/10.1016/j.neuroimage.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27890805


Sensors 2022, 22, 8077 21 of 22

24. Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K.; Consortium, W.-M.H. The WU-Minn human
connectome project: An overview. Neuroimage 2013, 80, 62–79. [CrossRef] [PubMed]

25. Shafto, M.A.; Tyler, L.K.; Dixon, M.; Taylor, J.R.; Rowe, J.B.; Cusack, R.; Calder, A.J.; Marslen-Wilson, W.D.; Duncan, J.; Dalgleish,
T. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidisciplinary
examination of healthy cognitive ageing. BMC Neurol. 2014, 14, 1–25. [CrossRef] [PubMed]

26. Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni,
J.R.; et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 2013, 80, 105–124. [CrossRef]

27. Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999,
9, 179–194. [CrossRef]

28. Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness,
S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33,
341–355. [CrossRef]

29. Desikan, R.S.; Segonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman,
B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of
interest. Neuroimage 2006, 31, 968–980. [CrossRef]

30. Constantinides, C.; Han, L.K.; Alloza, C.; Antonucci, L.; Arango, C.; Ayesa-Arriola, R.; Banaj, N.; Bertolino, A.; Borgwardt,
S.; Bruggemann, J. Brain ageing in schizophrenia: Evidence from 26 international cohorts via the ENIGMA Schizophrenia
consortium. medRxiv 2022.

31. Ali, M. PyCaret: An Open Source, Low-Code Machine Learning Library in Python. 2020. Available online: https://www.pycaret.
org (accessed on 1 September 2021).

32. Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012.
33. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B Met. 1996, 58, 267–288. [CrossRef]
34. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320.

[CrossRef]
35. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [CrossRef]
36. Rubinstein, R.; Zibulevsky, M.; Elad, M. Efficient Implementation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit;

Computer Science Department, Technion: Haifa, Israel, 2008.
37. Mackay, D.J.C. Bayesian Interpolation. Neural Comput 1992, 4, 415–447. [CrossRef]
38. Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; Singer, Y. Online passive aggressive algorithms. J. Mach. Learn. Res. 2006,

7, 551–585.
39. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
40. Owen, A.B. A robust hybrid of lasso and ridge regression. Contemp. Math. 2007, 443, 59–72.
41. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference and Prediction;

Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.
42. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
43. Dang, X.; Peng, H.; Wang, X.; Zhang, H. Theil-Sen Estimators in a Multiple Linear Regression Model. Olemiss Edu. 2008. Available

online: http://home.olemiss.edu/~xdang/papers/MTSE.pdf (accessed on 1 September 2021).
44. Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Processing

Syst. 1997, 9, 155–161.
45. Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
46. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185.
47. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
48. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
49. Drucker, H. Improving regressors using boosting techniques. In Proceedings of the ICML, Nashville, TN, USA, 8–12 July 1997;

pp. 107–115.
50. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.

Sci. 1997, 55, 119–139. [CrossRef]
51. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
52. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 Auguest 2016; pp. 785–794.
53. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision

tree. In Advances in Neural Information Processing Systems 30; MIT Press: Cambridge, MA, USA, 2017.
54. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In

Advances in Neural Information Processing Systems 31; MIT Press: Cambridge, MA, USA, 2018.
55. Liang, H.; Zhang, F.; Niu, X. Investigating Systematic Bias in Brain Age Estimation with Application to Post-Traumatic Stress Disorders;

Wiley Online Library: Hoboken, NZ, USA, 2019.
56. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing

Systems 30; MIT Press: Cambridge, MA, USA, 2017.

http://doi.org/10.1016/j.neuroimage.2013.05.041
http://www.ncbi.nlm.nih.gov/pubmed/23684880
http://doi.org/10.1186/s12883-014-0204-1
http://www.ncbi.nlm.nih.gov/pubmed/25412575
http://doi.org/10.1016/j.neuroimage.2013.04.127
http://doi.org/10.1006/nimg.1998.0395
http://doi.org/10.1016/S0896-6273(02)00569-X
http://doi.org/10.1016/j.neuroimage.2006.01.021
https://www.pycaret.org
https://www.pycaret.org
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1214/009053604000000067
http://doi.org/10.1162/neco.1992.4.3.415
http://doi.org/10.1145/358669.358692
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/s10994-006-6226-1
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1214/aos/1013203451


Sensors 2022, 22, 8077 22 of 22

57. Ball, G.; Kelly, C.E.; Beare, R.; Seal, M.L. Individual variation underlying brain age estimates in typical development. Neuroimage
2021, 235, 118036. [CrossRef]

58. Bashyam, V.M.; Erus, G.; Doshi, J.; Habes, M.; Nasralah, I.; Truelove-Hill, M.; Srinivasan, D.; Mamourian, L.; Pomponio, R.;
Fan, Y.; et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals
worldwide. Brain 2020, 143, 2312–2324. [CrossRef]

59. Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T.T. Local-Global Parcellation
of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 2018, 28, 3095–3114. [CrossRef]

60. Peng, H.; Gong, W.; Beckmann, C.F.; Vedaldi, A.; Smith, S.M. Accurate brain age prediction with lightweight deep neural
networks. Med. Image Anal. 2021, 68, 101871. [CrossRef]

61. He, S.; Pereira, D.; David Perez, J.; Gollub, R.L.; Murphy, S.N.; Prabhu, S.; Pienaar, R.; Robertson, R.L.; Ellen Grant, P.; Ou, Y.
Multi-channel attention-fusion neural network for brain age estimation: Accuracy, generality, and interpretation with 16,705
healthy MRIs across lifespan. Med. Image Anal. 2021, 72, 102091. [CrossRef]

http://doi.org/10.1016/j.neuroimage.2021.118036
http://doi.org/10.1093/brain/awaa160
http://doi.org/10.1093/cercor/bhx179
http://doi.org/10.1016/j.media.2020.101871
http://doi.org/10.1016/j.media.2021.102091

	Introduction 
	Materials and Methods 
	Datasets 
	Image Processing and Feature Extraction 
	Machine Learning Algorithms 
	Parametric Algorithms 
	Nonparametric Algorithms 

	Brain Age Prediction Framework 
	Age-Bias Correction 
	Comparative Evaluation of the Algorithms 
	Feature Importance 

	Results 
	Algorithm Performance for Brain Age Prediction 
	Comparative Performance of the Algorithms for Brain Age Prediction 
	Computational Speed of the Algorithms 
	Comparison of the BrainPAD of the Algorithms 
	Regional Contributions to Brain Age Prediction 

	Discussion 
	Conclusions 
	References

