
Citation: Huang, W.; Li, W.; Tang, L.;

Zhu, X.; Zou, B. A Deep Learning

Framework for Accurate Vehicle Yaw

Angle Estimation from a Monocular

Camera Based on Part Arrangement.

Sensors 2022, 22, 8027.

https://doi.org/10.3390/

s22208027

Academic Editors: Javier

Alonso Ruiz, Iván García Daza,

Carlota Salinas and Rubén Izquierdo

Received: 9 September 2022

Accepted: 11 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Deep Learning Framework for Accurate Vehicle Yaw Angle
Estimation from a Monocular Camera Based on
Part Arrangement
Wenjun Huang 1,2,3,4 , Wenbo Li 1,2,3,4, Luqi Tang 1,2,3,4, Xiaoming Zhu 1,2,3,4 and Bin Zou 1,2,3,4,*

1 Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,
Xianhu Hydrogen Valley, Foshan 528200, China

2 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of
Technology, Wuhan 430070, China

3 Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of
Technology, Wuhan 430070, China

4 Hubei Research Center for New Energy and Intelligent Connected Vehicle, Wuhan 430070, China
* Correspondence: zoubin@whut.edu.cn

Abstract: An accurate object pose is essential to assess its state and predict its movements. In recent
years, scholars have often predicted object poses by matching an image with a virtual 3D model
or by regressing the six-degree-of-freedom pose of the target directly from the pixel data via deep
learning methods. However, these approaches may ignore a fact that was proposed in the early days of
computer vision research, i.e., that object parts are strongly represented in the object pose. In this study,
we propose a novel and lightweight deep learning framework, YAEN (yaw angle estimation network),
for accurate object yaw angle prediction from a monocular camera based on the arrangement of
parts. YAEN uses an encoding–decoding structure for vehicle yaw angle prediction. The vehicle
part arrangement information is extracted by the part-encoding network, and the yaw angle is
extracted from vehicle part arrangement information by the yaw angle decoding network. Because
vehicle part information is refined by the encoder, the decoding network structure is lightweight;
the YAEN model has low hardware requirements and can reach a detection speed of 97FPS on
a 2070s graphics cards. To improve the performance of our model, we used asymmetric convolution
and SSE (sum of squared errors) loss functions of adding the sign. To verify the effectiveness of this
model, we constructed an accurate yaw angle dataset under real-world conditions with two vehicles
equipped with high-precision positioning devices. Experimental results prove that our method can
achieve satisfactory prediction performance in scenarios in which vehicles do not obscure each other,
with an average prediction error of less than 3.1◦ and an accuracy of 96.45% for prediction errors of
less than 10◦ in real driving scenarios.

Keywords: pose estimation; yaw angle estimation; convolutional neural network; part arrangement;
monocular camera

1. Introduction

Pose estimation is an important topic in computer vision and a key technology in
fields such as autonomous vehicles [1] and video surveillance [2]. Image algorithm re-
searchers pursue information about the shape [3], distance [4,5], velocity [6,7], position,
and orientation [8,9] of objects. In terms of pose estimation, objects are often classified as
humans [10–12] and rigid bodies depending on whether they are deformable or not. The
pose estimation task for rigid bodies can be traced back to the very early stages of computer
vision [13], comprising six degrees of freedom (DoFs; X, Y, Z, α, β, γ). Rigid body pose
estimation has a significant component of the field of unmanned operations, e.g., industrial
robots and autonomous vehicles. In the case of autonomous vehicles, for example, accurate

Sensors 2022, 22, 8027. https://doi.org/10.3390/s22208027 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208027
https://doi.org/10.3390/s22208027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4520-4827
https://orcid.org/0000-0002-0064-7424
https://doi.org/10.3390/s22208027
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208027?type=check_update&version=2


Sensors 2022, 22, 8027 2 of 20

vehicle posture estimation is important to the achievement of self-driving, as the future
trajectory of objects can be predicted [14], and their states can be analyzed based on the
current pose of the vehicle. Thus, a framework that can accurately estimate the poses of
vehicles is critically needed.

Studies on object acquisition from monocular RGB images can be categorized accord-
ing to whether they use a data-driven methodologies. The main idea of the non-data-driven
approach is to match the object image taken by the camera with template images (this tem-
plate can be either CAD images [15] or real images [16]) to obtain a prediction result, and
the matching elements can comprise classical image features, such as SIFT, SURF [17], etc.
Methods using data-driven approaches can be divided into those based on detection of key
points and those based on end-to-end learning. The former constructs a 2D–3D correspon-
dence by matching the image with a virtual 3D model and then solving the target pose
via the perspective-n-point (PnP) [18] method, whereas the latter regresses the six-degrees-
of-freedom (6DoF) poses of the target directly from the pixel data by extracting image
features through convolutional neural networks. These methods may ignore a fact that
was proposed in the early days of computer vision research, i.e., that the object parts are
strongly represented in the object pose. Taking the surrounding vehicles as the observation
target, a mapping relationship can be obtained between the poses of the vehicle and the
arrangement of the part positions based on image observation. For example, when a vehicle
in the image has an attitude in the same direction as ours, we will observe two taillights.
Similarly, when we observe two taillights, we can roughly estimate that the vehicle is
oriented in the same direction as us. Here, we proposed a novel framework for prediction
of yaw angle using deep neural networks to learn the mapping relationship between part
position arrangements and the object pose.

The proposed framework based on part arrangement for accurate yaw angle estimation
is called YAEN (yaw angle estimation net). YAEN views vehicles as objects and their wheels,
front lights, taillights, and rearview mirrors as parts (Figure 1). We selected the vehicle
yaw angle as the research object because, on the one hand, it has a greater impact on the
vehicle trajectory than the roll angle and the pitch angle of the vehicle [19,20]. On the
other hand, the currently widely used yaw angle detection methods mainly rely on LIDAR
cluster analysis of. However, the LIDAR detection effect is not sufficient in rain and snow
conditions, in addition to too expensive [21] for use in daily life. Therefore, the existing
methods cannot be widely applied in the short term.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 21 
 

 

pose estimation has a significant component of the field of unmanned operations, e.g., 

industrial robots and autonomous vehicles. In the case of autonomous vehicles, for exam-

ple, accurate vehicle posture estimation is important to the achievement of self-driving, as 

the future trajectory of objects can be predicted [14], and their states can be analyzed based 

on the current pose of the vehicle. Thus, a framework that can accurately estimate the 

poses of vehicles is critically needed. 

Studies on object acquisition from monocular RGB images can be categorized accord-

ing to whether they use a data-driven methodologies. The main idea of the non-data-

driven approach is to match the object image taken by the camera with template images 

(this template can be either CAD images [15] or real images [16]) to obtain a prediction 

result, and the matching elements can comprise classical image features, such as SIFT, 

SURF [17], etc. Methods using data-driven approaches can be divided into those based on 

detection of key points and those based on end-to-end learning. The former constructs a 

2D–3D correspondence by matching the image with a virtual 3D model and then solving 

the target pose via the perspective-n-point (PnP) [18] method, whereas the latter regresses 

the six-degrees-of-freedom (6DoF) poses of the target directly from the pixel data by ex-

tracting image features through convolutional neural networks. These methods may ig-

nore a fact that was proposed in the early days of computer vision research, i.e., that the 

object parts are strongly represented in the object pose. Taking the surrounding vehicles 

as the observation target, a mapping relationship can be obtained between the poses of 

the vehicle and the arrangement of the part positions based on image observation. For 

example, when a vehicle in the image has an attitude in the same direction as ours, we 

will observe two taillights. Similarly, when we observe two taillights, we can roughly es-

timate that the vehicle is oriented in the same direction as us. Here, we proposed a novel 

framework for prediction of yaw angle using deep neural networks to learn the mapping 

relationship between part position arrangements and the object pose. 

The proposed framework based on part arrangement for accurate yaw angle estima-

tion is called YAEN (yaw angle estimation net). YAEN views vehicles as objects and their 

wheels, front lights, taillights, and rearview mirrors as parts (Figure 1). We selected the 

vehicle yaw angle as the research object because, on the one hand, it has a greater impact 

on the vehicle trajectory than the roll angle and the pitch angle of the vehicle [19,20]. On 

the other hand, the currently widely used yaw angle detection methods mainly rely on 

LIDAR cluster analysis of. However, the LIDAR detection effect is not sufficient in rain 

and snow conditions, in addition to too expensive [21] for use in daily life. Therefore, the 

existing methods cannot be widely applied in the short term. 

 

Figure 1. Illustration of YAEN-predicted yaw angle on a real road. 

The proposed framework for yaw angle prediction consists of a part-encoding net-

work and a yaw angle decoding network. In the former, the object and the parts are de-

tected from an image by an advanced object detector [22,23], then encoded. We consider 

each part as a “material” to express the object pose, and the arrangement of “materials” 

Figure 1. Illustration of YAEN-predicted yaw angle on a real road.

The proposed framework for yaw angle prediction consists of a part-encoding network
and a yaw angle decoding network. In the former, the object and the parts are detected
from an image by an advanced object detector [22,23], then encoded. We consider each part
as a “material” to express the object pose, and the arrangement of “materials” can convey
semantic information about the object poses. In the latter, the “materials” information is
extracted by a deep neural network decoder to obtain the pose information of the object. To



Sensors 2022, 22, 8027 3 of 20

verify the effectiveness of YAEN, we constructed an accurate real-world yaw angle dataset
involving two vehicles equipped with high-precision positioning equipment. Experimental
results show that YAEN can quickly and accurately detect the surrounding vehicles and
predict vehicle yaw angles using a monocular camera.

The remainder of this paper is organized as follows. In Section 2, we review work
by other scholars on pose estimation and vehicle pose datasets. The collection and pro-
cessing methods of the yaw angle dataset are introduced in Section 3. In Section 4, we
discuss the structure and loss function design of the YAEN network. We present the experi-
mental results of YAEN on the dataset in Section 5. Finally, in Section 6, we present our
study conclusions.

2. Related Work

The yaw angle estimation problem is a subproblem of pose estimation. In this sec-
tion, we review recent studies on pose estimation and relevant datasets and describe the
relationship between these studies and our work.

2.1. Pose Estimation

In recent years, an increasing number of studies has been published on pose estima-
tion. Researchers have used various sensors to obtain sufficient information to estimate
object poses.

For pose estimation tasks, LIDAR is advantageous because the acquired point cloud
data contain distance information. With such point cloud data, several authors have used
clustering and template-matching methods to predict object poses [24–28]. However, owing
to its high cost, LIDAR cannot be widely applied in the short term, so some researchers
have used cameras to estimate object poses.

The methods of estimating object pose from images can be broadly classified into two
forms. The first form involves the construction of a 2D–3D correspondence by matching im-
ages with 3D model renderings and then using the perspective-n-point method [18] to solve
the object pose [9,29,30]. The second form involves obtaining the target object’s six-degrees-
of-freedom (6-DoF) pose directly from the pixel data [8,10,31–33]. The disadvantage of
the first form is that the construction of a 2D–3D correspondence is susceptible to feature
changes, so depth cameras are often introduced as auxiliary information [34]. This problem
can be circumvented by the second form, which obtains the object pose directly from image
pixels without requiring the construction of a correspondence between the images and
the 3D models. In the method of obtaining the object pose directly from the image, the
feature information is first extracted from the image and decoded to extract the rotation and
translation information about the object, ultimately obtaining the object pose. The feature
information can comprise either the 2D BBox acquired by the object detector [22,23,35,36]
or heatmaps of the object obtained by the key point detection network [33,37,38].

For example, the SSD-6D network proposed by Kehl [8] is an extension of the object
detection model SSD [23]. In addition to the object 2D BBox, more specific 2D BBoxes can
be predicted by adding an inception module [39]; these 2D BBoxes can be combined to
obtain the 3D BBox of the object. Wu et al. [40] obtained a vehicle heatmap by Mask RCNN
and added a head structure to predict the vehicle rotation and translation vectors.

The above attitude prediction algorithms can predict the 6-DoF information, but these
predictions are only approximate. Even the 6D-VNet model [40], which obtained the best
result in the Apolloscape challenge 3D Vehicle Instance task [41], is not sufficiently accurate.
Moreover, the probability that the error of vehicle distance prediction is less than 2.8 m is
only 35.3%, and the error of angle prediction is below 50◦. Such results cannot be used to
guide vehicles for effective autonomous driving.

2.2. Dataset of Vehicle Poses

To obtain an accurate pose estimation model, the dataset used for model training
needs to be accurately annotated. Unfortunately, accurate annotation is costly and inacces-



Sensors 2022, 22, 8027 4 of 20

sible. Currently available public datasets for vehicle pose estimation include KITTI Object
3D [42,43], ApolloVehicle3D [41,44], and PASCAL [45], all of which are produced without
sensors installed on the observed vehicles.

To determine the pose of the observed vehicle, KITTI Object 3D creates an annotation
tool [43] that displays both a 3D point cloud and an image to assist in manual annotation. In
comparison, ApolloVehicle3D and PASCAL create a high-quality 3D model of the observed
vehicle, with the key points of the vehicle manually annotated in the image; then, use EPnP
algorithm [18] is used to obtain the 3D pose of the vehicle based on the 2D image.

Benefiting from these semi-automatic annotation method, a wealth of data can be
obtained. However, the fact that the ground truths of KITTI Object 3D and ApolloVehicle3D
for vehicle pose are indirectly inferred results in deficient accuracy. Therefore, in the present
study, we constructed a new dataset, the Yaw Angle Dataset, which was acquired using
two vehicles equipped with high-precision positioning equipment. This dataset can obtain
the pose information of both vehicles directly through sensors without going complicated
intermediate steps.

The conclusions drawn from the abovementioned related studies are summarized
below. The goal of vehicle pose estimation research is to use a network to achieve 6-DoF
estimation; however, it may be difficult to achieve accurate detection using six degrees
of freedom. To solve the problem of coarse pose estimation, we propose a framework for
accurate yaw angle estimation based on the arrangement of parts. The proposed yaw angle
estimation network (YAEN) achieved an average prediction error or less than 3.1◦ and an
accuracy of 96.45% for prediction errors of less than 10◦ in real driving scenarios.

In summary, the contribution of our work comprises three main areas.

• We propose a framework for accurate yaw angle estimation, YAEN, based on the
arrangement of parts. YAEN can quickly and accurately predict the yaw angle of a
vehicle based on a single RGB image;

• A novel loss function is proposed to deal with the problem caused by the periodicity
of the angle; and

• To test the accuracy of our network, we created a vehicle yaw angle dataset—the
Yaw Angle Dataset, which comprised 17,258 images containing 15,863 yaw angle
annotations, 17,258 2D BBox annotations of vehicles, and 73,191 2D BBox annotations
of parts of vehicle parts. This dataset was used to validate the effectiveness of YAEN.

3. Yaw Angle Dataset

To collect sufficient yaw angle data, the Yaw Angle Dataset was created using two
vehicles equipped with high-precision positioning equipment. Two vehicles were used
for all data collection. We collected many images and yaw angle data for various types
of vehicles (sedans, SUVs, etc.) in daily traffic. In addition to collecting vehicle attitude
information on regular roads, we collected a large amount of data that are difficult to collect
on regular roads in a closed practice range environment. We also collected data under a
wide range of road conditions, including daytime, evening, and rainy days.

3.1. Devices

The devices used to collect accurate data are shown in Figure 2. The role and related
parameters of each device are shown in Table 1.



Sensors 2022, 22, 8027 5 of 20Sensors 2022, 22, x FOR PEER REVIEW 5 of 21 
 

 

      

(a) (b) (c) (d) (e) (f) 

Figure 2. Various devices used for data collection, from left to right: (a) OXTSGPS RT3000 v2 

mounted on the observation vehicle, (b) OXTSGPS RT3000 v2 mounted on the observed vehicle, (c) 

OXTS RT-BASE, (d) Velodyne VLP-32C and two FLIR GS3-U3 cameras, (e) TL- AP450GP, and (f) 

two vehicles. 

Table 1. The function of the equipment and performance parameters. 

Device Quantity 
Mounting  

Location 
Function 

Performance 

Parameters 

OXTS GPS 

RT3000 v2 
1 

Observing vehi-

cle 

Provide data on the latitude, 

longitude, yaw angle, roll an-

gle, pitch angle, and speed of 

the observing vehicle 

Location: 
0.01 m 

Angle: 0.03° 

OXTS GPS 

RT3000 v2 
1 Observed vehicle 

Provide data on the latitude, 

longitude, yaw angle, roll an-

gle, pitch angle, and speed of 

the observed vehicle 

Location: 
0.01 m 

Angle: 0.03° 

OXTS RT-

BASE 
1 Near the test site 

Improve the positioning accu-

racy of OXTS GPS RT3000 v2 
- 

FLIR GS3-

U3 
2 

Observing vehi-

cle 

Provide pictures of the ob-

served vehicle from the per-

spective of the observing vehi-

cle  

Resolution: 

1920*1200*3 

FPS: 160 

Velodyne 

VLP-32C 
1 

Observing vehi-

cle 

Provide the point cloud of the 

observed vehicle from the per-

spective of the observing vehi-

cle  

Horizontal an-

gular resolu-

tion: 0.1° to 
0.4° 

TL-

AP450GP 
1 Near the test site 

Construct a local area network 

for communication between de-

vices 

2.4 GHz, 450 

Mbps 

3.2. Data Collection 

3.2.1. Time Synchronization 

The data collected here need to correspond precisely in series, which requires time 

synchronization. Depending on the object, time synchronization can be divided into time 

synchronization between different sensors of a single vehicle and time synchronization 

between sensors on different vehicles. To realize the former, we designed a trigger mech-

anism. All sensors were turned on at all times during data collection, and each sensor 

constantly refreshed the captured data. However, each sensor refreshed data at a specific 

frequency (e.g., 100 HZ for GPS, 160 HZ for cameras), so we designed a signal generator 

that runs continuously on a computer. The generator sends out a collection signal at a 

fixed frequency (e.g., 10 HZ), which contains the timestamp of the current moment and 

the collection command. Whenever a sensor receives a collection signal, it saves the data 

Figure 2. Various devices used for data collection, from left to right: (a) OXTSGPS RT3000 v2 mounted
on the observation vehicle, (b) OXTSGPS RT3000 v2 mounted on the observed vehicle, (c) OXTS RT-
BASE, (d) Velodyne VLP-32C and two FLIR GS3-U3 cameras, (e) TL- AP450GP, and (f) two vehicles.

Table 1. The function of the equipment and performance parameters.

Device Quantity Mounting
Location Function Performance

Parameters

OXTS GPS
RT3000 v2 1 Observing

vehicle

Provide data on the latitude,
longitude, yaw angle, roll angle,

pitch angle, and speed of the
observing vehicle

Location:
0.01 m

Angle: 0.03◦

OXTS GPS
RT3000 v2 1 Observed

vehicle

Provide data on the latitude,
longitude, yaw angle, roll angle,

pitch angle, and speed of the
observed vehicle

Location:
0.01 m

Angle: 0.03◦

OXTS
RT-BASE 1 Near the test site Improve the positioning accuracy

of OXTS GPS RT3000 v2 -

FLIR
GS3-U3 2 Observing

vehicle

Provide pictures of the observed
vehicle from the perspective of

the observingvehicle

Resolution:
1920 × 1200 × 3

FPS: 160

Velodyne
VLP-32C 1 Observing

vehicle

Provide the point cloud of the
observed vehicle from the

perspective of the
observing vehicle

Horizontal
angular

resolution:
0.1◦to 0.4◦

TL-
AP450GP 1 Near the test site Construct a local area network for

communication between devices
2.4 GHz,

450 Mbps

3.2. Data Collection
3.2.1. Time Synchronization

The data collected here need to correspond precisely in series, which requires time
synchronization. Depending on the object, time synchronization can be divided into time
synchronization between different sensors of a single vehicle and time synchronization
between sensors on different vehicles. To realize the former, we designed a trigger mech-
anism. All sensors were turned on at all times during data collection, and each sensor
constantly refreshed the captured data. However, each sensor refreshed data at a specific
frequency (e.g., 100 HZ for GPS, 160 HZ for cameras), so we designed a signal generator
that runs continuously on a computer. The generator sends out a collection signal at a
fixed frequency (e.g., 10 HZ), which contains the timestamp of the current moment and the
collection command. Whenever a sensor receives a collection signal, it saves the data it is
currently obtaining. For the latter time synchronization, all devices were connect to one
LAN, with socket communication technology used to facilitate information acquisition by
the devices.

3.2.2. Collected Scenes

Through the above method, data can be collected from several driving scenarios
on an open road, for example following, overtaking, and meeting driving scenarios. To



Sensors 2022, 22, 8027 6 of 20

perform these maneuvers, two drivers drive the observing vehicle and the observed vehicle,
respectively, at the same time at a speed of less than 30 km/h to ensure the safety of the
experiment. However, during normal driving, the vehicle’s yaw angle is not sufficiently
variable, and the data are concentrated at some angle scales. In order for our model to
recognize various yaw angles, the range of the collected yaw angle data must be 0◦ to 360◦.
To this end, we intentionally collected some data that do not occur on ordinary roads in
a closed driving field. For example, the observed completed make a circle motion or a
figure-eight loop in the driving field while the observing vehicle remained fixed in order
form various yaw angles.

3.2.3. Data Processing

The GPS we employed for data collection contains an IMU device, which can directly
acquire the vehicle’s yaw angle with a yaw angle measurement error of 0.03◦. However,
the data collected through two GPSs are the yaw angles of the two vehicles in the geodetic
coordinate system (GCS) (Figure 3, 0 < θ1, θ2 ≤ 360◦). The yaw angle of surrounding
vehicles can be obtained from the camera. Even if the position and pose of the vehicle
do not change, the results may differ considerably depending on the observation angle.
Therefore, the yaw angle of the observed vehicle in the GCS is converted to the yaw angle
relative to the coordinates of the observing vehicle and expressed as θ. Thus, once θ is
obtained, it can be simply converted to the yaw angle in the GCS. Equation (1) is used to
express the angle conveniently to record θ :

θ =


θ1 − θ2 + 540, θ1 − θ2 ≤ −180
θ1 − θ2 + 180, θ1 − θ2 > −180 and θ1 − θ2 < 180
θ1 − θ2 − 180, θ1 − θ2 ≥ +180

(1)

where θ1 and θ2 denote the yaw angles of the observation and observed vehicles, respectively,
in the GCS obtained by high-precision positioning equipment. As shown in Equation (1),
the relative yaw angle between the two vehicles (θ) is a primary function of θ1 and θ2,
so the measurement error of θ is 0.06◦. Through the conversion of Equation (1), θ can be
maintained between 0◦ and 360◦, where θ = 0◦ or 360◦ indicates that the observed vehicle
is in oriented in the opposite direction to that of the observing vehicle, and when θ = 180◦,
the two vehicles are oriented in the same direction. These two cases are the most common
situations encountered under actual driving conditions (following and meeting), so our
dataset is similar to ApolloCar3D [41] and KITTI Object 3D [42] datasets, with the highest
percentage of data corresponding to following and meeting scenarios (Figure 4).

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21 
 

 

 

Figure 3. Illustration of observing yaw angle. 

 

Figure 4. The distribution of yaw angles in the Yaw Angles Dataset, where each bar spans 5°. For 

instance, the leftmost and rightmost bars indicate the amount of data in the ranges of 0°–5°and 355°–

360°, respectively. Bars of similar colors indicate that their yaw angles are close to real-world con-

ditions. 

3.2.4. Annotations 

In addition to annotation of the vehicle yaw angle in each image, we also marked the 

positions of vehicles and vehicle parts in the image. We selected the following parts of the 

vehicle with apparent features to represent the vehicle posture: wheels, headlights, tail-

lights, and rearview mirrors. The annotation of vehicles is relatively simple because the 

ratio of pixels occupied by vehicles is satisfactory; annotation can be performed using the 

labelImg labeling tool. However, the vehicle parts are small and thus cannot be easily 

labeled directly on the image, so we adopted a hierarchical labeling method (Figure 5). 

First, the vehicle is annotated on the complete image. Then, with the annotated result, we 

the image containing only the pixel portion of the vehicle is cut out, and the parts are 

annotated on the vehicle image. Finally, the parts annotated on the vehicle image are 

mapped onto the original image to determine the positions of the parts in the whole im-

age. Because time synchronization was performed between the pictures taken by the cam-

era and the yaw angle collected by the GPS, we combined the part positions and the rela-

tive yaw angle (𝜃) obtained from the two GPSs to obtain the Yaw Angle Dataset. 

Figure 3. Illustration of observing yaw angle.



Sensors 2022, 22, 8027 7 of 20

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21 
 

 

 

Figure 3. Illustration of observing yaw angle. 

 

Figure 4. The distribution of yaw angles in the Yaw Angles Dataset, where each bar spans 5°. For 

instance, the leftmost and rightmost bars indicate the amount of data in the ranges of 0°–5°and 355°–

360°, respectively. Bars of similar colors indicate that their yaw angles are close to real-world con-

ditions. 

3.2.4. Annotations 

In addition to annotation of the vehicle yaw angle in each image, we also marked the 

positions of vehicles and vehicle parts in the image. We selected the following parts of the 

vehicle with apparent features to represent the vehicle posture: wheels, headlights, tail-

lights, and rearview mirrors. The annotation of vehicles is relatively simple because the 

ratio of pixels occupied by vehicles is satisfactory; annotation can be performed using the 

labelImg labeling tool. However, the vehicle parts are small and thus cannot be easily 

labeled directly on the image, so we adopted a hierarchical labeling method (Figure 5). 

First, the vehicle is annotated on the complete image. Then, with the annotated result, we 

the image containing only the pixel portion of the vehicle is cut out, and the parts are 

annotated on the vehicle image. Finally, the parts annotated on the vehicle image are 

mapped onto the original image to determine the positions of the parts in the whole im-

age. Because time synchronization was performed between the pictures taken by the cam-

era and the yaw angle collected by the GPS, we combined the part positions and the rela-

tive yaw angle (𝜃) obtained from the two GPSs to obtain the Yaw Angle Dataset. 

Figure 4. The distribution of yaw angles in the Yaw Angles Dataset, where each bar spans 5◦. For
instance, the leftmost and rightmost bars indicate the amount of data in the ranges of 0◦–5◦and 355◦–360◦,
respectively. Bars of similar colors indicate that their yaw angles are close to real-world conditions.

3.2.4. Annotations

In addition to annotation of the vehicle yaw angle in each image, we also marked
the positions of vehicles and vehicle parts in the image. We selected the following parts
of the vehicle with apparent features to represent the vehicle posture: wheels, headlights,
taillights, and rearview mirrors. The annotation of vehicles is relatively simple because
the ratio of pixels occupied by vehicles is satisfactory; annotation can be performed using
the labelImg labeling tool. However, the vehicle parts are small and thus cannot be easily
labeled directly on the image, so we adopted a hierarchical labeling method (Figure 5). First,
the vehicle is annotated on the complete image. Then, with the annotated result, we the
image containing only the pixel portion of the vehicle is cut out, and the parts are annotated
on the vehicle image. Finally, the parts annotated on the vehicle image are mapped onto
the original image to determine the positions of the parts in the whole image. Because time
synchronization was performed between the pictures taken by the camera and the yaw
angle collected by the GPS, we combined the part positions and the relative yaw angle (θ)
obtained from the two GPSs to obtain the Yaw Angle Dataset.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 5. Flow chart of dataset annotation. 

4. YAEN 

The proposed framework for accurate yaw angle estimation based on the arrange-

ment of parts(YAEN) aims to derive the yaw angle of a vehicle (𝜃) in the world coordinate 

system from the image pixel. The image acquired by the camera is a projection of the three-

dimensional world into two dimensions (Figure 6). Ignoring the deformation of the vehi-

cle tires and suspension, we assume that the vehicle is a rigid body, and when the coordi-

nates of three points of the vehicle that are not in the same line under the world coordinate 

system are fixed, the attitude of the vehicle under the world coordinate system is fixed. 

The yaw angle of the vehicle (𝜃) can be inferred from the inherent frame of the vehicle. 

Let this relationship be 𝑓. 

= ({ ( ) })i i i i if Q C ,X ,Y ,Z ,i =1,2...  (2) 

where 𝜃 denotes the yaw angle of the vehicle; 𝑄𝑖  denotes point 𝑖 in the 3D coordinate 

system, 𝐶𝑖 is the category of point 𝑖; and 𝑋𝑖 , 𝑌𝑖 , and 𝑍𝑖 are the 3D coordinates of point 𝑖. 

The coordinates of the vehicle in the 3D coordinate system and the coordinates in the 2D 

pixel coordinate system can be connected by the internal camera parameters and the ex-

ternal camera parameters; this relationship is denoted as 𝑔. 

(C , , ,A )( )i i i ii i x yQ g q  (3) 

where 𝑄𝑖  denotes point 𝑖  in the 3D coordinate system; 𝑞𝑖  denotes point 𝑖  in the 2D 

pixel coordinate system; 𝐶𝑖 denotes the category of point 𝑖; xi and 𝑦𝑖  are the 2D coordi-

nates of point 𝑖; and 𝐴𝑖 represents the pixel area occupied by the part to which point 𝑖 

belongs. By substituting Equation (3) into Equation (2), the relationship between the yaw 

angle (𝜃) and the 2D pixel coordinate points can be obtained, as shown in Equation (4). 

(C , , ,A )({ ( ), 1,2...})i i i ii x yf g q i    (4) 

The mapping relationship represented by Equation (4) is what we want YAEN to 

learn. 

Figure 5. Flow chart of dataset annotation.



Sensors 2022, 22, 8027 8 of 20

4. YAEN

The proposed framework for accurate yaw angle estimation based on the arrangement
of parts(YAEN) aims to derive the yaw angle of a vehicle (θ) in the world coordinate
system from the image pixel. The image acquired by the camera is a projection of the
three-dimensional world into two dimensions (Figure 6). Ignoring the deformation of the
vehicle tires and suspension, we assume that the vehicle is a rigid body, and when the
coordinates of three points of the vehicle that are not in the same line under the world
coordinate system are fixed, the attitude of the vehicle under the world coordinate system
is fixed. The yaw angle of the vehicle (θ) can be inferred from the inherent frame of the
vehicle. Let this relationship be f .

θ = f ({Qi(Ci, Xi, Yi, Zi), i = 1, 2 . . .}) (2)

where θ denotes the yaw angle of the vehicle; Qi denotes point i in the 3D coordinate
system, Ci is the category of point i; and Xi, Yi, and Zi are the 3D coordinates of point
i. The coordinates of the vehicle in the 3D coordinate system and the coordinates in the
2D pixel coordinate system can be connected by the internal camera parameters and the
external camera parameters; this relationship is denoted as g.

Qi = g(qi(Ci, xi, yi, Ai)) (3)

where Qi denotes point i in the 3D coordinate system; qi denotes point i in the 2D pixel
coordinate system; Ci denotes the category of point i; xi and yi are the 2D coordinates of
point i; and Ai represents the pixel area occupied by the part to which point i belongs. By
substituting Equation (3) into Equation (2), the relationship between the yaw angle (θ) and
the 2D pixel coordinate points can be obtained, as shown in Equation (4).

θ = f ({g(qi(Ci, xi, yi, Ai)), i = 1, 2 . . .}) (4)
Sensors 2022, 22, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 6. Illustration of the relationship between the vehicle yaw angle (θ) and the vehicle in a two-

dimensional pixel coordinate system. 

We designed YAEN as an encoding–decoding structure consisting of two parts: a 

part-encoding network and a yaw angle decoding network. The former is used to encode 

the information (e.g., the position and size of the object parts) and to obtain the infor-

mation matrix, which consists of an advanced object detector and a part encoder. The lat-

ter is used to decode the information matrix and calculate the object yaw angle. The esti-

mation process of YAEN is shown in Figure 7. 

 

Figure 7. Illustration of the YAEN yaw angle estimation process. YAEN contains an object detector, 

a part encoder, and a part decoder. 

Specifically, the input of YAEN is an RGB image. In the first step, this image is nor-

malized to a fixed size (in this paper, the normalized image size is 640 × 640). In the sec-

ond step, the normalized image is fed into a convolutional neural network for vehicle and 

vehicle part detection. In the third step, the detection results of the components are en-

coded. The coordinates, type, and size of the centroids of multiple parts are represented 

in an information matrix. Finally, the information matrix is input into the yaw angle de-

coding network to obtain the prediction results of the vehicle yaw angle. The model code 

is available at https://github.com/Hurri-cane/Yaw-angle-estimation-network (accessed on 

8 September 2022). 

4.1. Part-Encoding Network 

The part-encoding network encodes the original image into the semantic “material” 

that constitutes the yaw angle. It consists of an advanced object detector and an encoder. 

Any type of advanced object detector [22,35,36] can be applied as needed. Assuming a 

preference for rapid encoding, we used a single-stage network as the object detector: 

YOLOv5-s [46]. This network can achieve high performance for vehicle and vehicle part 

detection (Table 2), with an 𝑚𝐴𝑃 of up to 0.996, meeting the criteria set for the present 

study. 

Figure 6. Illustration of the relationship between the vehicle yaw angle (θ) and the vehicle in a
two-dimensional pixel coordinate system.

The mapping relationship represented by Equation (4) is what we want YAEN to learn.
We designed YAEN as an encoding–decoding structure consisting of two parts: a

part-encoding network and a yaw angle decoding network. The former is used to encode
the information (e.g., the position and size of the object parts) and to obtain the information
matrix, which consists of an advanced object detector and a part encoder. The latter is
used to decode the information matrix and calculate the object yaw angle. The estimation
process of YAEN is shown in Figure 7.



Sensors 2022, 22, 8027 9 of 20

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 6. Illustration of the relationship between the vehicle yaw angle (θ) and the vehicle in a two-

dimensional pixel coordinate system. 

We designed YAEN as an encoding–decoding structure consisting of two parts: a 

part-encoding network and a yaw angle decoding network. The former is used to encode 

the information (e.g., the position and size of the object parts) and to obtain the infor-

mation matrix, which consists of an advanced object detector and a part encoder. The lat-

ter is used to decode the information matrix and calculate the object yaw angle. The esti-

mation process of YAEN is shown in Figure 7. 

 

Figure 7. Illustration of the YAEN yaw angle estimation process. YAEN contains an object detector, 

a part encoder, and a part decoder. 

Specifically, the input of YAEN is an RGB image. In the first step, this image is nor-

malized to a fixed size (in this paper, the normalized image size is 640 × 640). In the sec-

ond step, the normalized image is fed into a convolutional neural network for vehicle and 

vehicle part detection. In the third step, the detection results of the components are en-

coded. The coordinates, type, and size of the centroids of multiple parts are represented 

in an information matrix. Finally, the information matrix is input into the yaw angle de-

coding network to obtain the prediction results of the vehicle yaw angle. The model code 

is available at https://github.com/Hurri-cane/Yaw-angle-estimation-network (accessed on 

8 September 2022). 

4.1. Part-Encoding Network 

The part-encoding network encodes the original image into the semantic “material” 

that constitutes the yaw angle. It consists of an advanced object detector and an encoder. 

Any type of advanced object detector [22,35,36] can be applied as needed. Assuming a 

preference for rapid encoding, we used a single-stage network as the object detector: 

YOLOv5-s [46]. This network can achieve high performance for vehicle and vehicle part 

detection (Table 2), with an 𝑚𝐴𝑃 of up to 0.996, meeting the criteria set for the present 

study. 

Figure 7. Illustration of the YAEN yaw angle estimation process. YAEN contains an object detector, a
part encoder, and a part decoder.

Specifically, the input of YAEN is an RGB image. In the first step, this image is
normalized to a fixed size (in this paper, the normalized image size is 640× 640). In the
second step, the normalized image is fed into a convolutional neural network for vehicle
and vehicle part detection. In the third step, the detection results of the components are
encoded. The coordinates, type, and size of the centroids of multiple parts are represented
in an information matrix. Finally, the information matrix is input into the yaw angle
decoding network to obtain the prediction results of the vehicle yaw angle. The model code
is available at https://github.com/Hurri-cane/Yaw-angle-estimation-network (accessed
on 8 September 2022).

4.1. Part-Encoding Network

The part-encoding network encodes the original image into the semantic “material”
that constitutes the yaw angle. It consists of an advanced object detector and an encoder.
Any type of advanced object detector [22,35,36] can be applied as needed. Assuming
a preference for rapid encoding, we used a single-stage network as the object detector:
YOLOv5-s [46]. This network can achieve high performance for vehicle and vehicle part
detection (Table 2), with an mAP of up to 0.996, meeting the criteria set for the present study.

Table 2. Object detector network training results. Note: average accuracy of all classes: 0.996;
l_f: headlights, l_r: taillights, and r_m: rearview mirrors.

Method Car Wheel l_f l_r r_m mAP

Object Detector 0.996 0.995 0.996 0.996 0.995 0.996

The object detector detects both vehicles and vehicle parts. When many vehicles
are present in an image, the parts belonging to different vehicles must be categorized
into different vehicles. We employed a bottom-up approach to construct different sets of
vehicle parts. First, the 2D BBoxes of all vehicles and vehicle parts are extracted from the
image. Then, the center positions of the parts are calculated based on the 2D BBoxes. If
a center position falls into the 2D BBox of a given vehicle, then this part is classified into
the corresponding vehicle. In this way, the 2D BBox of each vehicle part in the original
image is obtained (Figure 8). This method does not perfectly solve the problem of part
categorization, especially in cases in which vehicle obscuring each other; this method was
selected as a compromise to deal with the multivehicle problem.

https://github.com/Hurri-cane/Yaw-angle-estimation-network


Sensors 2022, 22, 8027 10 of 20

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21 
 

 

Table 2. Object detector network training results. Note: average accuracy of all classes: 0.996; 𝐥_𝐟: 

headlights, 𝐥_𝐫: taillights, and 𝐫_𝐦: rearview mirrors. 

Method Car Wheel 𝐥_𝐟 𝐥_𝐫 𝐫_𝐦 𝐦𝐀𝐏 

Object Detector 0.996 0.995 0.996 0.996 0.995 0.996 

The object detector detects both vehicles and vehicle parts. When many vehicles are 

present in an image, the parts belonging to different vehicles must be categorized into 

different vehicles. We employed a bottom-up approach to construct different sets of vehi-

cle parts. First, the 2D BBoxes of all vehicles and vehicle parts are extracted from the im-

age. Then, the center positions of the parts are calculated based on the 2D BBoxes. If a 

center position falls into the 2D BBox of a given vehicle, then this part is classified into the 

corresponding vehicle. In this way, the 2D BBox of each vehicle part in the original image 

is obtained (Figure 8). This method does not perfectly solve the problem of part categori-

zation, especially in cases in which vehicle obscuring each other; this method was selected 

as a compromise to deal with the multivehicle problem. 

 

Figure 8. Illustration of part division process after the object detector detects vehicles and parts. 

The encoder then encodes the vehicle parts obtain the information matrix. At this 

stage, the pixel information of the parts is discarded, and the category, position, and size 

information detected by the part detector are used directly. This allows the yaw angle 

decoder to obtain enough clear information to simplify the design of the yaw angle de-

coder. Experiments showed that this allows the yaw angle decoding network to achieve 

accurate decoding of the yaw angle with minimal computation. Taking part 𝑖 of the vehi-

cle as an example, the information of part 𝑖 can be encoded as 𝜆𝑖 = [𝐶𝑖 , 𝑥𝑖𝑐 , 𝑦𝑖𝑐 , 𝐴𝑖] , 

where 𝐶𝑖 is the category of part I, 𝑥𝑖𝑐  and 𝑦𝑖𝑐  are the center coordinates of part I, and 𝐴𝑖 

is the relative size of the 2D BBox pixel area between parts. The encoding results of each 

part are concatenated vertically to form an information matrix (M). M contains the pose 

information of the vehicle: 

1 1 1 1 1

. . . . .

. . . . .

( 8)

c c

i i ic ic i

n n nc nc n

C x y A

M C x y A

C x y A
n







   
   
   
    
   
   
   
    

  

where 𝑛 denotes the number of parts, 𝐶𝑖 is the category of part 𝑖, 𝑥𝑖𝑐  and 𝑦𝑖𝑐 are the cen-

ter coordinates of part 𝑖, and 𝐴𝑖 is the relative size of the 2D BBox pixel area between 

parts. 

Figure 8. Illustration of part division process after the object detector detects vehicles and parts.

The encoder then encodes the vehicle parts obtain the information matrix. At this
stage, the pixel information of the parts is discarded, and the category, position, and size
information detected by the part detector are used directly. This allows the yaw angle
decoder to obtain enough clear information to simplify the design of the yaw angle decoder.
Experiments showed that this allows the yaw angle decoding network to achieve accurate
decoding of the yaw angle with minimal computation. Taking part i of the vehicle as an
example, the information of part i can be encoded as λi = [Ci, xic, yic, Ai], where Ci is the
category of part I, xic and yic are the center coordinates of part I, and Ai is the relative size
of the 2D BBox pixel area between parts. The encoding results of each part are concatenated
vertically to form an information matrix (M). M contains the pose information of the vehicle:

M =


λ1
.

λi
.

λn

 =


C1 x1c y1c A1
. . . .

Ci xic yic Ai
. . . .

Cn xnc ync An


(n×8)

where n denotes the number of parts, Ci is the category of part i, xic and yic are the center
coordinates of part i, and Ai is the relative size of the 2D BBox pixel area between parts.

The size of M is n× 8 instead of n× 4 because we used one-hot encoding to represent
the type of part i (Ci). One-hot encoding slightly improves the accuracy of our framework
and will be described in Section 5. To facilitate the design of the yaw angle decoding
network, the size of the information matrix must be fixed. Due to the self-occlusion of the
vehicle [47,48], the maximum number of parts that can be observed at one time is about
six, so we designed the following method to fix the information matrix at a size of 6× 8.
For n ≤ 6, 6− n empty part codes are added, λnull = [0, 0, 0, 0, 0, 0, 0, 0], at the end. For
n > 6, n− 6 part codes are randomly discarded. Eventually, the six part codes are shuffled
(which may contain empty part codes) to make the network more adaptive. In this way,
the information matrix of the specified size is obtained through the part-encoding network.

4.2. Yaw Angle Decoding Network

The yaw angle decoding network is used to decode the information matrix to obtain
the vehicle pose. Our input information matrix is obtained by refining the information
in the image. It has high information purity, so the strategy adopted here extracts richer
information by enhancing the network width rather than extracting deeper semantic
information by increasing the network depth.



Sensors 2022, 22, 8027 11 of 20

4.2.1. Design of the Network Structure

We used a convolutional neural network to extract the information of yaw angles
embedded in the information matrix (Figure 9). Given the significant difference between
the information represented by rows and columns in the matrix, we used an asymmetric
convolutional kernel [49] in horizontal and vertical convolutions. The horizontal convo-
lution extracts the information composed of different combinations of parts. We used a
1× 8 convolution kernel to compress the information matrix into a 6× 1 matrix with c
channels. The six elements in the 6× 1 matrix represent the complete information of six
parts. Next, the information between different parts is upsampled [50] and fused into the
information H_message from the combination of different parts. Moreover, the vertical
convolution extracts the information from different information types (category, position,
and size) of all the parts. We used a 6× 1 convolution kernel to compress the information
matrix into a 1× 8 matrix with c channels. The eight elements in the 1× 8 matrix represent
the types of information of all parts. Next, all parts with different types are sampled and
fused into the information V_message from the combination of different types. In Section 5,
we will describe the design of a controlled trial to demonstrate the use of the H_message
and V_message. Experimental results show that the network with H_message alone outper-
forms that with V_message alone and that which combines H_message and V_message.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 9. Structure of the pose-decoding network. The convolutional layer uses asymmetric convo-

lution, and the combination of information is extracted by convolutional kernels in two directions. 

After testing, among the three network structures, structure H achieves the best network perfor-

mance with the same number of parameters; therefore, we adopted structure H as the network 

structure. 

4.2.2. Design of Loss Functions 

In addition to the design of the network structure, to obtain accurate estimation re-

sults, we needed an appropriate loss function design to make the network converge in a 

given direction. The design of the loss function is challenging due to the periodicity of the 

angle [51]. Hence, we designed a total of three loss functions for testing. 

(a) SSE Loss Function of Angle: 

The SSE (sum of squared errors) loss function of angle uses the SSE between the pre-

dicted angle and the labeled angle as the loss: 

2|| ||
pre labelL = Ang Ang
j j

j N




 (5) 

where 𝑁 denotes a set of instrumental data, and 𝐴𝑛𝑔𝑗
𝑝𝑟𝑒 and 𝐴𝑛𝑔𝑗

𝑙𝑎𝑏𝑒𝑙  are the predicted 

yaw angle and label yaw angle for data 𝑗, respectively. However, because the yaw angles 

fall in the range of 0 to 360, the angles are continuous rather than abrupt in real-world 

conditions. Yaw angles of 0° and 360° indicate the same physical meaning. However, 

yaw angles of 0° and 360° are the two results with the greatest difference. To solve the 

above problem, we designed the SSE loss function of the minimum angle. 

(b) SSE Loss Function of Minimum Angle: 

The SSE loss function of the minimum angle uses the SSE between the predicted an-

gle and the label angle in the real world as the loss: 

2|| ( , ) ||

180 360
( , )

360 180 360

labelpre

j j

j N

L = f Ang Ang

a b a b or a b
f a b

a b a b



     
 

    



 (6) 

Where 𝑓(𝑎, 𝑏) is a function of the real-world angular deviation of 𝑎 and 𝑏. The deviation 

calculated by 𝑓(𝑎, 𝑏) is closer to real-world conditions and can be used as a loss to im-

prove the model accuracy. However, the training results show that such a loss function 

Figure 9. Structure of the pose-decoding network. The convolutional layer uses asymmetric convo-
lution, and the combination of information is extracted by convolutional kernels in two directions.
After testing, among the three network structures, structure H achieves the best network performance
with the same number of parameters; therefore, we adopted structure H as the network structure.

4.2.2. Design of Loss Functions

In addition to the design of the network structure, to obtain accurate estimation results,
we needed an appropriate loss function design to make the network converge in a given
direction. The design of the loss function is challenging due to the periodicity of the
angle [51]. Hence, we designed a total of three loss functions for testing.

(a) SSE Loss Function of Angle:

The SSE (sum of squared errors) loss function of angle uses the SSE between the
predicted angle and the labeled angle as the loss:

L = ∑
j∈N
||Angpre

j − Anglabel
j ||

2 (5)



Sensors 2022, 22, 8027 12 of 20

where N denotes a set of instrumental data, and Angpre
j and Anglabel

j are the predicted yaw
angle and label yaw angle for data j, respectively. However, because the yaw angles fall in
the range of 0 to 360, the angles are continuous rather than abrupt in real-world conditions.
Yaw angles of 0◦ and 360◦ indicate the same physical meaning. However, yaw angles of
0◦ and 360◦ are the two results with the greatest difference. To solve the above problem, we
designed the SSE loss function of the minimum angle.

(b) SSE Loss Function of Minimum Angle:

The SSE loss function of the minimum angle uses the SSE between the predicted angle
and the label angle in the real world as the loss:

L = ∑
j∈N
|| f (Angpre

j , Anglabel
j )||2

f (a, b) =

{
|a− b| |a− b| ≤ 180 or|a− b| > 360

360− |a− b| 180 < |a− b| ≤ 360

(6)

where f (a, b) is a function of the real-world angular deviation of a and b. The deviation cal-
culated by f (a, b) is closer to real-world conditions and can be used as a loss to improve the
model accuracy. However, the training results show that such a loss function complicates
model convergence because the parameter gradient decreases randomly during network
training. Let a and b be two similar pieces of data with consistent labels (such data are com-
mon in datasets). During the training, their predicted results (resj = |Angpre

j − Anglabel
j |)

are likely to approximate resa〈180, resb〉180. The gradient descent will change the model in
the direction of loss reduction, but a network with the same input will converge in opposite
directions (Figure 10). This creates a problem in the network, with the network parameters
in oscillation, making model convergence difficult.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

complicates model convergence because the parameter gradient decreases randomly dur-

ing network training. Let 𝑎 and 𝑏 be two similar pieces of data with consistent labels 

(such data are common in datasets). During the training, their predicted results (𝑟𝑒𝑠𝑗 =

|𝐴𝑛𝑔𝑗
𝑝𝑟𝑒

− 𝐴𝑛𝑔𝑗
𝑙𝑎𝑏𝑒𝑙|) are likely to approximate 𝑟𝑒𝑠𝑎 < 180, 𝑟𝑒𝑠𝑏 > 180. The gradient de-

scent will change the model in the direction of loss reduction, but a network with the same 

input will converge in opposite directions (Figure 10). This creates a problem in the net-

work, with the network parameters in oscillation, making model convergence difficult. 

 

Figure 10. Illustration of the convergence direction of Equation (6). 

(c) SSE Loss Function of Adding the Sign: 

To solve the above problem, we proposed an SSE loss function of adding the sign. 

We split yaw angle Y from 0 to 360° into two parameters, 𝑆 and 𝐴 (Equation (7)); the 

function of 𝑌, 𝐴, 𝑆 is shown in Figure 11. The loss function (𝐿) is composed of 𝐿𝐴 and 𝐿𝑆 

(Equation (8)). In this way, the mutations of 𝑌 at 0 and 360° can be transformed into 

the mutations of S at 0 and 1. As shown in Figure 11, unlike the yaw angle parameter 

(Y), parameter A is continuous. The prediction of 𝑆 by a deep neural network is relatively 

simple; it only needs to classify the vehicle left-facing pose (0 ≤ 𝑌 < 180) as 𝑆 = 1 and 

the vehicle right-facing pose (180 ≤ 𝑌 < 360) as 𝑆 = 0. The accuracy of our model is dra-

matically improved by representing the angle in this way: 

 
 

 

,1 180
,

360 ,0 180

Y Y
A S

Y Y

 
 

 
 (7) 

   2 2|| || || ||label labelpre pre

A S j j j j

j N j N

L L L A A S S
 

        (8) 

where 𝑆 is the sign position indicating the range of 𝑌, and 𝐿𝐴 and 𝐿𝑆 represent the angle 

loss and sign loss, respectively. 

 

Figure 11. Illustration of the function between Y, A, and S. 

Figure 10. Illustration of the convergence direction of Equation (6).

(c) SSE Loss Function of Adding the Sign:

To solve the above problem, we proposed an SSE loss function of adding the sign. We
split yaw angle Y from 0 to 360◦ into two parameters, S and A (Equation (7)); the function
of Y, A, S is shown in Figure 11. The loss function (L) is composed of LA and LS (Equation
(8)). In this way, the mutations of Y at 0 and 360◦ can be transformed into the mutations of
S at 0 and 1. As shown in Figure 11, unlike the yaw angle parameter (Y), parameter A is
continuous. The prediction of S by a deep neural network is relatively simple; it only needs
to classify the vehicle left-facing pose (0 ≤ Y < 180) as S = 1 and the vehicle right-facing
pose (180 ≤ Y < 360) as S = 0. The accuracy of our model is dramatically improved by
representing the angle in this way:

(A, S) =
{

(Y, 1) Y < 180
(360−Y, 0) Y ≥ 180

(7)



Sensors 2022, 22, 8027 13 of 20

L = LA + LS = ∑
j∈N

(||Apre
j − Alabel

j ||
2) + ∑

j∈N
(||Spre

j − Slabel
j ||

2) (8)

where S is the sign position indicating the range of Y, and LA and LS represent the angle
loss and sign loss, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

complicates model convergence because the parameter gradient decreases randomly dur-

ing network training. Let 𝑎 and 𝑏 be two similar pieces of data with consistent labels 

(such data are common in datasets). During the training, their predicted results (𝑟𝑒𝑠𝑗 =

|𝐴𝑛𝑔𝑗
𝑝𝑟𝑒

− 𝐴𝑛𝑔𝑗
𝑙𝑎𝑏𝑒𝑙|) are likely to approximate 𝑟𝑒𝑠𝑎 < 180, 𝑟𝑒𝑠𝑏 > 180. The gradient de-

scent will change the model in the direction of loss reduction, but a network with the same 

input will converge in opposite directions (Figure 10). This creates a problem in the net-

work, with the network parameters in oscillation, making model convergence difficult. 

 

Figure 10. Illustration of the convergence direction of Equation (6). 

(c) SSE Loss Function of Adding the Sign: 

To solve the above problem, we proposed an SSE loss function of adding the sign. 

We split yaw angle Y from 0 to 360° into two parameters, 𝑆 and 𝐴 (Equation (7)); the 

function of 𝑌, 𝐴, 𝑆 is shown in Figure 11. The loss function (𝐿) is composed of 𝐿𝐴 and 𝐿𝑆 

(Equation (8)). In this way, the mutations of 𝑌 at 0 and 360° can be transformed into 

the mutations of S at 0 and 1. As shown in Figure 11, unlike the yaw angle parameter 

(Y), parameter A is continuous. The prediction of 𝑆 by a deep neural network is relatively 

simple; it only needs to classify the vehicle left-facing pose (0 ≤ 𝑌 < 180) as 𝑆 = 1 and 

the vehicle right-facing pose (180 ≤ 𝑌 < 360) as 𝑆 = 0. The accuracy of our model is dra-

matically improved by representing the angle in this way: 

 
 

 

,1 180
,

360 ,0 180

Y Y
A S

Y Y

 
 

 
 (7) 

   2 2|| || || ||label labelpre pre

A S j j j j

j N j N

L L L A A S S
 

        (8) 

where 𝑆 is the sign position indicating the range of 𝑌, and 𝐿𝐴 and 𝐿𝑆 represent the angle 

loss and sign loss, respectively. 

 

Figure 11. Illustration of the function between Y, A, and S. Figure 11. Illustration of the function between Y, A, and S.

5. Experiment and Analysis

Experiments were designed to validate our model presented in Section 4, including
experiments on the part-encoding network and the yaw angle decoding network. The
part-encoding network and the yaw angle decoding network are independent of each other
when training the model. The input to the part encoding network is the images of various
vehicles and the bounding box annotations of the vehicles and vehicle parts. The inputs
to the yaw angle decoding network are the information matrices, which are obtained by
encoding the manual labels of the vehicle parts, and the yaw angle, which is collected by
the GPS. Because any type of advanced object detector is acceptable for the part-encoding
network, in this section, we do not focus on its optimal design but on designing the network
structure and the network parameters of the yaw angle decoding network. We compared
the yaw angle decoding network structures and verified the methods proposed here by
designing an ablation experiment.

5.1. Evaluation Metrics

To assess the effectiveness of the model, appropriate evaluation metrics are required.
For the part-encoding network, we used the classic mean average precision (mAP) met-
ric [52], which characterizes the accuracy and precision of the object detection model. For
the yaw angle decoding network, we used the average value of the yaw angle deviation,
denoted as E, to characterize the model accuracy. To evaluate the correct rate of angle
estimation, we proposed the passing rate of yaw angle deviation (EPa), which indicates
that the percentage of angle prediction error is less than a◦ in the prediction. In a driving
scenario, the variation of yaw angle is greater than 10◦ whether the vehicle is changing
lanes or steering. We consider that the prediction error of yaw angle estimation is tolerable
within 10◦, so we adopted EP10 as the primary evaluation metric. We also tested the metric
EP5 to test the model correctness with subtle angle changes.

5.2. Experiment with Object-Encoding Network

With the object-encoding network, the information of the parts from the images is
extracted to form the information matrix. The Yaw Angle Dataset including 17,258 data
point was used to train the vehicle and vehicle part object detectors. The training results are
shown in Table 2. The mAP metric of the result achieves an accuracy of 99.6%, satisfying
our coding requirements.



Sensors 2022, 22, 8027 14 of 20

5.3. Experiment with Yaw Angle Decoding Network

We use the Yaw Angle Dataset (which contains 15,863 data point) to train the yaw
angle decoding network proposed in Section 4.2. With the aim of obtaining the vehicle
yaw angle directly from the image, we used the yaw angle and image datasets in the Yaw
Angle Dataset to evaluate the model performance. The Val Yaw Angle Dataset was used to
evaluate the performance of the yaw angle decoding network, which is composed of 10%
selected data from the Yaw Angle Dataset that were not involved in model training, with
1586 information matrices. The image dataset consisting of 1915 vehicle images was used
to evaluate the performance of YAEN. In these images, we considered both realistic driving
scenes and the variation of yaw angle, including scenes representing following, meeting,
and figure-eight loop scenarios for both vehicles.

5.3.1. Ablation of Network Structure

Many attempts were made to design the structure of the yaw angle decoding network,
and the performance results of different models were obtained by training different models
many times. The main structures include the horizontal convolution structure (H), the
vertical convolution structure (V), and the fusion structure of horizontal and vertical
convolution (H + V). The horizontal convolution kernel with a larger horizontal size is used
to extract the complete information of each component. The vertical convolution kernel with
a larger vertical size is used to extract information consisting of combinations of different
parts. We maintained the sizes of all model training parameters below 3 M(million) and
trained all network structures using the Adam optimizer [53]. Moreover, the learning rates
and training epochs of different models were kept consistent. The performance of different
models on the two datasets are shown in Table 3.

Table 3. The performance of different network structures on the Val yaw angle dataset and Image
dataset. Note: E: average error of estimated angle; EPa (%): percentage of prediction error of angles
less than a◦ in the prediction; V: vertical convolution structure; H: horizontal convolution structure;
H + V: the fusion structure of V and H.

Model Method Size
Val Yaw Angle Dataset Image Dataset

E(◦) EP5(%) EP10(%) E(◦) EP5(%) EP10(%)

model1 V 2.57 M 10.41 58.01 79.00 10.06 59.74 81.46
model2 H 2.82 M 6.76 68.35 88.59 7.01 69.77 90.97
model3 H + V 2.94 M 7.30 66.02 86.76 7.87 70.08 90.29

According to Table 3, horizontal convolution outperforms vertical convolution in
extracting the vehicle yaw angle. model3, which is obtained by fusing the vertical ex-
tracted information into the horizontal convolution model, has achieves a lower model
performance compared with model2, which includes horizontal convolution. This result
indicates that the combination of information from different parts extracted by horizontal
convolution conveys more accurate information of yaw angle than the combination of
different types of information from all parts extracted by vertical convolution. It is for this
reason that method H performs better than method H + V with roughly the same amount
of parameters.

5.3.2. Ablation of Tricks

To improve the model performance, we also identified several useful method in
addition to network structure adjustment. To verify the effectiveness of these methods, we
conducted an ablation experiment. The main methods are one-hot encoding and varying
loss functions. One-hot encoding adopts the one-hot code to indicate the type of each part.
For example, there are five part types: none, wheel, headlight, taillight, and rearview mirror.
When one-hot encoding is not used, the expressions of the wheel and taillight are 1 and 3,
respectively; when one-hot encoding is adopted, the expressions become [0,1,0,0,0] and



Sensors 2022, 22, 8027 15 of 20

[0,0,0,1,0], respectively. We expect one-hot encoding to better represent the type of parts
and the design of different loss functions to solve the convergence problem of the model, as
specified in Section 4.2.2. Similarly, we controlled the sizes of all model training parameters
below 3 M (million) and fixed the network structures as horizontal convolution (H). All
network structures were trained with an Adam optimizer [53], and the learning rates and
training epochs of different models were kept consistent. The performance results of the
ablation experiment are shown in Table 4.

Table 4. The performance of different methods on the Val yaw angle dataset and image dataset. Note:
L_1: loss function using SSE loss, L_2: loss function using the SSE loss of minimum angle, L_3: loss
function using the SSE loss of adding the sign; OH: use of one-hot encoding to represent the part type.

Model Method Tricks Size
Val Yaw Angle Dataset Image Dataset

E(◦) EP5(%) EP10(%) E(◦) EP5(%) EP10(%)

model2 H L_ 1 2.82 M 6.76 68.35 88.59 7.01 69.77 90.97

model4 H L_ 2 2.82 M 6.69 54.29 76.17 6.41 55.35 80.05

model5 H L_ 3 2.82 M 3.64 78.31 93.63 3.33 82.56 96.14

model6 H L_ 3+ OH 2.82 M 3.40 78.69 93.63 3.09 83.19 96.45

Comparing model2, model4, and model5 in Table 4, we found that the problems of
abrupt angle and model convergence can be effectively solved by the loss function using
the SSE of adding the sign. Compared with the loss function using angle SSE, the accuracy
(E and EP10) of the loss function using the SSE of adding the sign are improved by 3.68◦

and 5.17%, respectively. On the contrary, the loss function using the SSE of minimum angle
correctly represents the deviation between the predicted angle and the actual angle in the
real world, which makes model convergence difficult and obtains the worst result. Results
from model5 and model6 show that the use of one-hot encoding only slightly improves
the network performance, more effectively conveying the information of part types to
the network and improving the model accuracy (E) by 0.24◦ and EP10 by 0.31%. The best
model is model6, with an average angle estimation error of 3.09◦ and an EP10 value up to
96.45% on the Image dataset.

Benefiting from our network design, our model can achieve a fast detection speed
without requiring excessive computational resources. The YAEN model requires minimal
video memory (less than 2 GB) and is very fast using the available graphics card, RTX2070s.
We performed two tests of YAEN. The first test evaluated the detection speed of the yaw
angle decoding network, the input of which is the information matrix. The other test
examined the detection speed of the whole model, the input of which is an image with a
resolution of 1200× 1920× 3. The test results of the two tests are shown in Table 5. Clearly,
the yaw angle decoding network in YAEN consumes few resources and can achieve a
detection speed of 97FPS in the whole model test, satisfying real-time requirements.

Table 5. Evaluation results of the YAEN model detecting speed on the RTX2070s computing platform.

Platform
FPS: Yaw Angle Decoder FPS: Complete Model

Fastest Average Slowest Fastest Average Slowest

RTX2070s 503 497 465 98 97 93

5.4. Visualization of Detection

We selected typical driving scenes to visualize the detection, including a same-direction
following scene and an opposite-direction meeting scene (Figure 12). In the same-direction
following scene, the relative yaw angle deviation between the observed vehicle in a normal



Sensors 2022, 22, 8027 16 of 20

state and the observing vehicle is about 180◦ (first row in Figure 12). When the observed ve-
hicle aims to cut into the main lane from other lanes, its yaw angle relative to the observing
vehicle changes (second row of Figure 12). The change in yaw angle can be detected before
the vehicle leaves its lane, enabling prediction of the movements of surrounding vehicles in
advance, which is essential to improving driving safety. In the opposite-direction meeting
scene, the movements of the surrounding vehicles can be predicted by accurately predicting
the yaw angle. In addition to the typical road scenes, we also estimated the vehicle yaw
angle in scenarios not common in the normal driving process to reflect the performance of
yaw angle detection (last two lines in Figure 12). Our model can accurately predict the yaw
angles of all kinds of attitudes.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 12. Evaluation of vehicle yaw angle estimation in different scenes. The first to the fourth 

columns show the detection results of the vehicle, the vehicle parts, the estimated value of yaw 

angle, and the label value of yaw angle, respectively. 

The estimation of yaw angle by YAEN is not only accurate but also very stable. We 

evaluated the stability of YAEN in several scenes, including real roads and closed driving 

fields (Figure 13). Figure 13 shows the line graphs of the actual yaw angle and the YAEN-

predicted yaw angle in several scenes. Results show that YAEN can accurately and stably 

predict vehicle yaw angle. In particular, the correct estimation of estimation error less than 

10° is more than 99%. This accurate and stable estimation can support high-level decision 

tasks. For example, we can judge whether the vehicle is out of control by observing the 

change in yaw angle and predict the future vehicle trajectory according to the yaw angle. 

This is important information for driverless vehicles. 

Figure 12. Evaluation of vehicle yaw angle estimation in different scenes. The first to the fourth
columns show the detection results of the vehicle, the vehicle parts, the estimated value of yaw angle,
and the label value of yaw angle, respectively.

The estimation of yaw angle by YAEN is not only accurate but also very stable. We
evaluated the stability of YAEN in several scenes, including real roads and closed driving
fields (Figure 13). Figure 13 shows the line graphs of the actual yaw angle and the YAEN-



Sensors 2022, 22, 8027 17 of 20

predicted yaw angle in several scenes. Results show that YAEN can accurately and stably
predict vehicle yaw angle. In particular, the correct estimation of estimation error less than
10◦ is more than 99%. This accurate and stable estimation can support high-level decision
tasks. For example, we can judge whether the vehicle is out of control by observing the
change in yaw angle and predict the future vehicle trajectory according to the yaw angle.
This is important information for driverless vehicles.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21 
 

 

  

(a) Following (b) Meeting 

 

(c) Circling around 

Figure 13. Line graph of YAEN-estimated yaw angle and label yaw angle in typical scenes. Curves 

of the labeled and predicted values of the vehicle yaw angle in (a) a following scene, 𝐸 =

1.67, 𝐸𝑃5 = 95.97%, 𝐸𝑃10 = 99.66%; (b) a meeting scene, 𝐸 = 1.82, 𝐸𝑃5 = 95.87%, 𝐸𝑃10 = 99.56%; 

and (c) a figure-eight loop scene, 𝐸 = 3.40, 𝐸𝑃5 = 75.54%, 𝐸𝑃10 = 96.73%. 

5.5. Analysis and Discussion 

We did not evaluate the performance of our algorithm on a publicly available dataset 

due to deficiencies in the accuracy of the current pose estimation dataset; however, in the 

future, we will make our dataset publicly available. To further illustrate the superiority of 

our method, we performed the following analysis. 

The proposed framework based on part arrangement for accurate yaw angle estima-

tion is sensitive to the vehicle structure but not to the appearance of the vehicle (e.g., color, 

texture, etc.) because the information on vehicle parts is obtained by abstraction of the 

part-encoding network, which does not contain color and texture information about vehi-

cle parts. Thanks to the improvement of object detection performance in recent years, the 

part-encoding network is able to meet our requirement, as shown in Table 2. We selected 

two of the most common vehicles encountered in daily life: SUVs and sedans. Because of 

the use of our asymmetric convolution and the design of the loss function with adding the 

sign, our model performs well. The accuracy of our model is shown in Table 4. The aver-

age predicted yaw error for both models is below 3.1 degrees. The robustness of our model 

is shown in Figure 13; the predicted and true values are in a relatively stable state for 

following and meeting scenarios. Thus, our proposed framework for prediction of the ve-

hicle attitude based on part arrangement is able to predict the vehicle’s yaw angle accu-

rately and stably. 

Figure 13. Line graph of YAEN-estimated yaw angle and label yaw angle in typical scenes. Curves
of the labeled and predicted values of the vehicle yaw angle in (a) a following scene, E = 1.67,
EP5 = 95.97%, EP10 = 99.66%; (b) a meeting scene, E = 1.82, EP5 = 95.87%, EP10 = 99.56%;
and (c) a figure-eight loop scene, E = 3.40, EP5 = 75.54%, EP10 = 96.73%.

5.5. Analysis and Discussion

We did not evaluate the performance of our algorithm on a publicly available dataset
due to deficiencies in the accuracy of the current pose estimation dataset; however, in the
future, we will make our dataset publicly available. To further illustrate the superiority of
our method, we performed the following analysis.

The proposed framework based on part arrangement for accurate yaw angle estimation
is sensitive to the vehicle structure but not to the appearance of the vehicle (e.g., color,
texture, etc.) because the information on vehicle parts is obtained by abstraction of the
part-encoding network, which does not contain color and texture information about vehicle
parts. Thanks to the improvement of object detection performance in recent years, the
part-encoding network is able to meet our requirement, as shown in Table 2. We selected
two of the most common vehicles encountered in daily life: SUVs and sedans. Because



Sensors 2022, 22, 8027 18 of 20

of the use of our asymmetric convolution and the design of the loss function with adding
the sign, our model performs well. The accuracy of our model is shown in Table 4. The
average predicted yaw error for both models is below 3.1 degrees. The robustness of our
model is shown in Figure 13; the predicted and true values are in a relatively stable state
for following and meeting scenarios. Thus, our proposed framework for prediction of
the vehicle attitude based on part arrangement is able to predict the vehicle’s yaw angle
accurately and stably.

6. Conclusions and Future Work

In this paper, we found that object parts are strongly represented in the object pose and
proposed a framework for estimation of vehicle yaw angle based on the part arrangement,
which was proven to be effective by our dataset. The proposed framework is divided into
two steps: a part-encoding network and a yaw angle decoding network. With the part
encoder network, we refined the features of the vehicle parts in the image to obtain an
information matrix. This information matrix contains only the type, center point pixel coor-
dinates, and size information of the vehicle parts but not the edge and texture information
of the parts. This operation that makes the design of our yaw angle decoding network
lightweight and the model rapid. According to experimental testing, YAEN can achieve
a detection speed of 97FPS on the available graphics card, RTX2070s. In the yaw angle
decoding network, we proposed a network structure using non-pairwise convolution and a
loss function with adding the sign for the angle regression problem, resulting in an accuracy
improvement of more than 5%. According to network design and loss function design
our model achieves satisfactory performance. To verify the performance of our algorithm,
we constructed the Yaw Angle Dataset, and the experimental results show that YAEN can
achieve an accuracy of 96.45% for prediction errors below 10◦ in real driving scenario. In
conclusion, YAEN can detect the yaw angle of a vehicle quickly and accurately.

Despite YAEN’s satisfactory performance, it can still be improved. Currently, YAEN
mainly considers single-vehicle yaw angle detection, whereas yaw angle detection of
multiple vehicles is a challenging task for YAEN. Due to the possibility of mutual occlusion
between multiple vehicles, YAEN cannot always divide each vehicle part correctly, which
leads to the loss of yaw angle accuracy of multiple vehicles. As a result of limitations with
respect to the experimental site, most of the data we collected are horizontal roads, so
detection accuracy was not tested on ramps. In future work, we will consider using virtual
datasets to synthesize data for testing in scenarios such as ramps.

Author Contributions: Conceptualization, W.H. and B.Z.; Data curation, W.H.; Formal analysis,
X.Z.; Funding acquisition, B.Z.; Investigation, W.L.; Methodology, W.H.; Project administration, B.Z.;
Resources, B.Z.; Software, W.H.; Supervision, B.Z.; Validation, W.L., L.T. and X.Z.; Visualization, W.L.
and L.T.; Writing—original draft, W.H.; Writing—review and editing, W.H. and B.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Foshan Xianhu Laboratory of the Advanced Energy Science
and Technology Guangdong Laboratory (XHD2020-003), the 111 Project (B17034), the Innovative
Research Team Development Program of the Ministry of Education of China (IRT_17R83), and the
Special Fund for the Key Program of Science and Technology of Hubei Province, China (2020AAA001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the assistance of reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 8027 19 of 20

References
1. Bao, W.T.; Xu, B.; Chen, Z.Z. MonoFENet: Monocular 3D Object Detection With Feature Enhancement Networks. IEEE Trans.

Image Process. 2020, 29, 2753–2765. [CrossRef] [PubMed]
2. Zeng, K.; Wang, Y.N.; Mao, J.X.; Liu, C.P.; Peng, W.X.; Yang, Y. Deep Stereo Matching with Hysteresis Attention and Supervised

Cost Volume Construction. IEEE Trans. Image Process. 2022, 31, 812–822. [CrossRef] [PubMed]
3. Vaskevicius, N.; Birk, A. Revisiting Superquadric Fitting: A Numerically Stable Formulation. IEEE Trans. Pattern Anal. Mach.

Intell. 2019, 41, 220–233. [CrossRef] [PubMed]
4. Godard, C.; Mac Aodha, O.; Brostow, G.J.; IEEE. Unsupervised Monocular Depth Estimation with Left-Right Consistency.

In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2016.

5. Fu, H.; Gong, M.M.; Wang, C.H.; Batmanghelich, K.; Tao, D.C.; IEEE. Deep Ordinal Regression Network for Monocular Depth
Estimation. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, UT, USA, 18 June 2018.

6. Luvizon, D.C.; Nassu, B.T.; Minetto, R. A Video-Based System for Vehicle Speed Measurement in Urban Roadways. IEEE Trans.
Intell. Transp. Syst. 2017, 18, 1393–1404. [CrossRef]

7. Lan, J.H.; Li, J.; Hu, G.D.; Ran, B.; Wang, L. Vehicle speed measurement based on gray constraint optical flow algorithm. Optik
2014, 125, 289–295. [CrossRef]

8. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N.; IEEE. SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation
Great Again. In Proceedings of the 16th IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

9. Peng, S.D.; Liu, Y.; Huang, Q.X.; Zhou, X.W.; Bao, H.J.; Soc, I.C. PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019.

10. Zheng, X.T.; Chen, X.M.; Lu, X.Q. A Joint Relationship Aware Neural Network for Single-Image 3D Human Pose Estimation.
IEEE Trans. Image Process. 2020, 29, 4747–4758. [CrossRef]

11. Bisogni, C.; Nappi, M.; Pero, C.; Ricciardi, S. FASHE: A FrActal Based Strategy for Head Pose Estimation. IEEE Trans. Image
Process. 2021, 30, 3192–3203. [CrossRef]

12. Deng, X.M.; Zhang, Y.D.; Yang, S.; Tan, P.; Chang, L.; Yuan, Y.; Wang, H.A. Joint Hand Detection and Rotation Estimation Using
CNN. IEEE Trans. Image Process. 2018, 27, 1888–1900. [CrossRef]

13. Fikes, R.; Hart, P.E.; Nilsson, N.J. Learning and Executing Generalized Robot Plans. Artif. Intell. 1972, 3, 251–288. [CrossRef]
14. Zhang, M.; Fu, R.; Morris, D.D.; Wang, C. A Framework for Turning Behavior Classification at Intersections Using 3D LIDAR.

IEEE Trans. Veh. Technol. 2019, 68, 7431–7442. [CrossRef]
15. Lim, J.J.; Khosla, A.; Torralba, A. FPM: Fine Pose Parts-Based Model with 3D CAD Models. In Proceedings of the Computer

Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014.
16. Hinterstoisser, S.; Cagniart, C.; Ilic, S.; Sturm, P.; Navab, N.; Fua, P.; Lepetit, V. Gradient Response Maps for Real-Time Detection

of Textureless Objects. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 876–888. [CrossRef] [PubMed]
17. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the Computer Vision—ECCV 2006,

Graz, Austria, 7–13 May 2006.
18. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166.

[CrossRef]
19. Fu, C.Y.; Hoseinnezhad, R.; Bab-Hadiashar, A.; Jazar, R.N. Direct yaw moment control for electric and hybrid vehicles with

independent motors. Int. J. Veh. Des. 2015, 69, 1–24. [CrossRef]
20. Xu, Q.; Li, X.; Sun, Z.; Hu, W.; Chang, B. A Novel Heading Angle Estimation Methodology for Land Vehicles Based on Deep

Learning and Enhanced Digital Map. IEEE Access 2019, 7, 138567–138578. [CrossRef]
21. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]
22. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
23. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016.
24. Chen, W.; Duan, J.; Basevi, H.; Chang, H.J.; Leonardis, A.; Soc, I.C. PointPoseNet: Point Pose Network for Robust 6D Object Pose

Estimation. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA,
1–5 March 2020.

25. Dong, Z.; Liu, S.; Zhou, T.; Cheng, H.; Zeng, L.; Yu, X.; Liu, H.; IEEE. PPR-Net: Point-wise Pose Regression Network for Instance
Segmentation and 6D Pose Estimation in Bin-picking Scenarios. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019.

26. Guo, Z.; Chai, Z.; Liu, C.; Xiong, Z.; IEEE. A Fast Global Method Combined with Local Features for 6D Object Pose Estimation.
In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China,
8–12 July 2019.

27. Chen, X.; Chen, Y.; You, B.; Xie, J.; Najjaran, H. Detecting 6D Poses of Target Objects From Cluttered Scenes by Learning to Align
the Point Cloud Patches With the CAD Models. IEEE Access 2020, 8, 210640–210650. [CrossRef]

http://doi.org/10.1109/TIP.2019.2952201
http://www.ncbi.nlm.nih.gov/pubmed/31725382
http://doi.org/10.1109/TIP.2021.3135485
http://www.ncbi.nlm.nih.gov/pubmed/34932478
http://doi.org/10.1109/TPAMI.2017.2779493
http://www.ncbi.nlm.nih.gov/pubmed/29990010
http://doi.org/10.1109/TITS.2016.2606369
http://doi.org/10.1016/j.ijleo.2013.06.036
http://doi.org/10.1109/TIP.2020.2972104
http://doi.org/10.1109/TIP.2021.3059409
http://doi.org/10.1109/TIP.2017.2779600
http://doi.org/10.1016/0004-3702(72)90051-3
http://doi.org/10.1109/TVT.2019.2926787
http://doi.org/10.1109/TPAMI.2011.206
http://www.ncbi.nlm.nih.gov/pubmed/22442120
http://doi.org/10.1007/s11263-008-0152-6
http://doi.org/10.1504/IJVD.2015.073111
http://doi.org/10.1109/ACCESS.2019.2940899
http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1109/ACCESS.2020.3034386


Sensors 2022, 22, 8027 20 of 20

28. Guo, J.W.; Xing, X.J.; Quan, W.Z.; Yan, D.M.; Gu, Q.Y.; Liu, Y.; Zhang, X.P. Efficient Center Voting for Object Detection and 6D
Pose Estimation in 3D Point Cloud. IEEE Trans. Image Process. 2021, 30, 5072–5084. [CrossRef]

29. Li, Z.G.; Wang, G.; Ji, X.Y.; IEEE. CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF
Object Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27 October–2 November 2019.

30. Zhou, Y.; Liu, L.; Shao, L. Vehicle Re-Identification by Deep Hidden Multi-View Inference. IEEE Trans. Image Process. 2018, 27,
3275–3287. [CrossRef]

31. Rad, M.; Lepetit, V.; IEEE. BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of
Challenging Objects without Using Depth. In Proceedings of the 16th IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017.

32. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes. In Proceedings of the 14th Conference on Robotics—Science and Systems, Pittsburgh, PA, USA, 26–30 June 2018.

33. Luo, Y.M.; Xu, Z.T.; Liu, P.Z.; Du, Y.Z.; Guo, J.M. Multi-Person Pose Estimation via Multi-Layer Fractal Network and Joints
Kinship Pattern. IEEE Trans. Image Process. 2019, 28, 142–155. [CrossRef]

34. Brachmann, E.; Krull, A.; Michel, F.; Gumhold, S.; Shotton, J.; Rother, C. Learning 6D Object Pose Estimation Using 3D Object
Coordinates; Springer International Publishing: Berlin/Heidelberg, Germany, 2014.

35. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
36. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
37. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [CrossRef]

[PubMed]
38. Liu, Z.; Zhou, D.; Lu, F.; Fang, J.; Zhang, L. AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. In Proceedings

of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11 October 2021.
39. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on

learning. In Proceedings of the Thirty-first AAAI conference on artificial intelligence, San Francisco, CA, USA, 4–9 February 2017.
40. Wu, D.; Zhuang, Z.; Xiang, C.; Zou, W.; Li, X. 6D-VNet: End-To-End 6DoF Vehicle Pose Estimation From Monocular RGB Images.

In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long
Beach, CA, USA, 16–17 June 2019.

41. Song, X.; Wang, P.; Zhou, D.; Zhu, R.; Guan, C.; Dai, Y.; Su, H.; Li, H.; Yang, R.; Soc, I.C. ApolloCar3D: A Large 3D Car Instance
Understanding Benchmark for Autonomous Driving. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 16–21 June 2019.

42. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

43. Geiger, A.; Lenz, P.; Urtasun, R.; IEEE. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012.

44. Huang, X.; Wang, P.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. The ApolloScape Open Dataset for Autonomous Driving and Its
Application. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2702–2719. [CrossRef]

45. Xiang, Y.; Mottaghi, R.; Savarese, S. Beyond PASCAL: A benchmark for 3D object detection in the wild. In Proceedings of the
IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014.

46. Jocher, G.; Stoken, A.; Chaurasia, A. Ultralytics/yolov5: v6.0—YOLOv5n ‘Nano’ Models, Roboflow Integration, TensorFlow Export,
OpenCV DNN Support. Available online: https://zenodo.org/record/5563715#.Y0Yf50xByUk (accessed on 12 October 2021).

47. Ma, X.; Sun, X.; IEEE. Detection and Segmentation of Occluded Vehicles Based on Symmetry Analysis. In Proceedings of the 4th
International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017.

48. Reddy, N.D.; Vo, M.; Narasimhan, S.G.; Soc, I.C. Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks.
In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019.

49. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z.; IEEE. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2016.

50. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef]

51. Zheng, W.; Tang, W.; Jiang, L.; Fu, C.W. SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. In Proceedings
of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021.

52. Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

53. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.

http://doi.org/10.1109/TIP.2021.3078109
http://doi.org/10.1109/TIP.2018.2819820
http://doi.org/10.1109/TIP.2018.2865666
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/TPAMI.2018.2844175
http://www.ncbi.nlm.nih.gov/pubmed/29994331
http://doi.org/10.1177/0278364913491297
http://doi.org/10.1109/TPAMI.2019.2926463
https://zenodo.org/record/5563715#.Y0Yf50xByUk
http://doi.org/10.1109/TPAMI.2016.2572683
http://doi.org/10.1007/s11263-014-0733-5

	Introduction 
	Related Work 
	Pose Estimation 
	Dataset of Vehicle Poses 

	Yaw Angle Dataset 
	Devices 
	Data Collection 
	Time Synchronization 
	Collected Scenes 
	Data Processing 
	Annotations 


	YAEN 
	Part-Encoding Network 
	Yaw Angle Decoding Network 
	Design of the Network Structure 
	Design of Loss Functions 


	Experiment and Analysis 
	Evaluation Metrics 
	Experiment with Object-Encoding Network 
	Experiment with Yaw Angle Decoding Network 
	Ablation of Network Structure 
	Ablation of Tricks 

	Visualization of Detection 
	Analysis and Discussion 

	Conclusions and Future Work 
	References

