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Abstract: The study presents a novel approach to objectively assessing the upper-extremity motor
symptoms in spinocerebellar ataxia (SCA) using data collected via a wearable sensor worn on the
patient’s wrist during upper-extremity tasks associated with the Assessment and Rating of Ataxia
(SARA). First, we developed an algorithm for detecting/extracting the cycles of the finger-to-nose test
(FNT). We extracted multiple features from the detected cycles and identified features and parameters
correlated with the SARA scores. Additionally, we developed models to predict the severity of
symptoms based on the FNT. The proposed technique was validated on a dataset comprising the
seventeen (n = 17) participants’ assessments. The cycle detection technique showed an accuracy of
97.6% in a Bland–Altman analysis and a 94% accuracy (F1-score of 0.93) in predicting the severity
of the FNT. Furthermore, the dependency of the upper-extremity tests was investigated through
statistical analysis, and the results confirm dependency and potential redundancies in the upper-
extremity SARA assessments. Our findings pave the way to enhance the utility of objective measures
of SCA assessments. The proposed wearable-based platform has the potential to eliminate subjectivity
and inter-rater variabilities in assessing ataxia.

Keywords: movement disorder; telemedicine; care in place; remote patient monitoring; digital
biomarker; scale for the assessment and rating of ataxia; dysdiadochokinesia

1. Introduction

Spinocerebellar ataxia (SCA) is characterized by motor dysfunction caused by de-
generative changes in the cerebellum [1]. SCA-related motor dysfunction often manifests
as abnormal limb coordination, speech difficulties, oculomotor abnormalities, and gait
disorder, with impaired postural control during walking or standing [1–4]. Over time,
several motor tasks were designed and standardized to evaluate these motor disturbances
in terms of accuracy, timing, rhythmicity, and stability, and corresponding impairments
were termed dysmetria, dyssynergia, and dysrhythmia [5]. Among current methods to
assess SCA, the Scale for the Assessment and Rating of Ataxia (SARA) is widely used
and includes the finger chasing test (FCT), finger-to-nose test (FNT), and alternating hand
movement assessment for dysdiadochokinesia (DDKT) [2,6]. In addition to the SARA,
other assessment scales, including the Brief Ataxia Rating Scale (BARS) and the Interna-
tional Cooperative Ataxia Rating Scale, can effectively determine specific aspects of disease
severity. However, these scales must be administered by a neurologist with particular ex-
pertise in ataxia and are subjective [5,7,8]. For instance, the SARA stipulates the overshoot
or undershoot distance between the patient’s finger and the clinician’s finger in the FCT.
This evaluation and scoring system is prone to bias and inaccurate assessment owing to
its subjective evaluation, and it is potentially compounded if the same clinician does not
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consistently evaluate the patient. The objective measurements can provide more consistent
evaluations and are crucial when specialists are unavailable.

Moreover, objective measures may reveal patterns of motor control dysfunction be-
low the threshold of detection even by subspecialty-trained clinical ataxiologists. More
specifically, quantitative assessments in pre-symptomatic or early disease stages in neu-
rodegenerative diseases may detect subtle changes in motor abilities that would not be
sufficient to change the ordinal rating scale score from one severity level to the next on
available clinical rating scales [9–11]. Therefore, such an approach may facilitate repeated
assessments that can more accurately and reliably detect changes over time. This can lead to
improved outcome measures and compensates for the impact of biological variability (i.e.,
random fluctuations in motor response within the subject) in single time-point assessments.
Several studies have proposed the objective assessment of ataxia [12,13]. For instance,
a push-button system to evaluate the variation in the timing of ataxic movements was
considered for the finger tapping test [14], or using optoelectronic devices (e.g., VICON,
Kinect, or video camera) to assess delay in initiating movement and accuracy in reaching
the target. Recently, inertial measurement units (IMUs) were used to quantify the FNT [3,4]
and DDKT [15] performance. The working principle of these IMUs is based on estimating
movement using onboard sensors, including an accelerometer, magnetometer, or gyro-
scope. The benefit of IMUs over other sensing modalities is the precise measurement of
angular acceleration and velocity with minimal preparation and no interference with the
motor examination.

Although these systems can provide the intended information for specific disease
severity aspects, they have their limitations. For instance, using a system consisting of
special video cameras, touch screens, and a full-size computer to sync various components
to track a patient’s finger trajectory in the FCT may provide precise quantification of
movement dynamics. However, it still requires the patients to travel to a clinic because
such a data acquisition system is neither widely accessible nor easy to operate for non-
specialists. The other challenge, especially in remote assessments, is to devise an automated
technique in all its subcomponents. For instance, the average cycle time for a cyclic test such
as the FNT, which is the focus of this study, is a widely used feature to analyze the results
of this test. An objective assessment algorithm should detect cycles to extract relevant
features from the associated data within each cycle and predict the severity score. Such a
comprehensive procedure represents an important gap in the literature.

The objectives of this study were to develop a wearable-based solution that can objec-
tively assess upper-extremity motor symptoms using wearable sensors. In addition, we
investigated possible redundancies in the upper-extremity SARA assessments. In doing
so, we made the following contributions: First, we developed an algorithm for detect-
ing/extracting the cycles of the FNT. We also extracted multiple features from the detected
cycles, investigated their correlation with the SARA scores, and developed models to
predict the severity of symptoms based on the FNT. Second, we studied the dependency
between the upper-extremity SARA tests through correlation analyses and building predic-
tive models to estimate the severity of symptoms based on the FCT and DDKT using the
extracted features from the FNT. Our findings pave the way for the enhancement of the
utility of objective measures of SCA assessments using wearable sensors and complement
our previous study focused on objective assessments of gait and balance in SCA [11].

2. Materials and Methods
2.1. Participants

This study protocol was approved by the Partners HealthCare System Institutional
Review Board. All participants signed the informed consent form before participating in
the study. Seventeen participants were recruited from the Massachusetts General Hospital
(MGH) Ataxia Center and studied at the MGH Neurological Clinical Research Institute
(NCRI). Fourteen patients with a genetically confirmed diagnosis of SCA (SCA1: n = 1,
SCA2: n = 3, SCA3: n = 5, SCA6: n = 5) and three healthy controls were enrolled. A subspe-
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cialty ataxiologist (JDS) determined the eligibility for the study participation. Exclusion
criteria were less than 18 or more than 75 years of age, inability to walk independently even
with a walker (SARA or BARS gait score > 6), inability to comply with all study activities,
or unwillingness to provide informed consent. The inability to walk was an exclusion
criterion because this study was part of a comprehensive investigation of both upper and
lower limb dysfunction and gait.

2.2. Clinical Assessments

During the clinical visit, participants underwent a standardized ataxia evaluation
using the SARA and BARS version 2 (BARS2, St. Petersburg, Russia) which utilizes half-
points according to designated descriptors included in the scale [7,9]. All participants
were equipped with 2 IMUs (LEGSysTM, BioSensics, Newton, MA, USA) on their wrists
during the assessments (Figure 1). Each sensor consists of a triaxial accelerometer and
a triaxial gyroscope with a sampling frequency of 100 Hz. The dynamic ranges of the
accelerometer and gyroscope are, respectively, ±2 g and ±2000 deg/s, where g is the
gravitational acceleration. The sensors were placed with the help of the research staff, and
two clinical assessments of SARA and BARS2 were performed, with a duration of 30 min
in-between. The sensors were secured over the wrist using elastic Velcro to avoid any shift
in the sensor placement. The assessments were also video recorded. The SARA and BARS2
scores were conducted and rated in person by a neurologist (J.D.S). The video recordings
were later reviewed and scored according to the BARS2 and SARA by two additional ataxia
specialists (C.D.S, A.S.G) to examine inter-rater reliability. Each rater was blinded to the
scores given by other raters.
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This study only assessed the upper-extremity SARA assessment of the FNT, FCT, and 
DDKT. The FNT measures how smooth and coordinated the upper-extremity movement 
is by having the subject perform a cyclic task. In this task, the clinician holds his/her finger 
at 90% of their arm’s length from the patient, and the patient is instructed to touch the 
clinician’s finger and then his/her nose in several consecutive trials. For the FCT, the cli-
nician performs five consecutive sudden and fast pointing movements in unpredictable 
directions in a frontal plane. The amplitude and frequency of the movements are, respec-
tively, about 30 cm and 1 movement per 2 s. The patient is asked to follow the movements 
with his/her index finger as fast and precisely as possible, and the average performance 

Figure 1. LEGSysTM sensor used in this study. (a) Local axes of a LEGSys sensor, (b) wrist sensor
with its axes shown during an FNT.

This study only assessed the upper-extremity SARA assessment of the FNT, FCT, and
DDKT. The FNT measures how smooth and coordinated the upper-extremity movement is
by having the subject perform a cyclic task. In this task, the clinician holds his/her finger at
90% of their arm’s length from the patient, and the patient is instructed to touch the clini-
cian’s finger and then his/her nose in several consecutive trials. For the FCT, the clinician
performs five consecutive sudden and fast pointing movements in unpredictable directions
in a frontal plane. The amplitude and frequency of the movements are, respectively, about
30 cm and 1 movement per 2 s. The patient is asked to follow the movements with his/her
index finger as fast and precisely as possible, and the average performance of the last three
iterations is rated. Finally, the DDKT measures how quickly and accurately one can repeat
a rapid alternating pronation/supination task by asking the patient to tap the palm of one
hand to his/her thigh, raise and flip the hand, tap the back of the hand to the thigh, raise
and flip the hand, and repeat this cycle ten times with the regularity of the movement and
time taken to perform 10 iterations recorded.
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2.3. FNT Cycle Detection Algorithm

In this study, we focused on the cyclic FNT task. The objective of the proposed
algorithm was to extract each cycle of the FNT from the sensor-derived kinematic signal.
The proposed algorithms detect each cycle and identify different phases within each cycle
as follows:

• Phase 1 (Decline): from the time instant that the patient’s finger starts moving from
the clinician’s finger until reaching their nose.

• Phase 2 (Pause at the nose): the period between the instant that the patient’s finger
reaches their nose until they start moving towards the clinician’s finger.

• Phase 3 (Rise): from the instant that the patient’s finger starts moving from their nose
until they reach the clinician’s finger.

• Phase 4 (Pause at finger): the period between the instant that the patient’s finger
reaches the clinician’s finger until they start moving towards their nose.

The duration of phases 2 and 3 may be zero if the participant does not pause when
they reach their nose or the clinician’s finger. The segmented signal is then used to extract
features dependent on the disease severity.

We used the Euler angles to extract the four phases of each cycle derived from the
quaternion values provided by the sensors. First, the sensor quaternion is calibrated for
the local fixed frame of the clinician’s finger, and then the Euler angles are estimated
using the calibrated quaternion. A calibrated time series for the right hand of a healthy
individual and a participant with SCA is shown in Figure 2a. Given that the quaternions
were calibrated at the clinician’s finger and assuming that the finger does not move during
the test, the angle takes its maximum and minimum values when the participant reaches
his nose and the clinician’s finger, respectively. These local extrema are easy to capture for
the healthy participant because each cycle contains only one maximum and one minimum.
However, multiple local extrema may exist in the angle time history of each FNT cycle for
the participant with SCA.
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Figure 2. Euler angle in y-axis for right hand. (a) Comparison between the Euler angle time-history
for a healthy individual and a participant with SCA. (b) Key points for identifying the four phases
of each FNT cycle: point A is the time instant that the participant reaches clinician’s finger, point B
corresponds to the time instant that the participant starts moving their hand towards the nose, point C
is when they reach the nose, point D is the instant that they start moving towards the clinician’s
finger, and E is the instant that they reach the clinician’s finger again.

To further clarify this, consider the angle signal of one FNT cycle for an SCA participant
in Figure 2a, which is magnified in Figure 2b. Instead of a single maximum or minimum,
we observe peaks and valleys with multiple local extrema. The valley starts at point A
where the participant is at the clinician’s finger. There is no significant change in angle
from point A to B, where the valley ends. This part is associated with the pause at the
clinician’s finger, i.e., phase 4, and the local extrema between A and B are due to tremor. A
rapid change in angle starts at B and ends at C, corresponding to the movement between
the clinician’s finger and the participant’s nose, i.e., phase 1. The CD segment is similar to
AB but occurs at the participant’s nose, i.e., phase 2.

Finally, there is a rapid change in angle from D, which corresponds to phase 3, until
the participant reaches the clinician’s hand again at E. Therefore, by detecting the A, B,
C, D, and E points in each cycle of the signal, the four phases of the FNT motion can be
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detected. Note that the direction of rotation from finger to nose is counterclockwise for the
right hand, while it is clockwise for the left hand; thus, the left-hand measurements can be
similarly analyzed after changing the sign of the Euler angles.

2.4. Signal Processing
2.4.1. Data Pre-Processing

The measured signals were filtered with a sixth-order band-pass Butterworth filter
with cut-off frequencies of 0.2 and 20 Hz. The lower bound cut-off was used to minimize
the drift effects, and the exclusion of high-frequency components was due to the restriction
in the maximum frequency that can be generated by human movements [16].

2.4.2. Feature Extraction

Two types of features are extracted from the sensor data. The first type is extracted
from each FNT cycle and was extracted using the cycle detection algorithm, and the
second type of features is extracted from the entire signal of a complete FNT task. We
only considered the clinically relevant features and categorized them into five phenotypes:
timing, speed, variability, rhythmicity, and steadiness. All features considered in this study
are summarized in Table 1. In this table, |.| is the absolute value; motion intensity (MI) of
the angular velocity (AV) and linear acceleration (LA) are

MIAV =

√
.

θ2
x +

.
θ2

y +
.

θ2
z

MILA =

√
..
x2

+
..
y2

+
..
z2 (1)

where x, y, and z are displacement components along the sensor’s local axes, the double
dot is the second time derivative, (θ) is the angular velocity, its subscripts represent the
axis of rotation, and a single dot is the first time derivative. The speed metric is defined
as the mean value of speed divided by the maximum speed [17], where speed can be
any member of

{ .
θx,

.
θy,

.
θz, MIAV

}
. The jerk index is the root-mean-square value of the

derivative of acceleration data, i.e., the jerk, normalized by the maximum value of the
velocity data [1,15].

Table 1. List of all extracted features in this study.

Type Phenotype Features

Cycle-based

Timing

Cycle time (duration of a full cycle), decline/rise time (duration
of phases 1 and 3, respectively), pause duration at patient’s nose
(duration of phase 2), pause duration at rater’s finger (duration

of phase 4), number of cycles per second.

Variability
Standard deviation (STD) and coefficient of variation (CoV) of

all timing features, STD of angular velocity (AV), and linear
acceleration (LA)

Speed

Maximum, minimum, range, mean value, and
root-mean-square of motion intensity of AV and LA and all

three components of the AV, |AV|, LA, |LA|, speed metric of
AV and MIAV.

Steadiness Jerk index of the motion intensity of AV and LA and all three
components of the AV and LA.

Entire signal Rhythmicity The first resonant frequency (RF) and the magnitude of
resonant frequency (MR) of each component of AV and LA.
The second RF and MR of each component of AV and LA.

Extracting these features from the angular velocity and linear acceleration in all
directions and the motion intensities results in 140 features. Note that there are two types of
features in general; the first type has a single value for an entire FNT, such as the maximum



Sensors 2022, 22, 7993 6 of 14

and range of AV, and the second type has a single value for each cycle and, hence, multiple
values for each test, such as the cycle time. Herein, we call the second type of features
cycle-based features. To combine the two types of features, first, an interquartile range (IQR)
outlier detection was used to remove the outliers from the cycle-based features. The IQR,
denoted by δq, is the range between the first and the third quartiles, namely, Q1 and Q3,
i.e., δq = Q3 − Q1. The data points which fall outside of

[
Q1 − 1.5 δq, Q3 + 1.5 δq

]
interval

were considered outliers and removed. The average of the remaining values, along with
the features extracted from the entire signal, are considered the feature vector for each test.

3. Statistical Analysis and Results
3.1. Reliability Assessment

The intraclass correlation coefficient (ICC) was performed to determine the test-retest
and inter-rater reliability of the FNT Score from SARA and BARS scales (ICC; two-way
random, absolute agreement). The ICC reflected the degree of correspondence and the
degree of agreement between the scorings by the three raters. Reliability was considered
good if the ICC was greater than 0.75 and fair if the ICC was between 0.40–0.75 [18]. Table 2
shows excellent intra-rater reliability as the ICC was in the range of 0.94–0.99. Similarly, the
ICC was between 0.93 and 0.99, indicating excellent inter-rater reliability.

Table 2. Inter- and intra-rater reliability of the FNT score from SARA and BARS.

Scores
Intra-Rater Reliability Inter-Rater Reliability

SARA BARS2 SARA BARS2

FNT 0.94 0.97 0.94 0.93
Overall score 0.99 0.99 0.95 0.99

3.2. Cycle Detection Algorithm Evaluation

The proposed cycle detection algorithm was tested on the collected dataset, and the
results were compared with a ground truth obtained by extracting each cycle’s start/end
from the recorded videos. Figure 3a shows the scatter plot of the extracted cycle duration
using the algorithm vs. the gold standard for 535 cycles. The correlation between the
estimated and gold standard cycle duration is 97.6%. The associated Bland–Altman plot is
also shown in Figure 3b, and implies a high agreement between the algorithm results and
the ground truth.
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cycle duration on the x-axis vs. the estimated cycle duration via the algorithm on the y-axis and
(b) the Bland–Altman plot of the mean vs. the difference in the ground truth cycle duration and the
estimated one using the algorithm.
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3.3. Sensitivity Analysis of the Extracted Features and Their Correlation with SARA Scores

A Spearman rank correlation analysis was conducted to identify the features with
the highest correlation to the FNT SARA score. A Mann–Whitney signed-rank test was
used to determine if the extracted features are statistically significant for discriminating
between the control and SCA participants. The features that were correlated with the FNT
SARA score and statistically significant (<0.05) according to the Mann–Whitney test are
listed in Table 3. The Cohen’s d effect size, the mean value, STD, and the mean difference
percentage of the selected features for the two control and SCA participants are also shown
in Table 3. It follows from the results that specific features, such as the pause duration
or the STD of the rise time, are strongly correlated with the SARA score and significantly
different between the control and individuals with SCA. The duration of phases 2 and 4
of each cycle, i.e., pause at nose and finger, respectively, are almost negligible for control
participants, while these phases, on average, take more than 17% of the test duration in
subjects with SCA.

Table 3. Features with high correlation with the FNT SARA score and significant sensitivity to
discriminate the control and SCA subjects.

Mann–Whitney Test Control/SCA Comparison

Phenotype Feature p-Value Cohen’s d Control SCA Diff (%)

Timing

Cycle time (s) <0.01 1.33 1.02 ± 0.18 1.61 ± 0.47 −58
Cycle per second <0.01 2.65 0.99 ± 0.15 0.66 ± 0.12 34
Pause at finger (s) <0.01 0.86 0.01 ± 0.03 0.15 ± 0.18 −1187
Pause at nose (s) <0.01 0.67 0.003 ± 0.008 0.12 ± 0.20 −4866

Variability

STD of cycle time (s) <0.01 0.50 0.05 ± 0.02 0.18 ± 0.27 −224
STD of rise time (s) <0.01 0.95 0.04 ± 0.03 0.09 ± 0.06 −139
STD of

.
θy (deg/s) <0.01 1.88 111.5 ± 8.9 77.0 ± 19.5 31

STD of
∣∣∣ .
θy

∣∣∣ (deg/s) <0.01 1.25 63.4 ± 4.0 47.9 ± 13.4 24

STD of pause at finger (s) <0.01 0.95 0.015 ± 0.034 0.096 ± 0.092 −547
STD of pause at nose (s) <0.01 0.42 0.006 ± 0.019 0.074 ± 0.176 −1231
STD of total pause (s) <0.01 0.59 0.025 ± 0.053 0.155 ± 0.238 −527

Speed

max
( .

θy

)
<0.01 0.98 197.8 ± 20.1 155.3 ± 46.3 22

Range of
.
θy <0.01 1.15 397.8 ± 33.0 309.9 ± 82.1 22

Average of
∣∣∣ .
θy

∣∣∣ <0.01 2.19 91.9 ± 9.8 60.2 ± 15.2 35

RMS of
.
θy <0.01 1.90 112.6 ± 9.2 77.4 ± 19.7 31

Rhythmicity

First RF of
.
θx <0.01 1.67 0.98 ± 0.19 0.67 ± 0.17 31

First RF of
.
θy <0.01 1.87 1.01 ± 0.19 0.67 ± 0.18 34

First MR of
.
θy <0.01 2.47 1.6 × 10−4 ±

4 × 10−3
71 × 10−4 ±

4 × 10−3 57

First RF of
..
x <0.01 0.73 1.17 ± 0.52 0.78 ± 0.52 33

Steadiness
Jerk index of

.
θx <0.01 1.79 27.0 ± 6.7 18.1 ± 4.4 33

Jerk index of MIAV <0.01 1.35 12.6 ± 3.6 8.8 ± 2.6 30
Second RF of

.
θx <0.01 1.79 2.92 ± 0.57 1.57 ± 0.77 46

Values are presented as mean ± standard deviation.

3.4. Dimensionality Reduction and Classification

The available dataset is relatively small and highly unbalanced. Having 17 partici-
pants who are tested two times for each hand and noting that sometimes the rater asks a
participant to redo the test in either of the trials, the dataset consists of 34 and 31 distinct
tests for the first and second trials, respectively. The distribution of SARA scores in this
dataset is summarized in Table 4a.
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Table 4. Distribution of SARA scores and severity class in the dataset.

(a) Data Points per SARA Scores (b) Data Doints per SCA Severity Class

No. of Data Points per Score No. of Data Points per Severity Class

Trial 0 1 2 3 Total Control Mild SCA Moderate
SCA Total

Trial 1 8 22 3 1 34 8 22 4 34
Trial 2 7 20 2 2 31 7 20 4 31

For training and predicting the SARA scores, the data points associated with SARA
scores of two and three were grouped and categorized as moderate SCA to make the
dataset more balanced. SARA scores of zero and one were considered control and mild
SCA categories, respectively. The distribution of the dataset in these categories is illustrated
in Table 4b. In this study, we trained classifiers to predict the categories of Table 4b, which
are closely related to the SARA score.

We used a gradient boosting classifier (GBC), logistic regression (LR) with elastic-net
regularization, and support vector classifier (SVC) with radial basis function (RBF) kernel to
predict the severity of SCA in our dataset. The models were trained using the data from trial
1, and their performances were evaluated using the data from trial 2. Principal component
analysis (PCA) was conducted on the feature matrix to reduce the dimensionality and
manage collinearity between features. The GBC was trained on both the original features
and all principal components (PCs). The LR was trained using the PCs only due to the
sensitivity of this model to features’ collinearity. Finally, the SVC was trained along with a
random subspace feature selection scheme using the PCs. All the hyper-parameters of these
models were optimized through cross-validation on the data of trial 1. Table 5 compares
the performance of these models when evaluated on the unseen dataset of trial 2. The
performances of the GBC using the PCs and the original features were similar; therefore,
the result of only one of the GBC models is reported in this table. The weights used for
the “weighted average” column are proportional to the number of sample points for each
class to account for the class imbalance data. It follows from the prediction results that the
severity of the SCA can be accurately predicted from the extracted features, even with a
small and unbalanced dataset.

Table 5. Comparing different classifiers for predicting the severity of FNT.

Classifier Metric Control Mild SCA Moderate SCA Accuracy Weighted Average

SVC

Recall 0.86 1.0 0.75

0.94

0.94
Precision 1.0 0.91 1.0 0.94

Specificity 1.0 0.82 1.0 0.88
F1-score 0.92 0.95 0.86 0.93

LR

Recall 0.71 1.0 0.25

0.84

0.84
Precision 1.0 0.8 1.0 0.87

Specificity 1.0 0.55 1.0 0.71
F1-score 0.83 0.89 0.4 0.81

GBC

Recall 0.71 0.75 0.75

0.74

0.74
Precision 0.55 0.83 0.75 0.76

Specificity 0.83 0.73 0.96 0.78
F1-score 0.62 0.79 0.75 0.75

3.5. Redundancies of Upper-Extremity SARA Evaluation

Although each motor task (i.e., FNT, FCT, or DDKT) provides unique information
about movement dysfunction, there might be an inherent redundancy among these motor
tasks [19,20]. The purpose of estimating the correlations was to capture the inherent
redundancies among the tests (i.e., FNT. FCT, and DDKT) through correlation analyses.
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However, the SARA scores of the FCT and DDKT were used instead of the FNT. Table 6
lists the features that are correlated with the upper-extremity SARA scores based on the
Spearman correlation analysis with a significance level of 0.05. The correlation coefficients
and associated p-values are presented, except for the features with p-values > 0.05, i.e., not
significantly correlated with a specific test. For instance, “STD of cycle time” is correlated
with the FNT and DDKT but not with the FCT.

Table 6. Correlation of the FNT features with the SARA scores of FNT, DDKT, and FCT.

FNT DDK FCT

Phenotype Feature ρ p-Value ρ p-Value ρ p-Value

Timing

Cycle time (s) 0.70 <0.01 0.66 <0.01 0.46 <0.01
Cycle per second −0.70 <0.01 −0.66 <0.01 −0.46 <0.01
Pause at finger (s) 0.57 <0.01 0.52 <0.01 0.39 <0.01
Pause at nose (s) 0.59 <0.01 0.49 <0.01 - -
Total pause (s) 0.64 <0.01 0.57 <0.01 0.47 <0.01

Variability

STD of cycle time (s) 0.38 0.03 0.38 0.03 - -
STD of rise time (s) 0.39 0.02 0.43 0.01 - -

STD of pause at finger (s) 0.52 <0.01 0.44 0.01 0.44 0.01
STD of pause at nose (s) 0.37 0.038 0.40 0.02 - -

STD of total pause (s) 0.47 <0.01 0.52 <0.01 - -
STD of

.
θy (deg/s) −0.52 <0.01 −0.65 <0.01 - -

STD of
∣∣∣ .
θy

∣∣∣ (deg/s) −0.41 0.02 −0.55 <0.01 - -

Speed

max
( .

θy

)
−0.41 0.02 −0.52 <0.01 - -

Range of
.
θy −0.38 0.03 −0.49 <0.01 - -

Average of
∣∣∣ .
θy

∣∣∣ −0.57 <0.01 −0.66 <0.01 - -

RMS of
.
θy −0.53 <0.01 −0.64 <0.01 - -

Max
(∣∣∣ .

θy

∣∣∣) - - −0.44 0.01 - -

Max
( ..

x
)

0.35 0.047 - - - -

Rhythmicity

First RF of
.
θx −0.64 <0.01 -0.65 <0.01 −0.40 <0.01

First RF of
.
θy −0.72 <0.01 -0.65 <0.01 −0.47 <0.01

First MR of
.
θy −0.61 <0.01 −0.54 <0.01 - -

First RF of
..
x −0.56 <0.01 −0.54 <0.01 - -

First MR of
..
y - <0.01 −0.50 <0.01 - -

Steadiness

Jerk index of
.
θx 0.35 0.047 −0.56 <0.01 −0.39 0.027

Jerk index of MIAV −0.49 <0.01 −0.51 <0.01 - -
Jerk index of

..
y −0.49 <0.01 −0.36 0.046 - -

Jerk index of MILA - - −0.41 <0.01 - -
Second RF of

.
θx - - - - −0.41 0.019

Second MR of
..
x −0.46 <0.01 - - - -

Second MR of
..
z −0.45 <0.01 0.43 0.013 0.44 0.013

To better capture the dependencies of the upper-extremity SARA tests, classification
analyses were performed to predict the SCA severity of the FCT and DDKT using the
features that were extracted from the FNT. The distribution of the sample points for the FCT
and DDKT is presented in Table 7. The classification results are illustrated in Tables 8 and 9.
It follows from the results that the severity of the DDKT and FCT can be predicted with
71% and 81% accuracy via an SVC model trained on the features that were extracted from
the FNT.
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Table 7. Number of data points for each SCA severity class for the DDKT and FCT in the dataset.

DDK FCT

Trial Control Mild SCA Moderate SCA Control Mild SCA Moderate SCA

Trial 1 9 14 11 9 16 9
Trial 2 10 13 8 9 14 8

Table 8. Comparing different classifiers for predicting the severity of DDKT using the features that
were extracted from FNT.

Classifier Metric Control Mild SCA Moderate SCA Accuracy Weighted Average

SVC

Recall 0.60 0.84 0.62

0.71

0.71
Precision 1.0 0.61 0.71 0.76

Specificity 1.0 0.61 0.91 0.81
F1-score 0.75 0.71 0.67 0.71

LR

Recall 0.70 0.69 0.62

0.68

0.68
Precision 0.87 0.64 0.55 0.69

Specificity 0.95 0.72 0.82 0.82
F1-score 0.78 0.67 0.59 0.68

GBC

Recall 0.60 0.54 0.75

0.61

0.61
Precision 0.60 0.64 0.60 0.61

Specificity 0.81 0.78 0.83 0.80
F1-score 0.60 0.58 0.67 0.61

Table 9. Comparing different classifiers for predicting the severity of FCT using the features that
were extracted from FNT.

Classifier Metric Control Mild SCA Moderate SCA Accuracy Weighted Average

SVC

Recall 0.78 0.93 0.62

0.81

0.81
Precision 0.85 0.76 0.83 0.81

Specificity 0.95 0.76 0.96 0.87
F1-score 0.82 0.84 0.71 0.80

LR

Recall 0.22 1.0 0.37

0.61

0.61
Precision 1.0 0.54 1.0 0.79

Specificity 1.0 0.30 1.0 0.68
F1-score 0.36 0.70 0.54 0.56

GBC

Recall 0.55 0.93 0.37

0.68

0.68
Precision 0.83 0.59 1.0 0.77

Specificity 0.95 0.47 1.0 0.75
F1-score 0.67 0.72 0.54 0.66

The results show a strong dependency between the FNT features and the SARA scores
of DDKT and the FCT, although they may not be significantly correlated. Additionally, this
dependency can be captured by a nonlinear kernel such as the RBF. This demonstrates the
redundancies in upper-extremity SARA tests for predicting the SARA scores or SCA severity
despite their unique aspects in showing different types of disabilities. Note that we only
used clinically meaningful features and a small dataset in this study; thus, the predictions
are expected to be improved by using more advanced features on a larger dataset.

4. Discussion

We have developed a wearable-based solution for the objective assessment of the
upper-extremity SARA test. Seventeen participants were recruited from the MGH Ataxia
Center and studied in the MGH NCRI. Participants underwent a standardized ataxia
evaluation using the SARA and BARS2 while wearing a single sensor on each wrist. We
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observed excellent inter-rater reliability for the SARA and BARS2 for all participants among
the three raters, one of whom rated the participants in person and the others rated based
on videos (Table 2). These results show consistency in the target class ratings.

A cycle detection algorithm was developed for extracting the cycles of the FNT from
the sensor measurements and segmenting each cycle data into four main phases, i.e., de-
cline, pause at the nose, rise, and pause at the finger. The algorithm extracted 140 features
from the segmented and full sensor measurements. The estimated features were correlated
with the SARA scores and could accurately discriminate the control and SCA severity
groups related to the FNT. The benefit of the proposed objective assessment over conven-
tional subjective evaluation includes the precise measurement of movement. Due to high
sensitivity in tracking hand movement and detecting smaller vibrations (i.e., tremors), the
proposed solution may identify subtle motor symptoms, which are often challenging to
detect visually.

Unlike previous studies that used wearable-based validated gait assessment tools to
assess SCA severity [11,21], the present study focused on upper-extremity motor examina-
tion by breaking down arm movement into discrete subcomponents using the wearable.
This is a novel and valuable approach for representing and quantifying the ataxia pheno-
type, as gait assessment can only be administered for ambulatory individuals and requires
dedicated facilities (e.g., an uninterrupted walkway or trained staff to ensure safety). The
present study would contribute to validating the wearable-based upper-extremity motor
assessment to assess SCA severity.

Furthermore, the dependency of the upper-extremity SARA tests was investigated via
training machine learning algorithms to predict the SARA scores related to the FCT and
DDKT using the features obtained from the FNT. The high accuracy of the SVC with the
nonlinear RBF kernel implies that the upper-extremity SARA tests are dependent, although
their linear correlation may be insignificant. The results suggest that the number of motor
tasks could be potentially reduced while estimating the upper-extremity motor symptoms
with acceptable accuracy. A reduced number of motor tasks may improve the feasibility
of using the platform in a non-clinical setting and for remote patient monitoring. Digital
health technologies are poised to become an integral part of modern health care, expedited
by the surge in remote care necessitated by the COVID-19 pandemic [22–31]. The proposed
solution paves the way to integrating digital health technology (i.e., wearables) to enhance
the utility of objective measures of ataxia.

Previously, Kasyap et al. (2020) proposed a comprehensive approach to the evaluation
of cerebellar ataxia by objectively assessing five domains (speech, upper limb, lower limb,
gait, and balance) through the instrumented versions of nine bedside neurological tests
using wearable IMUs and microphones [3]. Similarly, Tran et al. (2020) also proposed a
comprehensive scheme for objective upper-body assessments of subjects with cerebellar
ataxia [5]. Tran et al. used an IMU and a Kinect camera system to evaluate the FNT,
DDKT, and FCT performance. While our results were comparable to these studies, we also
addressed the redundancy of the upper-extremity assessment tasks and primarily focused
on parameters estimated from the FNT. In addition, Oubre et al. extracted the movement
elements from the participants’ accelerometry data during the FNT and employed machine
learning algorithms. The classification models distinguished between ataxia and healthy
controls, and ataxia and Parkinsonism phenotypes with areas under the receiver–operating
curve of 0.96 and 0.86, respectively [13]. These findings support the evolving recognition
that wearable-based systems may be helpful in managing movement disorders in the clinic
or in home settings and potentially reduce observer bias in clinical trials. Consequently, the
frequency of assessments may increase, which may compensate for the biological variability
at single time points (same day, different times of day, weeks/months apart) in clinical care
and clinical trial design.

A major limitation of the present study is the small sample size. While the high-
performance accuracy of the current models is encouraging, the results need to be confirmed
in a larger dataset. Furthermore, the models were trained on trial 1 and tested on trial 2.
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Since we have the same participants in trial 1 and trial 2, the model might have learned
individual characteristics in addition to disease characteristics. A further limitation was the
absence of late-stage severe SCA patients in whom somatosensory impairment, vestibular
involvement, or other central nervous systems (CNS) lesions may contribute to the overall
disability [5]. It is important to establish whether the factors differentiating SCA associated
with other neural lesions might differ from “pure” cerebellar ataxia to produce a more
precise means of assessing ataxia. This would be a subject of future studies, which can also
compare the platform’s accuracy in differentiating ataxia from other neurodegenerative
diseases (e.g., Parkinson’s disease). Similarly, more severe ataxia reflected by SARA FNT
scores > 3 would be important in future studies. The benefit of including individuals with
a low to moderate level of SCA clinical severity is to highlight the finding that objective
assessment using the proposed platform can perhaps detect SCA in the early stages.

5. Conclusions

Our findings pave the way to enhancing the utility of objective measures of SCA
assessments using wearable sensors, and complement our previous study focused on
objective assessments of gait and balance in SCA. The proposed wearable-based platform
has the potential to eliminate subjectivity and inter-rater variabilities in assessing ataxia. It
can also facilitate frequent remote patient assessments that may compensate for the impact
of biological variability in intermittent single visits. The findings of this study need to be
validated in a larger sample.
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