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Abstract: Analog sensors often require complex mathematical models for data analysis. Digital twins
(DTs) provide platforms to display sensor data in real time but still lack generic solutions regarding
how mathematical models and algorithms can be integrated. Based on previous tests for monitoring
and predicting banana fruit quality along the cool chain, we demonstrate how a system of multiple
models can be converted into a DT. Our new approach provides a set of generic “wrapper functions”,
which largely simplify model integration. The wrappers connect the in- and outputs of models to the
streaming platform and, thus, require only minor changes to the model software. Different scenarios
for model linking structures are considered, including simultaneous processing of multiple models,
sequential processing of life-cycle-specific models, and predictive models, based on data from the
current and previous life cycles. The wrapper functions can be easily adapted to host models or
microservices from various applications fields, to predict the future system behavior and to test
what-if scenarios.

Keywords: digital twins; event processing; wrapper functions; real-time models; cool chain; Apache
Kafka; intelligent container

1. Introduction

Digital twins (DTs) represent physical assets in the virtual word. The virtual represen-
tation is constantly updated by sensor information from the physical object. DTs provide
a solid, standard, and scalable abstraction layer [1]. The application can interact with the
asset without being aware of the hardware implementation of the sensor system. DTs go
far beyond merely representing sensor data; rather, they provide conclusions from the
data, predictions of future system behavior and of non-directly measurable quantities.
According to [2], “a digital twin is a virtual, dynamic model in the virtual world that is
fully consistent with its corresponding physical entity in the real world and can simulate its
physical counterpart’s characteristics, behavior, life, and performance in a timely fashion”.

Such analytic capabilities [3] require integration of multiple models originating from
different disciplines. Depending on the application, the list of contributors reaches from
operation research and material science to process, chemical, and biological engineering.

The main question of this article is to find a method for easy integration of such models
into a DT software platform as separate software entities with a focus on models that directly
process sensor data. The goal of our research is the development of a set of generic ‘wrapper
functions’ that require only minor code extensions to host different models.

1.1. Software Technologies for Modelling in Digital Twins

The review article on the modelling perspective of DTs [4] lists 550 related papers
including applications in health care, meteorology, manufacturing and process technology,
education, and the transportation and energy sector. Such a detailed review is far beyond
the scope of this article. In the following study, we summarize the major required software
technologies for model integration in DTs.
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In the past, the necessary set of models has often been integrated into a single, coupled
monolithic unit [3], but lacking scalability and flexibility. They suggest an approach where
every part of the analytic process is embedded in a microservice.

Microservices are a software pattern to create complex applications from individual
processes that are loosely coupled. The application can include microservices written in
different languages [5]. They can be developed, deployed, and changed independently
from one another [3]. Models that originate from different disciplines and contributors
remain in separate software units, which is a more natural method for their implementation.

Stateless behavior, in which the microservice must not retain a session state from
previous requests, is preferred for microservices by [6], making it easy to duplicate, suspend,
or move the service to other computational resources. However, most process models
are time-dependent and require information from the past system state. To solve this
contradiction, a solution to store states in a separate data stream was developed in [6].
Other authors do not prescribe a stateless behavior; instead, ref. [7] recommends integrating
an individual database to each microservice.

The even-driven architecture is a common method to connect microservices asyn-
chronously [7]. Refs. [8,9] recommend this architecture for the implementation of DTs.
Sensors and models publish their measurements and results to a streaming platform. These
messages are considered as events. All information is organized by topics. Subsequent
models and consumers subscribe to certain topics to be notified on each new available
event in the stream.

The strongest characteristics of this architecture are listed as performance, scalability,
fault tolerance, and evolutionary by [7], making the architecture very suitable for monitor-
ing a large set of objects by a DT platform. Evolutionary means that new features can be
added easily, at best without interrupting the whole system.

Besides various commercial solutions [4], Apache Kafka is a widely used open-source
streaming platform for event processing, as in [6,8,10]. Kafka was designed for high-
performance applications. If the number of objects to trace increases, the platform can
be scaled up by including additional brokers on separate servers and by running the
event processors for the models in the network instead of on a single server. If one
processor instance fails, the remainder of the networks continues operation. Software
libraries for programming publish-and-subscribe interfaces are available for programming
languages such as Python and Java. Matlab required special handling by programming an
intermediate Java interface [11]. The performance tests in [5] showed that a Kafka cluster
with three brokers running on different virtual machines can handle 8000 messages per
second of size 256 Bytes equivalent to 2 Mbyte/s of data.

The message queuing telemetry transport (MQTT) protocol is widely used for integra-
tion of sensors into IoT solutions. The Eclipse MQTT Mosquitto broker or the Hono protocol
adapter was combined with the Kafka streaming platform to a DT in several further projects,
e.g., [3]. Some authors further enhanced the DT by including a database for long-term
storage and access by query languages. MongoDB was used in [5] and InfluxDB in [9].

The human-readable JavaScript Object Notation (JSON) data format is used in almost
all listed Kafka-based DT applications. Binary formats, such as Protobuf, can reduce the
message size by a factor of six [12] at the cost of losing flexibility. After adding fields to the
message structure, a protocol header must be recompiled and distributed in the system.

1.2. Processing of Analog Sensor Data

Several DT solutions are found in logistics and manufacturing applications, e.g., [13].
Related models have often been limited to material flow on a shop floor or a logistic
transport network. The models entail discrete states and process discrete sensor data, such
as the position of a work piece at a particular machine.

However, a detailed digital representation of the work piece should also consider its
internal states, such as mechanical wearing, remaining lifetime, and the effects of deviating
transport and environmental conditions. These properties require analog sensors, e.g.,
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for temperature and analytic models to process these analog or continuous data. More
examples for ‘analog’ DTs can be found in the chemical processing industry [14] and in
agriculture [15].

Several commercial DT applications are based on artificial intelligence and machine
learning [16]. The automated learning process requires tremendous amounts of training
data. The training data must contain sufficient instances of all combinations of input
factors. Otherwise, the machine learning overfits to single deviating events [17]. Physical
modelling, e.g., computational fluid dynamics [15], are less demanding in regard to the
size of training data.

Models must be updateable [18,19], i.e., they incrementally process the sensor data
every time a new measurement is published. The analytics often entail estimation of
quantities than cannot be directly measured, so-called ‘hidden’ states [20]. Such state
observers [19] are widely used in fabric automation to estimate and noise-filter the location
of robots, e.g., [21], in the chemical industry [14] and for bioreactors [22,23].

Often, the entire modelling of all physical equations is too complex for real-time
processing in DTs. The authors of [24] recommend surrogate models in this case for
mapping model input to output data by regression or interpolation methods. They have
found wide application in the chemical industry [14].

Models are mostly written in different software frameworks by people from different
disciples using different interfaces. Wrapper functions are used as mediator or format
translator, as in [10]. In their specific example solution, they use a wrapper to connect
the Kafka streaming platform with the simulation via an Excel file. A commonly agreed
definition of wrapper functions is still lacking in scientific literature. Some definitions can
be found in company bulletins and discussion forums:

According to [25], “wrappers are used for two primary purposes: to convert data to a
compatible format or to hide the complexity of the underlying entity using abstraction”.

Wrappers can encapsulate code blocks of another programming language. They can
act as proxy by transforming a local method call to a network message for running the
implementation on another machine. They can compose multiple underlying implementa-
tions in a single call. They can enforce ‘separation of concerns’. The user should not know
the details of the implementation, and the implementation should not have to care for code
on the user side, e.g., for data display [26].

Models for continuous inputs signals play an important role for DTs in most applica-
tion fields. This is especially the case for DTs based on analog sensors, e.g., for temperature,
humidity, and airflow in a cooling chamber. Hard real-time constraints are often not nec-
essary; therefore, we prefer the term ‘live’ sensor data to ‘real-time’. In summary, a DT
for processing analog live sensor data consists of mathematical models marked by the
following features:

• The models predict non-measurable internal properties of the object, i.e., values for
which no sensor is available or cannot be installed in a specific location.

• They conclude system behavior from sensor measurements and outputs of preceding
models. For example, the reduction in product lifetime or a gradual loss of product quality
depending on the sensed deviations from the optimal storage and handling conditions.

• They also predict future system behavior.
• Models can originate from different disciplines; they can be presented in multiple

mathematical forms and programming languages.
• Their algorithms can range from a simple integral for calculating accumulated quality

loss up to a complex set of differential equations or any other form.

1.3. Concept for Model Integration

The approach to integrate different sub-models as separate services into a DT platform
has been hindered by the effort required for manually writing the necessary interfaces one
by one. We address this problem by our new concept to simplify the integration of models
by providing a set of generic wrapper functions to connect various types of models with
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a Kafka streaming platform. Our purpose is to separate the programming of the models
from the programming of access functions to the DT platform. The first task can be best
performed by scientists and experts from the related fields, whereas the latter task falls in
the area of information technology.

This is achieved by wrapper functions, which read all necessary inputs from the DT
platform, call the model, and after the model has completed computation, they write back
the model results to the DT platform. The task of assigning the correct input and output
streams and time windows in a system with a vast number of physical objects is shifted
from the models to a wrapper function.

If the models are linked in a linear chain or ‘pipeline’ structure, with each model
having exactly one predecessor and one successor, linking is straightforward. In many
applications, the relations between models are more complex. Often, models require
multiple inputs, such as sensor data, the current output of other models, and collected data
from earlier life-cycles phases; examples are discussed in Section 2.

Recent solutions such as [10] relied on individual programming of wrappers. As added
values we provide a set of standard wrapper functions covering models with different
types or combinations of inputs. The adaption of a suitable wrapper to a specific model
requires only minor extensions of an inherited class. This concept enables us to easily plug
in new models to the streaming platform or exchange them with a newer version. We
like to show that splitting the model in services does not create significant computation
time overhead.

On the software side, wrappers are programmed as classes holding different adapter
methods; however, we prefer the keep the common term “wrapper functions”.

1.4. Method of Implementation

In this paper, we describe the steps that were necessary to develop our new concept of
generic wrapper functions. A set of models for the monitoring of cool chain processes was
developed in our earlier research [17], including models for temperature-related quality
changes, analysis, and prediction of temperature changes over time, and estimation of heat
production of fruits during ripening as ‘hidden’ or not-directly-measurable state.

Possible linking patterns of these models were analyzed in Section 2. Beside a simple
pipeline structure, three other patterns were identified.

We developed a concept of how the identified patters can be represented in software
by a chain of consecutive topics. This novel concept of so-called ‘enriched streams’ is
presented in Section 3. Section 4 introduces a concept to describe the linking structures by
a configuration file.

Our final concept for wrapper functions is presented in Section 5. The wrappers
connect to the streaming platform in the same way as microservices. However, a stateless
design was not feasible. Most models describe a time-dependent behavior and, thus,
must store information from the previous iteration cycle. Extracting these states from the
model code would require major changes inside the models, which originate from different
contributors. An instance of the wrapper with local states is created for each freight item or
work piece and runs in a separate thread. Therefore, they can be better described as virtual
objects [3] than complying with a strict concept of microservices.

In Section 6, we show the wrapper concept in action for our example application
on the refrigerated ocean transport and subsequent artificial ripening of bananas. As a
pre-condition, we assume that the models already have a software interface in form of an
update method to calculate the new model prediction for the next time interval with the
current sensor values as input arguments.

The results in Section 7 are evaluated regarding the created overhead. The concept to
route all communication between the models through the streaming platform requires time
for network access and, thus, increases the latency compared to a monolithic model that
would only require a single access to the streaming platform. As latency, we define the time
span between publishing the sensor data and reading of the final model result. Performance
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tests of our wrapper solution were carried out by playing back recorded sensor data at
accelerated speed. The sensor data from 10 freight items were fed into the DT platform in
parallel at a speed of 10 messages per second each. In total, 100 values per second were sent
to the platform. All models were executed on an i7 workstation. Furthermore, the size of
additional code to adapt each model to the generic wrapper is evaluated in the discussion
in Section 8. Section 9 closes with conclusions.

2. Examples for Linked Model Structures

The complex behavior of a physical or biological object can be best analyzed when
different properties are described by separate models. The set of models can be linked
according to various typical patterns. By analyzing the model relations in our example
application, we identified four typical cases. Models can be executed quasi-simultaneously
during the same life-cycle phase of the object, or in sequence in different phases. Models
can be arranged in a linear chain or form a meshed network.

2.1. CASE 1: Simultaneous Chain Processing

In our first scenario, these models are updated simultaneously, i.e., after each new
sensor measurement, all models in the chain are activated. Data are forwarded through
this model pipeline (Figure 1). For example:
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Figure 1. Linear chain/pipeline of three models and connection to the real world via publishing and
subscription to a streaming platform.

The first model converts the sensor data, e.g., to calculate absolute from relative
humidity, to interpolate available sensors for positions in between or to deduce the object’s
core temperature by measurements on its surface.

The second model calculates the resulting quality loss.
The third process implements the decision algorithms, e.g., by correcting the cooling

setpoint if a quality problem is foreseen.
Models were programmed by different experts; a direct linking of the models would

require the programming of complex proprietary interfaces. Instead, the models are
linked through a common streaming platform, which enables the model interfaces to be
programmed independently of their later use and of their linking with other model types,
as described in Section 3.

2.2. Case 2: Life Cycle Dependent Models

Unfortunately, the real scenario is often more multifaceted than the above-described
linear chain of models, particularly if different models must be applied in various life-cycle
phases of the object.

We have worked for several years on a remote-sensing and quality-prediction system
for refrigerated ocean containers with fruits [17]. We are currently attempting to enhance
the system by taking the most advantage of new DT concepts and features. Therein, the
combination of models for the live processing of sensor data turned out to be one of the
crucial challenges. So far, the linking of models has only been tested in offline simulations.

2.3. Example Application for Remote Cool Chain Monitoring

We have already developed a set of models to predict the behavior of bananas along
the cool chain from farm to processing in Europe. The focus of this paper is on wrappers
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for the in- and outputs of the models, their possible linking, and with less emphasis on
their inner structure. Mathematical details of model implementation can be found in our
previous publications [20,27].

Although our tests focused on the international delivery chain, the approach can be
extended to the final steps of the cool chain, i.e., delivery to distribution centers and local
retail stores. If a constant fruit quality is maintained by sensor monitoring, modeling, and
intelligent stock rotation, waste is reduced.

In our project, we considered the first four steps (Figure 2) of the banana chain. 1.
Packing: The bananas are harvested, washed, and packed into boxes in Central America. 2.
Transport: The bananas are loaded “warm” to a refrigerated container and cooled down
during ocean transport. The supply air setpoint is typically set to 13.0–14.4 ◦C. 3. Harbor
Handling: Cooling is interrupted during harbor handling in Europe. 4. Ripening: By
exposure to the gas ethylene, an artificial ripening process is initiated, which converts
starch to sugar and thereby generates large amounts of heat.
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During the project, we developed four models, which are already available in an
updateable format to process sensor events:

1. The green life model predicts the remaining number of days until an unwanted ripen-
ing process starts, and the bananas can no longer be used for commercial processing.
This model takes the box temperature TBox over time as the input.

2. A parameter for cooling efficiency kM can be estimated from the measured box TBox
and supply air TSupply temperatures during the cooling phase.

3. After 3 days, a stable estimate for kM is available. The same model can then be used
for prediction of the future box temperature, typically under the assumption that the
supply air temperature remains at a constant value.

4. The amount of heat generated during ripening is an indicator of the progress of this
process. The last model to estimate the ripening heat requires the kM as a single value
and TBox as a time series.

All models are only valid during specific phases of the banana chain (Figure 2). Model
execution must be activated and stopped by transport events, such as “start of transport”
or “completion of ripening”.

In our first example for life-cycle-dependent models, the first model estimates the
parameter kM during the transport and cooling phase. The second model for ripening heat
is only active after the first model has completed. Both models require a subset or time
window of the temperature sensors TBox and TSupply. The sensor readings are passed as
events, whereas for kM, only a single finally estimated value is required (Figure 3).
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Figure 3. Model linking for estimation of ripening heat based on parameter kM for cooling efficiency.

2.4. Case 3: Predictive Models

Models cannot only be applied to analyze the current state of the physical object, but
also to predict its future. For the latter case, model linking through data streams has to
be rearranged. For example, the operator can query the predicted temperature TBox upon
arrival of the container in Europe. Queries can be initiated 3 or 4 days after transport begins
when sufficient sensor data for model estimation are available (Figure 4). The first model is
the same as in the example in Figure 3, except for the fact that the interim estimate of kM is
read at an earlier time point. If the query is repeated a second time, a later and probably
more accurate value for kM will be read. The second model predicts the future development
of TBox by taking the current TBox as the initial state and the last known value of TSupply as
the constant input. Finally, the green life model combines the accumulated data for TBox
from the time window before the query was initiated with the future prediction for TBox.
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The latter example can be extended to a what-if scenario. Rather than assuming that the
setpoint remains unchanged, the operator can test the effect of interventions by changing the
setpoint. In an advanced DT solution, a further processing unit would test different possible
interventions and automatically apply the most beneficial one to the real object.

2.5. Case 4: Meshed Model Neworks

The sensor information can be processed in two parallel paths, and joined together
in a final step. Such a complex scenario was not required to model our banana chain.
Nevertheless, it is easy to construct a fictive example: Temperature data can be evaluated
by two separate models, the first for fruit firmness and the second to predict changes of fruit
color. A final model combines their outputs to a united quality index. Such a scenario can
create synchronization issues. If one of the first two models takes more time for processing,
events can become out of sync.

3. Enriched Streams

The provision of streaming platforms for model integration and linking is one of the
new key features of DTs. In our approach, we follow an architecture suggested in [9]. The
use of three different database solutions entails some redundancy but offers high flexibility
for data access. Sensors use the standard MQTT (message queuing telemetry transport)
protocol to publish their measurements to Eclipse Mosquitto as protocol adapter. Access
to data in table form and by standard queries is possible via the InfluxDB database. All
components and the models are linked through the Kafka streaming platform as the central
broker [11,27].

The integration of the models into a streaming platform is straightforward for a
consecutive chain of models, as in case 1. For the more complex cases, information has to
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travel over parallel paths, if the structures in Figures 3 and 4 are directly translated to a set
of publish and subscribe interfaces.

However, programming of models is largely simplified when models have to listen
to a single topic only. We therefore suggest a new approach to link models by a consec-
utive chain of topics. We call this approach “enriched streams”. Each model copies all
available information from an input topic to an output topic but enriches the stream with
its estimation and prediction results. For example, the predictor scenario of Figure 4 can
be rearranged to a linear stream of subsequent topics, as shown in Figure 5. Sensor data,
transport events, and commands to initiate the prediction at a certain point of time are
written to the first topic. The cool-estimate model adds the identified parameter for cooling
efficiency kM to the stream. The cool prediction adds an array with the future estimated
temperature values to a single message, according to the point of time, when the prediction
was triggered. Finally, the green life model combines the past temperature values from the
stream with the array of predicted values and adds the quality prediction.
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Blocking and synchronization problems, due to reading data from different streams,
can be mostly avoided by this approach, although it entails some data overhead because
topics must be copied multiple times.

Often, it is also possible to rearrange a meshed model linking structure to a linear
chain. For the fictive example in case 4, it is not necessary to execute the two quality models
strictly in parallel. Instead, the firmness model can first process temperature data and add
its prediction to the stream, followed by the color model. The final evaluation model reads
both data from the same stream.

4. Formal Description of Model Structure

Next step for converting the model chain into a DT is the conversion of the graphical
linking structure to a formal description, i.e., a configuration file. The configuration file
contains linking information for each model. Box 1 shows the configuration of one of the
required models for the cargo type “Bananas” as an example.

The ripening model subscribes to the output of the identification of the cooling parame-
ters (CoolPara). The estimated ripening heat is published to a topic with the suffix “RipePara”.

The configuration file can contain individual model linking schemas for different cargo
types. When is new shipment is announced, the cargo type is selected, and a specific configu-
ration is generated by replacing the term “’#ID” with the container or shipment number.

The file also contains a translation from the transport events to specific commands
for the models. For example, at the event “Start_Transport”, the ripening model starts to
collect estimated values from the cooling identification. The update process for model itself
is only started after the “Start_Ripening” event is received.

The specific configuration is published to a general “Model_Config” topic, to which
handlers for all available model types subscribe. If they detect their own model name in
the data stream, they initiate a new model instance.
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Box 1. Code snippet 1: Configuration example for the ripening model.

Bananas:
. . .
RipeningModel:

Topic_In: Transports_Shipment_#ID_CoolPara
Topic_Out: Transports_Shipment_#ID_RipePara
LifeCycleTranslate:

. . .
Start_Transport: Start_Collect
Arrive_Transport: Stop_Collect
Start_Ripening: Start_Model

. . .

5. Wrapper Functions

The goal of the wrapper functions is to separate the programming of the mathematical
model from the access to streaming platform and model management.

We assume that the model algorithm is already available in an updateable form,
i.e., it can process sensor data and other types of input information directly after each
measurement interval. Predicted and estimated parameters are updated in each interval,
preferably in real time. The model algorithm can be kept unchanged. The only requirement
is that it provides some kind of step() function to calculate one model update.

Making models updateable requires mathematical and programming effort. A general
method for this conversion is not available, although several mathematical methods can
be used, such as parameter estimation techniques and state space observers, namely the
Kalman filter [19]. However, the connection of the updateable model to the streaming
platform can be largely simplified by the suggested use of wrapper functions.

5.1. Collector Wrapper Example

Most of the models can be described by a collector structure. They collect information
during earlier life-cycle phases without updating their model output during this period.
In a later phase, the model makes use of the collected data to update its prediction for
each new measurement. For example, the ripening model collects the kM estimates during
the transport phase. Model updates are calculated based on the last kM value during the
subsequent active phase, after the “Start_Ripening” event is received.

The collector phase can be omitted in case that no input from earlier life-cycle phases
is required. The model of the chain in Figure 1 can be integrated to the streaming platform
by the same wrapper structure.

5.2. Wrapper Software Structure

The general structure of wrappers consists of three software entities (Figure 6):
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1. The model handler manages multiple transport items. The handler subscribes to the
configuration topic and starts a new thread, i.e., a model instance for each item.
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2. The second entity contains only generic methods. This wrapper thread provides gen-
eral functionality for the models, such as subscribing and publishing to the streaming
platform and mapping of transport events to state transitions of the model, e.g., from
waiting state to the collector phase and the active phase. Model execution is started
and stopped accordingly.

3. The model-specific part for each model type translates the model outputs to a JSON
structure and vice versa for the model inputs. The specific wrapper is called through
a wrapper interface, which defines abstract step() and collect() methods.

5.3. Specific Wrappers

All access to the streaming platform is performed by the model handler and the
wrapper threads, which are independent of the individual model types.

Only the specific wrappers must be written anew for each model type. Transferring
the required in- and outputs from JSON to function arguments for calling the mathematical
model must be performed individually. Each model requires a different number of in- and
outputs with different descriptive names. In order to avoid model-specific programming
in the first two entities, in- and output values are forwarded as a JSON structure and only
read out and written back in the specific wrapper. Except for JSON, no special libraries or
programming techniques are required in this entity.

Besides the JSON translation, data preprocessing and model-specific tasks are also
implemented in this level, such as verifying if the sampling interval is inside the allowed
range or filling missing sensor values with the last known one.

For some models, such as the cooling parameter identification, the calculation of the
output value must be postponed until sufficient input samples are available.

5.4. Wrappers for Prediction Models

The prediction models in Figures 4 and 5 require some extension to the collector
wrapper. The user can publish a “query” event to the sensor data topic. The wrapper has to
process this event and start the related model algorithm through an additional prediction()
function in the wrapper interface. The prediction result consists of an array of consecutive
model outputs, e.g., the predicted temperature in intervals of 1 h until the estimated arrival
of the transport. The prediction array is added to a single message and published to the
model’s output topic.

6. Demonstration and Testing

Two scenarios were evaluated in detail as proof of concept and for testing their
functionality of the DT platform. The wrapper function and models for the ripening
scenario (Figure 3) and the prediction of future temperature and green life (Figure 4) were
programmed in Java. An alternate implementation of the green life model and its wrapper
was written in Python to demonstrate the platform’s capability to integrate models in
different programming languages.

In the following, we focus on the temperature and green life prediction as the more
complex scenario. A prediction query was triggered at different points of time after
transport start. The setpoint was assumed to remain at the average of the last known values
of 13.2 ◦C. The predicted curve for the box temperature was compared with the finally
measured curve as reference (Figure 7).

The reference for the green life was calculated by using the finally measured tempera-
ture curve as input to the model (Figure 8 dotted green line).

Prediction queries were inserted into the data stream between 1.5 and 4 days after
transport start. They use the model structure in Figure 4 to estimate the green life, based on
the predicted temperature. The green life prediction error was calculated as the difference
between predicted value and reference model for the point of time, when the ship arrives
the harbor. Additionally, a what-if scenario was tested to predict the effect of adjusted
setpoint and cooling air temperature.
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Figure 8. Green life prediction based on full temperature curve (dotted green) and predicted temperature
for different query times. Supply air temperature assumed constant at 13.2 ◦C after the query.

Our test scenario is based on real-life data, which we collected during earlier exper-
iments for the sea transportation of bananas and their further processing in Europe [17].
It was more useful to play back these data for scenario testing rather than using new
real-world live data by repeated tests. For the streaming platform, it does not matter from
where data are coming, as long as they use the same MQTT interface and have the same
sampling interval. The play back speed can be even higher, e.g., measurements that were
taken in intervals of 1 h are played back with a speed of 10 per second for up to 10 banana
boxes in parallel. The performance of the platform was measured in terms of latency
between sending the sensors values and availability of the final model result. The tests
were carried out with the streaming platform running on a virtual Linux server with four
cores, all models were running on a local Windows i7 workstation. Timing measurements
were based on the System.currentTimeMillis() function provided by the operating system.

7. Results

Our focus was to demonstrate the platform and verify its performance. Additionally,
the accuracy of the green life prediction was tested.
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7.1. Platform Performance

The tests proved the functionality of our DT platform and of the wrapper functions.
Prediction results were displayed in the graphical interface of InfluxDB. For better layout,
the final graphics were plotted in Matlab (Figures 7 and 8).

The Kafka platform was able to handle the model linking with only minor latency. For
the first test, only a single freight object was monitored by the DT platform. The delay from
sensor reading to the last model in the chain was measured to 3.5 ms in average including
four publish/subscribe interactions with the streaming platform. The latency increased to
60 ms during a load test for the simultaneous monitoring of 10 objects, which was still less
than the sampling interval of 100 ms.

In contrast to Kafka, InfluxDB showed performance issues in our tests. Sending the
results from 100 models per second to InfluxDB caused data congestion with an average
delay of 20 s until all write operations were completed.

7.2. What-If Scenario

The output of one what-if scenario is given in Figure 9 as an example. The effects of
a change of setpoint, 1.5 days after start of the transport was tested. The setpoint can be
slightly increased to save energy or decreased to extend green life. Approximately one day
of green life is gained by a setpoint reduction of 0.5 ◦C.
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Figure 9. What-if scenario for testing setpoint changes, 1.5 days after transport start. Measured box
temperature (green) for supply air with average 13.2 ◦C, see black line in Figure 7 left.

7.3. Prediction Accuracy

The accuracy of the green life prediction increased with the amount of collected data
before the query was initiated. Three days after transport start, the typical error falls below
0.2 days with some outliers up to 0.5 days (Figure 10). Lager outliers for earlier queries are
lying outside the plotting range (2.2 day for query after 2 days, 5.9 for 1.5 days).

The error of the temperature prediction was typically below 0.2 ◦C, 3 days after
transport start, with outliers up to 0.4 ◦C.
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7.4. Code Size

The programming overhead for integration sub-models instead of a monolithic so-
lution to the DT platform was evaluated based on the code size of the required specific
wrapper functions. For example, the wrapper for the ‘Cool-Ident’ model required in total
46 lines of code. Six lines of constructor code initialize internal variables and the model.
The method to process sensor events implements the step() function from the interface.
It needs 12 lines of code for reading temperature values from JSON, verifying the time
interval via a shared class, calling the model internal update method and testing if sufficient
data are available to carry out the parameter estimation. The consecutively called method
to write back the estimated model parameter to the output topic requires six lines.

8. Discussion

This section starts with practical limitations, which are specific to our use-case but not
to the wrapper concept in general. Our concept is based on the event-driven architecture,
whose pros and cons will be summarized before the final evaluation of additionally required
CPU time and coding overhead for our solution.

8.1. Practical Limitation in Our Use-Case

Prediction of future temperature and its effect on green life is only possible after an
accurate estimation of the cooling model parameters has become available. Otherwise,
the prediction is distorted by larger outliers. A reliable prediction is only possible after
most of the temperature difference is already compensated. A more detailed discussion
of model accuracy and means for improvement is beyond the focus of this article on
software architecture.

The second limitation concerns the application of the what-if scenario for setpoint
changes. In practice, there is very little freedom to adjust the setpoint. At lower temperature,
bananas are harmed by so-called chilling injuries. A more realistic application would
include the prioritization of containers with low expected green life in the harbor. A what-if
scenario should test the effect on other containers, which must be postponed in turn. The
DT is extended to a system of systems [28], with the twin for box quality integrated into a
twin for harbor management.

8.2. Event-Driven Architecture and Microservices

The event-driven architecture is very suitable for monitoring a large set of objects
by a DT platform due to its high performance, scalability, and evolutionary features [7].
However, as every other software pattern, the advantages have to be balanced against some
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drawbacks. Although single event processors can be tested easily, testing is difficult in a
large, meshed model structure. Timing becomes critical if events are forwarded on parallel
paths, and the output of the last processor depends on the sequence of incoming events.
The publisher does not receive feedback whether the event is correctly processed by the
subsequent subscribers, making error handling difficult. A tool to keep trace of the event
flow must be programmed separately.

The microservice pattern offers large flexibility in programming individual software
units. New models and software version can be started any time. In our solution, only the
configuration file must be edited to link the new model with other existing ones.

8.3. Computational Costs

The streaming platform proved to have a sufficient low latency for most applications,
even with a sub-optimal setup as in our tests. The Kafka cluster consisted of only a single
broker on a virtual server with one partition. All publish/subscribe interactions of the
models with the platform were handled via the campus Ethernet.

With the current solution, ten objects can be traced in intervals of 100 ms. With a total
of four model steps, including transfer to and from the MQTT broker, this summed up to
400 interactions per second, causing a delay of 60 ms in average.

If the application requires a shorter update interval, or more objects should be traced,
several elements of the platform can be optimized, e.g., increasing the number of brokers
on separate servers, divide each broker into partitions, using dedicated servers instead of
virtual machines shared with other users, and running models and platform on the same
server to avoid delays by Ethernet communication. For example, the Kafka setup in [5]
was tested for a maximum throughput of 8000 messages per second with three brokers and
10 partitions each.

All models were programmed in incremental format and required only marginal CPU
time per step. Delays by Ethernet communication and of the Kafka broker had a higher
contribution to the total latency. An exact quantification of the individual contributions
was hardly feasible due to the limited resolution of the System.currentTimeMillis() function.

The code of our generic wrappers does not need further changes. Only one specific adapter
function must be modified for each sub-model, with typically 50 lines of code to be edited.

Neither the additional computing costs for the sub-model-oriented integration nor
the additional programming effort create significant obstacles for applying our concept.
Monolithic models can be replaced by a microservice-oriented style.

8.4. Further Architecture Features

Every object is handled by a separate chain of topics in our solution. For each object,
a new thread instance is started for the required models. This approach makes the pro-
graming of wrapper functions straightforward. They do not have to filter data; they just
subscribe to the related topic. Each model instance runs independently, runtime software
errors only affect a single object. Linux provides 65,000 threads by default; however, in
a large cool chain scenario with thousands of sensors, the use of individual threads and
topics can cause performance issues or reach limitations of the operating system.

Each model adds new information to the incoming data and publishes the combination
to an enriched stream, thus storing redundant data. Due to the availability of hard disks in
Terra Byte range and fast Ethernet communication, this point is less crucial.

InfluxDB was included in our architecture for long-term data storage, for providing
tabular access by query languages, and as interface to graphical display tools. The perfor-
mance of InfluxDB will be sufficient for a real-word scenario, with sensor data arriving in
intervals of minutes or hours. However, our accelerated testing with 100 write operations
per second caused performance issues and data congestions. Therefore, it should be ques-
tioned if the same functionality can be achieved without InfluxDB as mediator or another
database provides better performance.
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9. Conclusions

We demonstrated the capability of DTs for enhanced monitoring of industrial processes.
Based on our scenario for the cool chain monitoring of bananas, we showed that DTs can
represent sensor data, estimate resulting quality changes, predict the future behavior of
the object, estimate not-directly-measurable states, such as the heat production during
ripening, and evaluate the effects of changes in the process parameters by simulating
what-if scenarios.

DTs in Industry 4.0 started with the modelling of material flow and continued with an
increasing integration of analog sensors, e.g., for temperature and mechanical stress. The
analysis of such analog sensor data needs detailed modelling, which if often too complex
for monolithic solutions. Microservices are a common method to combine independent
software units into a complex application. The related event-driven architecture has already
found its way into DTs and Industry 4.0, but mostly for sensor data collection, offline
machine learning, and simulation. We demonstrated how these software architectures
can also be applied to integrate multiple sub-models for sensor data processing into DT
platforms. Although we focused on an example for a specific cool chain, our approach
is not limited to the related sensors or models. The generic wrappers can be adapted to
various sensor models in industrial applications.

Our novel concept largely reduces the programming effort for integration of new models.
The provided set of generic wrapper functions covers pipeline and meshed model linking
structures, including what-if scenarios. The wrappers handle the access to the streaming
platform and assignment of model inputs and outputs to suitable topics. The individual
programming per model is reduced to changing a few lines of code in an adapter function.

In comparison to monolithic solutions with all sub-models combined in a single
software unit, the additional computation cost in terms of CPU time sums up to 1 ms
per sub-model, monitored object, and iteration. This additional CPU load is negligible in
most sensor application with update intervals of minutes or even hours. The stability of
our platform was tested for an interval of 100 ms. If shorter intervals or a higher number
of sub-models and objects are required, the performance of the Kafka platform can be
increased by separating each broker into partitions increasing the number of brokers on
additional servers.

Future Work

So far, we covered various DT application scenarios by the four different cases for
model linking structures (Section 2) with our set of generic wrapper functions. The list
of linking structures might be still incomplete. For example, spatial interpolation models
to predict values for uncovered positions in between the sensor locations require a high
number of sensor inputs. The set of generic wrapper functions should be extended in the
future accordingly. Furthermore, the wrapper functions were mostly programmed only
in Java, except for a simple example in Python and a general method to connect Matlab
models. In future developments, the complete set of wrappers should be translated to other
programming languages.

Despite these open tasks, we provided a solution that offers the same flexibility
in programming as microservices. New or updated models can be easily plugged into
the streaming platform. The novel concept for generic wrapper functions provides the
necessary means to program the components of sensor data processing models in separate
software units, and, thus, simplifies the integration of such model structures and enables
more accurate sensor monitoring of objects in an industrial environment.
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