ﬂ Sensors

Article

Drone-Based Environmental Monitoring and Image Processing
Approaches for Resource Estimates of Private Native Forest

Sanjeev Kumar Srivastava !, Kah Phooi Seng ?-3*, Li Minn Ang !, Anibal “Nahuel’ A. Pachas *

check for
updates

Citation: Srivastava, S.K.; Seng, K.P;
Ang, L.M,; Pachas, A’'N.A.; Lewis, T.
Drone-Based Environmental
Monitoring and Image Processing
Approaches for Resource Estimates
of Private Native Forest. Sensors 2022,
22,7872. https://doi.org/10.3390/
§22207872

Academic Editor: Antonia Spano’

Received: 29 September 2022
Accepted: 11 October 2022
Published: 17 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Tom Lewis !

School of Science Technology and Engineering, University of the Sunshine Coast,

Sippy Downs, QLD 4556, Australia

School of Al and Advanced Computing, Xi'an Jiaotong Liverpool University, Suzhou 215000, China
School of Computer Science, Queensland University of Technology, Brisbane City, QLD 4000, Australia
Department of Agriculture and Fisheries, Queensland Government, 1 Cartwright Road,

Gympie, QLD 4570, Australia

Correspondence: jasmine.seng@xjtlu.edu.cn

Abstract: This paper investigated the utility of drone-based environmental monitoring to assist with
forest inventory in Queensland private native forests (PNF). The research aimed to build capabilities
to carry out forest inventory more efficiently without the need to rely on laborious field assessments.
The use of drone-derived images and the subsequent application of digital photogrammetry to obtain
information about PNFs are underinvestigated in southeast Queensland vegetation types. In this
study, we used image processing to separate individual trees and digital photogrammetry to derive a
canopy height model (CHM). The study was supported with tree height data collected in the field
for one site. The paper addressed the research question “How well do drone-derived point clouds
estimate the height of trees in PNF ecosystems?” The study indicated that a drone with a basic RGB
camera can estimate tree height with good confidence. The results can potentially be applied across
multiple land tenures and similar forest types. This informs the development of drone-based and
remote-sensing image-processing methods, which will lead to improved forest inventories, thereby
providing forest managers with recent, accurate, and efficient information on forest resources.

Keywords: digital photogrammetry; drone-based monitoring; forest resource estimation; image
analysis; private native forests; remote sensing

1. Introduction

There are approximately 2 million hectares of potentially harvestable private native
forest (PNF) in southern Queensland. However, there is little information on the productive
state (in terms of timber production) of this resource. Field surveys suggest that large
parts of this resource are in a relatively unproductive condition. However, some works
have shown that management (e.g., tree thinning) can greatly enhance the productive
value of the native forests and that remote-sensing options can provide useful information
on the heights and species within native forest environments. There is a need for forest
inventory work to determine where forest management might be best targeted. If well
managed, this resource has great potential for helping maintain or grow the hardwood
timber industry in Queensland. Image processing and remote sensing have the potential to
increase cost-effectiveness and time efficiency and reduce uncertainty compared with the
traditional method of generating forest inventory data from sampling plots [1-3]. Accurate,
spatially detailed forestry inventories can be generated from cost-effective, near real-time
data sets [4-6].

In the literature, four remote sensing approaches have generally been used to moni-
tor forest environments: (1) airborne and terrestrial light detection and ranging (LiDAR);
(2) interferometric radar; (3) high-resolution multispectral images, and (4) photogramme-
try [7-9]. LiDAR (light detection and ranging) data and high-resolution remote-sensing
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images (e.g., photogrammetry) can be used to develop a canopy point cloud. Where the
density of this point cloud is high enough (i.e., high spatial resolution), this allows for
the determination of the number of trees per hectare and their canopy heights. However,
flying over potential forests of interest to obtain LIDAR data is cost-prohibitive, and while
high-resolution satellite images are useful for giving an indication of the overall canopy
height, this method of photogrammetry does not allow the determination of the number of
trees per hectare (point clouds derived are not of sufficient density) in the forest. Motion
photogrammetry using unmanned aerial vehicles (i.e., drones) can produce high-density
point clouds to allow the estimation of productive tree crowns. However, to the best of our
knowledge, this method has not been validated in subtropical eucalypt forests.

Forest inventory data collection is enhanced by recent developments in UAV image
collection, and products using digital photogrammetry are cost-effective options for forest
structure profiling [10]). There are several examples of UAV-supported remote-sensing tech-
niques that have been used to study forests [11,12]. Several studies have demonstrated the
accuracy of aerial laser survey (ALS) or LiDAR for providing forest inventory data [13-17]
and its efficiency compared with field measurements [18]. Yet ALS can be cost-prohibitive,
especially when analysing temporal change. The high cost associated with ALS can limit the
spatial extent and temporal frequency of data collection [19-21]. Drone-based approaches
have several advantages for forest monitoring. Lower flight altitudes are able to give high
spatial-temporal resolution, data acquisition frequency can be high due to the relatively
low operating costs, and the algorithms associated with UAV-derived products are robust
and provide accurate elevation data.

This paper investigates the utility of drone-based monitoring and image processing
approaches to assist with forest inventory in Queensland native forests. The research aims
to build capabilities to carry out forest inventory far more efficiently without the need to rely
on laborious field assessments. In this paper, we used a number of existing private native
forest sites where field inventory data was available. We investigated the utility of drone-
based remote-sensing and image-processing data for the collection of forest inventory
information. The findings of this study will be highly beneficial for various agencies
working on managing natural and commercial forests. This paper is structured as follows.
Section 2 discusses some previous works on drone-based approaches for environmental
and forest monitoring. Section 3 describes the methodology and data collection approaches
used for the investigation. Section 4 discusses the results and the interpretation of the
results. Some concluding remarks are given in Section 5.

2. Recent Works on Drone-Based Approaches for Environmental Monitoring

The objective of this section is to provide background information before we discuss
our proposed approach for drone-based environmental monitoring and image processing
to assist with forest inventory applied to the private native forests in southern Queensland.
Table 1 shows a summary of the works. We give some examples for two categories
that commonly use drone-based environmental monitoring: (1) land monitoring and
identification and (2) aquatic/marine monitoring and identification. The work proposed
in this paper is for land-based monitoring and identification, with a focus on utilizing
drone-based imagery for forest inventory.
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Table 1. Some recent works on drone-based approaches for environmental monitoring.

Domain Area Year Env1ro'nmfental Techniques Applied Reference
Application
Identification of water The generation of a digital elevation
2022 erosion in mining restored model (DEM) from drone images Padro et al., 2022 [22]
areas and photogrammetric processing
Land L. d Monitoring of rare plant Neural network object detector
anc dmor.lfl‘torl.ng an 2021 S gecies p (YOLO) and darknet neural Reckling et al., 2021 [23]
1dentification P network framework
— CNN (VGG16, VGG19) and transfer
Monitoring of learning to classify four terrain
2018 natural/protected reserves ) 5 ytou Thomazella et al., 2018 [24]
. o classes: water, deforesting, forest
from illegal activities o
and buildings
Detection and Image analysis of drone-based
2021 quantification of algal in 8¢ anatysis o7« Toth et al., 2021 [25]
multispectral imagery
water ecosystems
Aquatic/marine Drone-based fluorosensor ~ Analysis of hyperspectral lidar data
monitoring and 2020 for marine environment and fluorescence spectral recordings Duan et al., 2020 [26]
identification monitoring for vegetation profiling
Image segmentation tools (ArcGIS,
Mapping of coastal fish MultiSpec, eCognition Developer) to
2016 nursery grounds and classify marine terrain classes: coarse Ventura et al., 2016 [27]

marine habitats

sand, fine sand, leaves, matte,

shallow rock, deep rock

3. Methodology and Data Collection
3.1. Site Selection for Drone Monitoring

This research used two privately owned sites where the native forest is managed for
timber and grazing production. The drone data were collected for different sites in the
period from August to November 2020 and the field—forest inventory data were collected
at the same time. The research utilised point clouds derived from drone flights over the
selected sites. The following software packages were used for extracting information:
(1) ArcGIS Pro/ArcGIS; (2) R-statistics; (3) ENVL; and (4) Metashape.

Images were collected using a Phantom 4 pro drone with 4Kcamera in red, green
and blue spectrum during August-September 2020. The drone was flown in a Double-
Grid PIX4D Capture pattern, at an altitude of 60 m above ground level (AGL), with a 65°
camera angle and 80% lateral and longitudinal image overlap. Flights were carried out in
accordance with Australia’s Civil Aviation Safety Authority (CASA) regulations for safe
operation of unmanned aerial vehicles (UAVs) and by suitably qualified personnel in clear
weather conditions with maximum winds not exceeding 20 kph. Images were stored on a
32 GB micro SD card mounted on the drone and subsequently used for analysis.

Figure 1 shows the location of the private native forest sites selected for the study
and the flight path of the drone for collecting the image data. The novel field assessment
mapped the individual tree locations using a Trimble GeoXH Geoexplorer, a differential
global navigation satellite system (GNSS) with up to 10 cm accuracy. Individual trees
were located within existing permanent monitoring plots (generally 40 x 40 m) distributed
within different sites selected for the study. For each tree >10 cm, diameter at breast height
(DBH) and tree height were recorded.
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Figure 1. Location of private native forest sites selected for the study and the drone flight path used
to collect images. Sites were located near Ravensbourne (site 1) and Esk (site 2). Background true
colour images are from different remote-sensing satellites available in ESRI base maps.

3.2. Image Analysis of Drone Images

The RGB images collected from the drone were first analysed in Agisoft Metashape
software. With multiple overlapping 2d drone images, using structure from motion (SfM),
a digital photogrammetry technique, a point cloud and digital surface model (DSM) were
generated together with an orthomosaic (Figure 2).

The SfM algorithm is a four-step process where a point of interest is located in each
overlapping image. This is automated in software packages such as Metashape. The
next step involved finding candidate correspondences with matching descriptors for each
interest point. In the third step, a geometric verification of correspondences is performed.
This uses the RANSAC algorithm to exclude outliers while matching features. The final
step finds a solution for 3d points to minimise reprojection error. This is also referred as
bundle adjustment.

An orthomosaic from drone images is a geometrically corrected mosaic that is colour
balanced and rectified for distortions due to elevation to create a seamless image of an area.
Similarly, the point cloud is a cloud of points with horizontal (x and y) as well as vertical
(height) coordinates. Point clouds can easily be interpolated to create a digital raster surface
of elevation values.



Sensors 2022, 22,7872

50f 14

Identification of private native forest
sites. Planning drone flights using
Pix4D and laying ground control
points and collecting drone images.
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Statistically testing drone-derived
tree height with field data

Figure 2. Methodological framework used in this study.

The RGB orthomosaic was separated into red (R), green (G), and blue (B) spectral

bands that were further normalised using the following equations:

. R
Normalised red (r) = XICTE
. G
Normalised green (g) = RICTE
) B
Normalised blue (b) = XiCrE

)

@

®)

Using the normalised red, green, and blue bands, a number of colour indices were
calculated. Table 2 shows a summary of the colour indices, formulas, and references

thatwhich were used in the models.

Table 2. Colour indices, formulas, and references.

el =IN-TE-CHEN I- &, BTG RY R

Indices Formula
Visible Atmospherically Resistant Index (VARI) (Gitelson et al. 2002) (g—1)/(g+r—D)
Excess Green Vegetation Index (ExG) (Woebbecke et al. 1995) 2¢ —r—Db
Excess Red Vegetation Index (ExR) (Meyer et al. 2008) l4r—¢g
Excess Blue Vegetation Index (ExB) (Mao et al. 2003) 14b — g
Excess Green minus Excess Red Vegetation Index (ExGR) (Neto 2004) ExG — ExR

Normalized Green-Red Difference Index (NGRDI) (Tucker 1979)
Normalized Green-Red Difference Index (NGBDI) (Tucker 1979)
Modified Green Red Vegetation Index (MGRVI) (Tucker 1979)
Woebbecke Index (WI) (Woebbecke et al. 1995)
Kawashima Index (IKAW) (Kawashima and Nakatani 1998)
Green Leaf Algorithm (GLA) (Louhaichi et al. 2001)

Red Green Blue Vegetation Index (RGBVI) (Bendig et al. 2015)

(g—1/(g+1)
(g —b)/(g+Db)

(8% —1)/(g* +1%)
(g—b)/(r—g)
(r—b)/(r+Db)

(2g —r—b)/(2g+r+b)
(g2 —bx1)/(g>+b xr)
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We used ArcGIS Pro 2.8 to calculate all the indices. For this study, we used normalised
green-red difference index (NGBDI) to separate vegetation from other features. On visual
inspection of all the indices, the normalised green-red difference index (NGBDI) was found
best for separating individual trees. Considering this, we used NGBDI to separate trees
from other features. Once vegetation was separated, a separate cleaned polygon was
generated for vegetation.

We further used reclassified NGBDI images to generate random locations on the
ground surface to generate a digital elevation model (DEM). Using the following equation,
we calculated the canopy height model (CHM):

CHM = DSM — DEM (4)

Tree height and tree diameter at breast height (DBH) were measured at 116 locations
for 1 of the study areas. The data were collected for site 2 (Figure 1) during field trips in
September and November 2020.

To test the accuracy of the tree heights estimated from the drone images, we created a
buffer of 1 m around each field data collection location and picked the maximum value
from the canopy height model (CHM) within this zone. To test the statistical relationship
between drone-derived and the height measured in field, we used a Pearson’s correlation
test using the ggpubr library available with R statistics software.

4. Results and Discussion

The orthomosaic created for the different sites clearly showed individual trees, espe-
cially near the flight path of the drone. Figure 3 shows the location of the first site selected
for analysing drone data and the orthomosaic of the site. When the orthomosaic was
separated into RGB bands, variation in information content was noticed that was enhanced
with the calculation of indices. Figure 4 shows the separation of the orthomosaic into red,
green, and blue spectra. The green band showed all the vegetated areas more clearly, while
the vegetation was not clearly separated in the blue and green bands (Figure 4).

The visual analysis of indices clearly indicated variation in information content that
could be further utilised for extracting multiple features such as vegetation types, bare soil,
or grass area. For this study, we selected NGBVI to separate vegetation. Figure 5 shows the
normalisation of the red, green, and blue spectra and the calculations of various indices
from normalised bands.

Figure 6 shows the identification of an index and its reclassification to extract trees
and their differentiation into three classes. For the first site, the reclassification of NGBVI
clearly differentiated trees from other features. Variation between three vegetation types
based on NGBVI was noted, but this study focuses only on separating trees and estimating
their height. The separation of trees enabled the extraction of tree crown areas, which were
then converted to simplified polygons with a separate identification. Figure 7 shows the
generation of the canopy height model to allow for the extraction of height information for
different trees. The polygons created for each tree were further used to perform a zonal
operation on CHM to acquire detailed statistics of the height of each tree. Some further
results for a second site are shown in Figures 8-10. For this site, tree height statistics and
crown area were derived, and tree heights were compared with those assessed in the field
(Figure 11). There was a strong relationship between field-measured heights and those
derived from the CHM (p < 0.0001, Figure 12).
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Figure 3. Location of the first site selected for analysing drone data and the orthomosaic of the site.
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Figure 4. Separation of the orthomosaic into red, green and blue spectrum.
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Figure 5. Normalisation of red, green and blue spectrum and calculation of various indices (see

Table 2) from normalised bands.
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Figure 6. Identification of an index and its reclassification to extract trees and their differentiation
into three potential classes, that may represent different tree species.
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Figure 7. Generation of canopy height model allowing extraction of height information for
different trees.
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Figure 8. Location of site 2 selected for analysing drone data.

Reclassified NGBDVI

Value

-0.99999 - 0.0176472
I 0.0176473 - 0.0764706
Il 0.0764707 - 0.5

Normalised green blue difference

(NGBD)

Reclassified NGBD for tree locations

0 75

L
300 Metres

Polygons for trees overlaid on RGB orthomosaic

N

A

Figure 9. Identification of an index and its reclassification to extract trees and their differentiation

into three classes.
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Figure 10. Generating a canopy height model for extraction of height information for different trees.
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Figure 11. Location of field-measured tree height data points.
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Figure 12. Relationship and statistical test between field-measured and drone-derived tree heights.

5. Conclusions

This paper has investigated drone-based and image processing approaches for forest
inventory monitoring. The work has shown that vegetated areas and potentially the species
contained within can be calculated from indices derived from red, green, and blue bands
of orthomosaic images. Furthermore, using CHM data, it was possible to calculate height
statistics for vegetated areas. The combination of RGB-derived indices and a canopy height
model (CHM) enabled obtaining detailed inventory information for individual trees within
PNFs. It was possible to calculate height statistics for individual trees with reasonable
accuracy, although this would be more challenging in dense forests with overlapping tree
crowns. A few plots were affected by tree shadow, which interfered with other information,
although this was minimised to a greater extent with the calculation of indices. This
exploratory study suggested that using a combination of different indices and the canopy
height model, it will be possible to apply machine and deep learning algorithms to separate
vegetation types or species. Future work will investigate this approach and also estimate
forest biomass using height information and the area occupied by different trees.
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