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Abstract: Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly
used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded
with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applica-
tions, with potential skin irritations and discomfort. Alternative dry solid metallic electrodes also
face long-term usability and comfort challenges due to their inflexible and non-breathable structures.
This is critical when the anatomy of the targeted body region is variable (e.g., residual limbs of
individuals with amputation), and conformal contact is essential. In this study, textile electrodes
were developed, and their performance in recording EMG signals was compared to gel electrodes.
Additionally, to assess the reusability and robustness of the textile electrodes, the effect of 30 consumer
washes was investigated. Comparisons were made between the signal-to-noise ratio (SNR), with
no statistically significant difference, and with the power spectral density (PSD), showing a high
correlation. Subsequently, a fully textile sleeve was fabricated covering the forearm, with 14 textile
electrodes. For three individuals, an artificial neural network model was trained, capturing the EMG
of 7 distinct finger movements. The personalized models were then used to successfully control a
myoelectric prosthetic hand.

Keywords: electromyography; smart textiles; dry-contact electrodes; e-textile; conductive elastomeric
yarn; knitted sensor; fabric sensor; ANN; prosthetic control

1. Introduction

The overall goal of this work was to develop a scalable smart garment system capable
of capturing muscles’ activity, controlling myoelectric prostheses or exoskeletons, and
ultimately improve accessibility and functionality of assistive devices for individuals with
amputation and mobility deficits. Mobility deficits are common debilitating outcomes of
neurological injuries such as stroke and spinal cord injury, as well as limb amputation
procedures. In 2013, the prevalence of stroke survivors worldwide was estimated to be
25,000,000 people [1]. In the United States alone, approximately 2 million people live with
limb amputation [2]. Myoelectric prostheses and exoskeletons (further referred to as active
prostheses) are wearable robotic prostheses that enable and assist users in performing motor
functions they have lost due to amputation or neuromuscular deficits. The complexity
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of these prostheses vary depending on the user’s needs, the location and the level of
amputation, or deficit. In this work, we aim to address some of the most common barriers to
the adoption and frequent use of active prostheses in daily living conditions, by developing
a smart garment with embedded textile electrodes.

Individuals with limb amputation report functionality limitations, discomfort, dif-
ficulty of usage, prosthetics’ heavyweight, and lack of breathability as top reasons for
abandoning the usage of prostheses [3]. A common method for controlling myoelectric
prostheses is to utilize electromyography (EMG) signals from users’ residual or intact limbs.
Recent advances in machine learning pattern recognition algorithms have been improving
the EMG-based control and functionality of myoelectric prostheses [4,5]. However, the
limitations of neuromuscular interfaces for the comfortable and reliable acquisition of EMG
signals in this context remain. Existing commercial systems currently use metallic elec-
trodes or electrodes made of polymeric films to interface with the neuromuscular system
which are not flexible or breathable [6,7], and as a result, are not comfortable for continuous
use [3], and may contribute to skin complications [8].

Alternatively, in research settings, textile interfaces have also been explored for surface
EMG recordings. The signal-to-noise ratio (SNR) of textile electrodes has been shown to be
comparable to the gold standard EMG adhesive electrodes with gel [9,10]. Additionally,
knitted textile electrodes are breathable and more comfortable for prolonged use, compared
to existing metallic or gel adhesive neural interfaces, and have the potential to be incor-
porated in day-to-day clothing. Some systems also use textile contactless electrodes but
have their own limitations such as low signal fidelity and are prone to higher noise [11–13].
Usability studies for smart textile systems for monitoring patients show a strong preference
for comfort, unobtrusive, and light form factors that do not affect normal activities in
daily life [14–16]. Bergmann et al. [15] mention that preferences clinicians have which
aligned more with collecting and accessing data, limited storage for long-term recording,
and the medical industry infrastructure [15]. Previous studies utilizing textile electrodes
have also been successful in implementing algorithms including, linear discriminant pat-
tern recognition algorithm and supervised pattern recognition algorithm, to differentiate
between specific gross motor movements of the upper limbs [9,10,17]. However, textile
EMG interfaces implemented so far are limited in their reusability and scalability (i.e., mass
producibility) as they have utilized silver material yarns in their electrodes [18], which
are not wash and dry resistant and are prone to sulfidation over time [17]. Among these
studies, Farina et al. [19], Brown et al. [9], and Sumner et al. [20] had moistened the elec-
trodes to achieve high fidelity recordings, which limits their application to only performing
short-term recordings. The addition of moisture to the skin interface can also increase
the chance of skin irritation and infection during prolonged use [8]. Lorussi et al. [21],
developed a similar smart garment but used large electrodes with a comparably large
inter-electrode spacing which reduces what muscles can be measured and the number
of channels in an area. The works mentioned previously show the promising nature of
e-textiles but neglect to cover one of the big barriers to commercialization which is washa-
bility and scalability [22], and to demonstrate functionality in real-world scenarios. The
smart garments (i.e., sleeves) presented in this work build on the concepts of advanced
additive manufacturing and 3D printing technologies by utilizing CAD-based automated
knitting machines. Success in this development presents an important opportunity for
the fabrication of highly customizable (CAD-based) EMG smart garments with significant
mass-producibility potential. Similar to the familiar 3D printer example, mass produc-
tion and transferability are realized by using automated knitting machines anywhere in
the world along with the developed knitting programs. This is in contrast to previously
published work on EMG-based smart garments, which are primarily proof of concepts,
employing techniques with limited reproducibility in scale [22]. Seamlessly embedding
electrodes with conductive textile traces for signal transmission is also important in an
EMG smart garment to create a sleek and lightweight garment for patient usability. In the
context of prosthetic limbs, a bulky system with many indwelling wires would not be prac-
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tical. Previous works have not demonstrated seamless implementation of an EMG smart
garment and have faced challenges such as electrical isolation in knitted fabrics [20,23]. The
objective of this work was to address the outstanding technology gaps towards the needs
of individuals with amputation and create an industry-scalable smart garment solution
for EMG-based control of real-world myoelectric prostheses applications. Specifically, we
developed a novel, dry textile electrodes and smart garments that are realizable using CAD-
based knitting machines, provide excellent EMG signal fidelity, do not require indwelling
wires for connecting to textile electrodes, are consumer wash cycle resistant (30×), and as
such reusable, and finally can functionally be used for control of myoelectric prostheses in
real-world applications with comfort. Additionally, to assess the limitations of the general
use of the developed system and improve it in the next steps, testing was carried out with
multiple volunteers.

2. Materials and Methods

A textile forearm sleeve was fabricated with an embedded array of textile electrodes.
The textile electrodes were used for continuous recording of EMG signals from the fore-
arm’s flexor and pronator muscles. An artificial neural network model was trained to
distinguish various finger movements, and the resulting algorithm was embedded onto
a microcontroller module to perform online recording, classification, and control of a
myoelectric prosthetic hand.

Textile electrodes: Dry textile electrodes were knitted using conductive filament yarns
made of carbon-contained silicone rubber (Myant Inc. in collaboration with University of
Toronto, Canada). Silicone-based conductive yarns were chosen due to their mechanical
robustness and flexibility for creating a conformal interface with the skin. Figure 1a,b
show the surface and cross-section morphology of a conductive silicone rubber (CSR)
filament yarn. Conductive yarns were then knitted into 3D structure textile electrodes
using a flatbed knitting machine to provide and maintain consistent conformal contact
with the skin (Figure 1c,d). JSM1000 SEM (JEOL, Akishima, Japan) was used to evaluate
the morphological characteristics of CSR yarns and knitted electrodes.
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Figure 1. (a) Surface morphology of a conductive silicone rubber (CSR) yarn characterized by SEM;
(b) Cross-section morphology of a CSR yarn; (c) Morphology of a dry textile electrode made of
CSR yarn at 20× magnification; (d) Morphology of a dry textile electrode made of CSR yarn at
100×magnification.



Sensors 2022, 22, 666 4 of 17

Skin-Electrode Impedance Measurements: Skin-electrode impedance measurements
were carried out on 3 study participants using an Ivium Vertex One potentiostat (Ivium
Technologies, Eindhoven, Netherlands) in the galvanostatic mode in the frequency range
of 1–100 kHz (5 freq/dec). Measurement protocols were according to those described by
Spach et al. [24]. Textile and gel adhesive electrode samples used for these measurements
were 2 cm × 2 cm (rectangular) and 2 cm in diameter (circular), respectively.

Measurements for EMG Signal to Noise Ratio and Power Spectral Density Calculations:
To calculate EMG signal to noise ratio (SNR) and power spectral density (PSD) for textile
and gel electrodes, electrodes were positioned over the anterior surface of the forearm
(position marked as channel 2 in Figure 2c). EMG signals were then recorded capturing
10 contractions (all finger flexion movement shown in Figure 3). The active state of an
EMG was detected when the root mean square (RMS) amplitude of the EMG signal ex-
ceeded 6xSD of the baseline. SNR was calculated as the ratio of the RMS amplitude of
the signal during active and inactive states. Power spectral density was calculated using
Welch’s method.
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Figure 2. The myoelectric prosthetic hand and the EMG sleeve used in this study: (a) Top-view;
(b) Side-view; and (c) location and arrangement of the textile electrode array with respect to users’
right forearm.

EMG Sleeve (Multielectrode array): Fully integrated textile sleeves with 14 3D-structure
textile electrodes were knitted using 18-gauge industrial flatbed knitting machines (Stoll,
Reutlingen, Germany) (Figure 4b–e). 3D Knitted electrodes were positioned over the
anterior forearm, extending over the pronator teres, flexor carpi radialis, palmaris longus,
flexor carpi ulnaris, and flexor digitorum superficialis muscles which are responsible
for wrist and finger flexion and pronation movements. A reference electrode was also
positioned at the dorsal surface of the elbow joint. The surrounding fabric of the electrode
had a double jersey structure made of Nylon (210 denier*) and Lycra (70 denier) yarns
(Figure 4c–e). Silver-plated nylon yarn (100 denier) was used as conductive traces to
connect the electrodes to the electronics, this yarn was hidden between the front and back
layers to avoid being in direct contact with the body. The electrode sleeve (length: 35 cm,
wrist circumference: 18–21 cm, elbow circumference: 28–31 cm) had velcro on the edges
such that it could be securely fitted on the forearm of each test subject with a thumbhole to
guide the placement and prevent shifting. Interelectrode spacing is defined as the center
to center distance between the conductive area of 2 textile electrodes. The interelectrode
spacing was 2 cm and 3 cm in mediolateral and longitudinal directions, respectively. The
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size of each 3D textile electrode was 1 cm × 1 cm. The spacing and size of electrodes were
used to increase the density of recording sites on the forearm. Each pair of electrodes were
assigned channels 1–7 (Figure 2c). This design was implemented to capture and distinguish
seven finger flexion movements (Figure 4 shows the labeled hand gestures) using EMG
classification, as a proof of concept.
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EMG data acquisition and microcontroller unit: EMG signals were captured using a
custom-built 8-channel data acquisition system (Myant Inc., Toronto, ON, Canada) consist-
ing of a preamplifier stage and an analog input stage. Collectively the utilized EMG data
acquisition system acquired EMG from 7 differential inputs with a sampling rate of 1 kHz
and applied hardware filters to exclude frequency components outside of the 19–500 Hz
range [25–27]. High-pass filter parameters were chosen based on previous literature to elim-
inate motion artifact components of the signal, inherent to EMG recordings [25,26,28,29].
The low-pass cutoff frequency was chosen since surface EMG signals are composed of
500 Hz signals and lower, so a cutoff of 500 Hz helps isolate EMG from high-frequency
noise [27].

High-pass filtering at 19 Hz is achieved using a second-order Butterworth filter and
low-pass filtering at 500 Hz was achieved using a third-order Bessel filter. Hardware filter
implementations used in this study reduced the computation load of the microcontroller
for feature calculation and control of the myoelectric prosthesis. An STM32F103RBT6
(STMicroelectronics, Geneva, Switzerland) microcontroller was used to perform online
feature calculations, classification, and ultimately control of the myoelectric prosthetic. The
microcontroller received input from the DAQ module (8 channels of filtered EMG) and
provided output to the stepper motors of the myoelectric prosthetic. The firmware for
this microcontroller was designed to calculate feature vectors in 270 ms bins and generate
classifications based on an embedded artificial neural network (ANN) model (details
provided in the subsequent sections). The firmware had two runtime modes: (a) training
and (b) testing. In the training mode, feature vectors were calculated and sent to the
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computer using a serial port interface. This mode was used to save data associated with
training sessions. In the testing mode, feature vectors were similarly calculated, followed
by classification using the embedded ANN model, and followed by generating the relevant
control signal outputs (pulse width modulated (PWM) signals) to the servo motors in the
myoelectric prosthetic.
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Figure 4. Textile sleeve with an embedded EMG electrode array: (a) Textile sleeve simulated fabric
view; (b) Textile EMG sleeve outer view; (c) Textile EMG sleeve inner view; Optical microscope
images showing seamless embedding of the electrode structure within a passive sleeve garment.
During knitting, the textile electrode made of CSR yarns is directly connected to the electrically
passive surrounding fabric made of nylon yarn (d) 40×magnification, and (e) 250×magnification.

Myoelectric prosthesis: A 3D printed multi-articulating myoelectric hand was built.
Specifically, we fabricated the Handi Hand developed by the Blinc Laboratory (University
of Alberta, Edmonton, AB, Canada) [30]. The Handi Hand is an anthropomorphic prosthetic
hand capable of all-natural degrees of freedom of a human hand except for lateral finger
movements. One servo motor on each of the five fingers controls the flexion-extension
of the fingers with an additional servo motor controlling the abduction/adduction of the
thumb for a total of six servos [31]. The ANN model outputs a 3-bit output state vector
which maps to particular hand gestures that servo motors move to replicate (Table 1).
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Table 1. Outputs state vector mapping of the classified gestures.

Output State Vector

Gesture a b c
Rest 0 0 0

Index 0 0 1
Middle 0 1 0

Ring/Pinky 1 0 0
Index/Middle 0 1 1

Middle/Ring/Pinky 1 1 0
Index/Ring/Pinky 1 0 1

All Fingers 1 1 1

ANN Model Training: ANN models have traditionally been used for real-time ges-
ture classification of surface EMG signals [32,33] and were also utilized in this study.
To train an artificial neural network, three EMG signal time-domain features were cho-
sen [34,35]: (i) Willison amplitude (WAMP) [36], (ii) Wavelength (WL) [35], and (iii) Root
Mean Square (RMS).

The WAMP feature is related to the number of motor unit action potentials (MUAPs)
which occurred during the effective window [17] and is defined as

WAMP =
N

∑
i=2

f (|xi − xi−1|) (1)

where:
xi is the value of the i-th sample of data within the effective window
N is the number of samples within the effective window
f (x) is a function equal to 1 if x > ε and equal to 0 otherwise, and
ε is some arbitrary threshold value
The WL is a measure of the complexity of the signal [37] and increases with the

strength of an EMG response. WL is defined as

WL =
N

∑
i=2
|xi − xi−1| (2)

where:
xi is the value of the i-th sample of data within the effective window
N is the number of samples within the effective window
RMS is a popular feature for EMG analysis and has been shown to be correlated with

muscle contraction force [38]. RMS is defined as

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (3)

where:
xi is the value of the i-th sample of data within the effective window
N is the number of samples within the effective window
For each study participant, a multilayer feedforward artificial neural network (ANN)

model with back-propagation and mini-batch gradient descent was trained to classify seven
finger flexion movements (Figure 3). EMG recordings were done using seven channels
(Figure 2c). The ANN models were trained with one hidden layer, three hidden neurons,
a learning rate of 0.0001, and a batch size of five to train 6000 epochs. The training was
done using a custom-written MATLAB program (Ver. 9.10.0.1602886 (R2021a), MathWorks,
Natick, MA, USA). A total of 5 datasets were used to model training and another 5 datasets
were used to evaluate the classification accuracy of the model. Each participant had a
personalized ANN model trained using only their data. The resulting trained model was
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then embedded onto the microcontroller to perform live classification and control the
myoelectric prosthesis. The full system block diagram which shows how each part is
integrated can be seen in Figure 5.
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Personalized ANN Model Developed: Personalized models are versatile solutions
that account for natural variabilities in individuals’ anatomy. This is in contrast with the
development of a single universal model that can be used on a large population of users.
This is especially the case in those with amputated limbs where the morphology of the
residual limb is variable [33,34]. The necessity of a personalized solution for individuals
with amputation is well known and commonly implemented in areas such as a prosthetic
socket design and fabrication and motor control strategies. Using this concept, every user
trains with their smart garment only the first time. The concept of developing personalized
models and calibration stages has also been demonstrated in various forms in existing
commercial systems such as the Coapt engineering system [6].

Experimental Protocol: All procedures and protocols were approved by the research
ethics board committee of the University of Toronto. Three volunteers (age: 26–28, male,
right-handed, Table 2) participated in this study. All participants took part in one training
and one test session. During the training sessions, participants donned the multi-electrode
EMG sleeve on their right forearm (Figure 2c) or received an array of gel electrodes in
the same locations, and were asked to perform all finger movement classes (Figure 3) in
sequence multiple times. Specifically, the sequence starts with ten seconds of rest while
data is collected for calibration purposes, followed by the participant holding each hand
pose for 5 s, followed by a 10 s rest period in between. Each complete cycle of all hand
poses formed one dataset. A total of 10 datasets were collected from each participant (5 for
training and 5 for testing). At the end of each training session, the quality of the collected
data was assessed to ensure that the test subject held each hand gesture for the correct time
interval and each state could clearly be labeled for the training data.

Table 2. Anthropometric Data.

Test Subject Sex Age Forearm Circumference Forearm Length Dominant Hand BMI Height

1 Male 27 32 cm 27 cm Right 27.6 6′2′′

2 Male 27 25 cm 26 cm Right 20.2 5′6′′

3 Male 28 27.5 cm 27 cm Right 22.8 5′8′′

In testing sessions, the trained ANN models, personalized to each test subject, were
embedded in the microcontroller unit of the system, to perform online EMG-based classifi-
cation of the finger movements. In these sessions, participants donned the EMG sleeves
and using their embedded trained model attempted to control the myoelectric prosthesis
to replicate the movements of their hands. In each session, participants were asked to
perform each hand pose at least 10 times. The success rate of the system in controlling the
myoelectric hand with specific finger movements was quantified and assessed on video.
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Washing Cycle: Given the objective of this work in presenting a scalable and reusable
solution for EMG-based control of myoelectric prosthesis, the effect of consumer garment
wash cycles was also investigated for 30× washes which is a common industry target for
the robustness of the quality of clothing [17]. Textile electrode swatches (n = 3) were washed
30 times according to the American Association of Textile Chemists and Colourists (AATCC)
home laundry washing test method using a commercial washing machine (Whirlpool
WED5600X) under a normal laundry cycle for a small load with cold water using AATCC
Standard Reference Detergent Without Optical Brightener (SDL Atlas, Rock Hill, SC, USA).
Electrode swatches and EMG sleeve samples were placed in a mesh laundry bag during
laundering. After each laundering cycle, samples were laid flat and left to dry at room
temperature prior to the next wash cycle. Washed electrode swatches were then compared
with unwashed swatches and EMG sleeves in terms of their EMG signal-to-noise ratio and
classification accuracy [17].

Data Analysis: After each training session, the collected EMG data were labeled and
an ANN model was trained, and a confusion matrix was generated using a custom-written
MATLAB program. The confusion matrix was calculated by comparing the feature vectors
of the test data into the ANN model with expected outputs. Testing sessions’ data was
acquired by quantifying the participants’ hand poses and the resulting prosthetic hand
poses on video. This data was then used to generate confusion matrices using a custom-
written MATLAB program. Signal-to-noise ratio (SNR) calculations of the EMG signal were
defined as the ratio of the RMS of the signal during a bout of EMG activity (during muscle
contraction) divided by the RMS of the background activity (no muscle contraction). All
SNR calculations were also done using a custom-written MATLAB program. All statistical
analyses were done using GraphPad Prism 8 software (GraphPad Software, San Diego, CA,
USA). Comparisons between the SNRs of textile and gel electrodes, and those of unwashed
vs. 30× washed textile electrodes, were carried out using unpaired t-tests. Normality was
tested using the Shapiro–Wilk tests.

3. Results

Electrode Design Evaluation: To create 3D structure textile electrodes using CSR yarns,
three layers were knitted and seamlessly integrated: (1) the surface of the electrode was
made of CSR yarn, (2) nylon yarn was used as a spacer layer which was knitted under
the surface layer acting as a filler to create a 3D raised structure, and (3) nylon yarn was
also used to knit the back layer to provide support to the entire structure (Figure 4d). This
3D knit structure of the electrode allowed for more intimate contact between the electrode
and the user’s body during various activities in the limbs that create dynamic movements
in the muscles, and a change in the skin-electrode contact. This issue is not noticeable
with gel electrodes, due to the adhesive layer that ensures intimate contact with the skin
and traditional flat textile electrodes do not have this feature. In addition, the automated
knitting process was used to create a highly dense and homogenous conductive surface
(Figure 4c–e). The integration of the textile electrodes with the rest of the garment was done
seamlessly (Figure 4e) with the passive garment. During knitting, the textile electrode made
of conductive silicone rubber was directly connected to the electrically passive surrounding
fabric made of nylon yarn. Additionally, using the electrically passive fabric properties
and the feasible distance between two yarn feeders the minimum distance between the
two conductive traces was optimized to achieve electrical isolation. Finally, participants
were interviewed after wearing the sleeves with embedded electrodes for this study and
found it to be comfortable on the skin when worn and the entire design to be lightweight
and practical.

Performance of Textile Electrode Against Gold Standard: The machine-knitted elec-
trodes with an array of embedded dry textile electrodes were successful in acquiring
high fidelity EMG signals (Figure 6). The signal fidelity of the textile electrodes was evalu-
ated by comparing the EMG signal of 2 cm × 2 cm textile electrode swatches with similar
size gel electrodes (2 cm diameter). SNR of the EMG signals acquired from textile electrodes
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swatches (17.4 ± 3.2, mean ± standard deviation) was found to be comparable (Figure 7a,
p = 0.69) to those acquired using gel adhesive electrodes (17.9 ± 1.8). The power spectral
densities (PSDs) of the EMG signals were also found to be highly correlated between the
gel electrodes and textile electrode swatches (correlation coefficient of 0.97 (Figure 6d).
Dry textile electrodes were found to have a larger impedance than that of the gel adhesive
electrodes (Figure 7b). At 250 Hz impedances were 10.8 ± 0.9 kΩ for gel, and 32.2 ± 9.6 kΩ
(p = 0.198). To further compare the performance of textile electrodes with that of the gel
electrode, ANN models were trained using a gel electrode array as well as a textile EMG
sleeve. The EMG sleeve electrode size was reduced by 1 cm × 1 cm compared to the textile
electrode swatches of 2 cm × 2 cm in size to increase the spatial density of textile electrodes
on the forearm. Confusion matrices of the developed models are shown in Figure 8. The
model generated for the gel electrode array was on average 54% successful in classifying
the gestures. In contrast, the textile sleeve was on average 73% successful in classifying the
gestures. The superior performance of the textile electrodes distinguishing different classes
may be due to their smaller relative dimensions (1 cm × 1 cm for EMG sleeve electrodes
compared to 2 cm diameter for off-self gel electrodes) [39].
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Figure 6. EMG signals collected on channel 2 (Figure 3c) of EMG Textile Sleeve during all finger
flexion hand pose using. (a) Gel electrodes (2 cm diameter) and (b) Unwashed Textile Electrode to
compare textile electrodes SNR against the gold standard. (b,c) demonstrate the EMG signals collected
using the same methods on unwashed (b) and 30-times washed (c) textile electrodes to assess the
possible effects of washing cycles on SNR. (d) shows the PSD plots (a–c) of gel electrodes, unwashed
textile electrodes, and washed textile electrodes. The x-axis range of the PSD plots represents the
frequency range of the filtered signal (19–500 Hz).



Sensors 2022, 22, 666 11 of 17

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19 
 

 

online classification testing results are shown in Figure 9b. The average classification suc-
cess rate post-wash was found to be 83%. These results also confirm that the proposed 
novel textile electrode arrays are not degraded by the wash cycle and the proposed smart 
textile can be reused by the user to achieve similar outcomes in real-time control of myo-
electric prosthetics. 

 
 

 
(a) (b) (c) 

Figure 7. SNR calculations on EMG signal collected on Ch. 2 of EMG textile sleeve (Figure 2c channel 
locations) during all finger flexion hand pose. ‘ns’ represents ‘not a statistically significant differ-
ence’ between the groups. Bar graphs represent the standard deviation of the mean. (a) Gel Elec-
trode (2 cm diameter) vs. textile electrode swatch (2 cm × 2 cm), (b) Skin-electrode Impedance plot 
for unwashed textile electrode (2 cm × 2 cm) and gel electrode (2 cm diameter), (c) Unwashed textile 
electrode swatch (2cm × 2cm) vs. Washed textile electrode swatch (2 cm × 2 cm). 

  

(a) (b) 

Figure 8. Offline classification performance and the associated confusion matrices of the trained 
models for finger gesture detection: (a) Offline classification with Gel Electrodes; (b) Offline classi-
fication with Unwashed EMG Textile Sleeve. 

Figure 7. SNR calculations on EMG signal collected on Ch. 2 of EMG textile sleeve (Figure 2c channel
locations) during all finger flexion hand pose. ‘ns’ represents ‘not a statistically significant difference’
between the groups. Bar graphs represent the standard deviation of the mean. (a) Gel Electrode (2 cm
diameter) vs. textile electrode swatch (2 cm × 2 cm), (b) Skin-electrode Impedance plot for unwashed
textile electrode (2 cm × 2 cm) and gel electrode (2 cm diameter), (c) Unwashed textile electrode
swatch (2 cm × 2 cm) vs. Washed textile electrode swatch (2 cm × 2 cm).

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19 
 

 

online classification testing results are shown in Figure 9b. The average classification suc-
cess rate post-wash was found to be 83%. These results also confirm that the proposed 
novel textile electrode arrays are not degraded by the wash cycle and the proposed smart 
textile can be reused by the user to achieve similar outcomes in real-time control of myo-
electric prosthetics. 

 
 

 
(a) (b) (c) 

Figure 7. SNR calculations on EMG signal collected on Ch. 2 of EMG textile sleeve (Figure 2c channel 
locations) during all finger flexion hand pose. ‘ns’ represents ‘not a statistically significant differ-
ence’ between the groups. Bar graphs represent the standard deviation of the mean. (a) Gel Elec-
trode (2 cm diameter) vs. textile electrode swatch (2 cm × 2 cm), (b) Skin-electrode Impedance plot 
for unwashed textile electrode (2 cm × 2 cm) and gel electrode (2 cm diameter), (c) Unwashed textile 
electrode swatch (2cm × 2cm) vs. Washed textile electrode swatch (2 cm × 2 cm). 

  

(a) (b) 

Figure 8. Offline classification performance and the associated confusion matrices of the trained 
models for finger gesture detection: (a) Offline classification with Gel Electrodes; (b) Offline classi-
fication with Unwashed EMG Textile Sleeve. 

Figure 8. Offline classification performance and the associated confusion matrices of the trained mod-
els for finger gesture detection: (a) Offline classification with Gel Electrodes; (b) Offline classification
with Unwashed EMG Textile Sleeve.

Effect of Consumer Wash Cycle on the Performance of the Proposed Smart Textile:
Textile electrodes were found to be resistant to the consumer wash cycle process (SNR
unwashed 12.8 ± 0.9), as the EMG signal SNR did not deteriorate even after 30× wash
cycles (SNR washed 13.4 ± 0.88) (Figure 7c, p = 0.66). The correlation coefficient of the
PSD (Figure 6d) between unwashed textile electrode swatches and washed textile elec-
trode swatches was 0.98. The correlation coefficient between washed textile electrode
swatches and gel was 0.97. To further assess the potential impact of the wash cycles on



Sensors 2022, 22, 666 12 of 17

the classification and prosthetic control performance of a textile electrode array, an ANN
model was trained using a textile EMG sleeve. The results of the online classification
tests using the sleeve are shown in Figure 9a. The average classification success rate was
found to be 86%. The same model was then used to test the sleeve after 30 consumer wash
cycles and the online classification testing results are shown in Figure 9b. The average
classification success rate post-wash was found to be 83%. These results also confirm that
the proposed novel textile electrode arrays are not degraded by the wash cycle and the
proposed smart textile can be reused by the user to achieve similar outcomes in real-time
control of myoelectric prosthetics.
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Figure 9. Online Classification performance and the associated confusion matrices of the trained
models for finger gesture detection: (a) Online Classification with Unwashed EMG Textile Sleeve;
(b) Online Classification with 30×Washed EMG Textile Sleeve.

Finger Gesture Classification and Real-time Control of a Myoelectric Prosthetic using
the Proposed Smart Textile: The chosen feature vectors for training an ANN model using
the textile EMG sleeve produced distinguishable activity patterns for the targeted finger
poses. Figure 10a–c, shows normalized distributions of the feature vectors. Trained ANN
models had an average overall classification success rate of 81%, 73%, and 76% for three
participants of the study. The resulting training confusion matrices are shown in Figure 11.
The specific average classification success rates for Index, Middle, Ring/Pinky, and all fingers
flexion movements, were 77%, 90%, 94%, and 74%, respectively. The average classification
success rates for Index + Middle, Middle + Ring/Pinky, and Index + Ring/Pinky movements
were 64%, 66%, and 72%, respectively.
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models for finger gesture detection: (a) Test Subject 1; (b) Test Subject 2; (c) Test Subject 3, and
(d) Average success rates of the trained models in gesture classification across all test subjects.

The trained ANN model was then embedded onto the data acquisition and microcon-
troller module and tested for online classification and control of the myoelectric prosthetic
hand. The experimental setup and testing process is shown in Supplementary Video S1.
The firmware was C-compatible. uVision (Ver.5.34.0.0, Keil, Grasbrunn, Germany) IDE,
which has embedded libraries for the STM microcontroller, was used to commit the ANN
model to the board. The feature vectors are calculated in bins and sent to the microcon-
troller actuating the hand at a rate of 270 ms, which allows close to a real-time response.
Having these bins reduces the computational load on the board, as only 270 samples of data
are saved at a time. All three study participants were tested using their developed ANN
models and the results are shown in Figure 12. The specific average testing success rates for
Index, Middle, Ring/Pinky, and all fingers flexion movements, were 89%, 87%, 90%, and 38%,
respectively. The average classification success rates for Index + Middle, Middle + Ring/Pinky,
and Middle + Ring/Pinky movements were 50%, 79%, and 61%, respectively.
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4. Discussion

Results obtained in this work demonstrate the feasibility of using a fully textile ma-
chine knitted interface for capturing EMG activity patterns and controlling myoelectric
prostheses. Unlike previous works that utilized moist textile interfaces for high-fidelity
EMG recordings [10,30], here we demonstrated that our proposed dry textile electrodes
made of conductive silicone fibers provide recordings with SNRs comparable to that of
the gold standard gel adhesive electrodes. Additionally, to our knowledge, this work
presents the first evidence for EMG interfaces that are resistant to repeated standardized
consumer wash cycles. Collectively, the high signal fidelity, breathability, dry interfacing,
mechanical flexibility, as well as washability and reusability of the proposed textile EMG
electrode arrays positions them as a promising solution to address the discussed limitations
of the conventional neural interfaces used for continuous control of myoelectric prostheses.
Additionally, the success of the machine knitted designs presented in this study, as opposed
to hand-sewn designs and implementations, is suggestive of the industrial scalability and
commercial potential of this solution. We also demonstrated a proof-of-concept ANN
model for the online classification of finger movements based on forearm EMG activity.
Comparing the success rates of the training phase and online classification testing sug-
gests a similar trend among the three test subjects with single finger flexion movements
having higher detection percentages than flexion synergies involving multiple fingers.
Misclassification of synergistic movements that did occur were often detected as one of
the movements making up the synergy. A possible reason for these misclassifications is
due to the insufficient number and density of recording channels to distinguish synergistic
movements from individual flexions. Future studies will build upon the findings presented
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in this work and increase the number, density, and coverage of the channels on both the an-
terior and posterior of the forearm. Additionally, this study used the same size sleeve with
an adjustable enclosure mechanism to fit a wide range of forearm ranges (25–32 cm). While
in the original design the interelectrode spacing was 1 cm in the mediolateral direction
and 2 cm longitudinally, these values may have been affected (due to fabric stretch) when
individuals with larger forearms used the sleeve). For this reason, test subjects with larger
forearms (test subject 1) performed better than test subjects with smaller circumference
forearms (test subject 2 and test subject 3). This limitation will be addressed by creating
multiple sleeve sizes to homogenize the condition and relative density of the electrode
across a large range of users

Other limitations that were identified in this work that will be tackled as next steps
to the presented research: (1) Specific arrangement and position of the electrodes on
individuals’ forearms is a critical consideration that was achieved by muscle palpitations
and markings of anatomical landmarks in this work. To improve the general use and
scalability of EMG sleeves, the implementation of garment alignment features will be
pursued. Additionally, algorithms will be developed to select the best channels based
on the calibration phase, gestures users would perform. (2) In this study, EMG sleeves
were knit to size for the study participants, future work will also focus on developing
standardized sizes based on anatomical landmark location estimates. This will also allow
for a standardized electrode contact pressure. (3) This work presented a proof-of-concept
ANN for the classification of finger movement. We implemented a personalized approach
for the control of myoelectric prosthesis and developed ANN models for each study
participant (user). Validation of this approach in this pilot study was limited to testing
in only 3 participants and as such generalizability of this approach needs to be further
investigated in future studies.

Finally, the application of wearable EMG interfaces such as the one presented here
goes beyond prosthetic control and can be implemented for rehabilitation [40], accessible
interfacing with computers and smartphones [41], as well as pain management such as
mirror feedback therapy based treatments of phantom limb pain [42]. Future work in the
field of smart textiles requires more comprehensive usability studies for a wider range of
the population [43].

More importantly in the context of creating solutions for daily living conditions,
proposed electrodes are resistant to repeated consumer wash cycles. To our knowledge,
this is the first demonstration of a ‘consumer’ wash cycle safe (up to at least 30 times)
smart garment for EMG-based myoelectric control and rehabilitation technologies, which
is essential for long-term use in these applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22020666/s1, Supplementary Video S1: This video shows the proposed
EMG recording and control system in action when the described textile sleeve was used to control a
handihand myoelectric prosthetic.
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