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Abstract: The prognostic is the key to the state-based maintenance of Francis turbine units (FTUs),
which consists of performance state evaluation and degradation trend prediction. In practical
engineering environments, there are three significant difficulties: low data quality, complex variable
operation conditions, and prediction model parameter optimization. In order to effectively solve
the above three problems, an ensemble prognostic method of FTUs using low-quality data under
variable operation conditions is proposed in this study. Firstly, to consider the operation condition
parameters, the running data set of the FTU is constructed by the water head, active power, and
vibration amplitude of the top cover. Then, to improve the robustness of the proposed model against
anomaly data, the density-based spatial clustering of applications with noise (DBSCAN) is introduced
to clean outliers and singularities in the raw running data set. Next, considering the randomness of
the monitoring data, the healthy state model based on the Gaussian mixture model is constructed,
and the negative log-likelihood probability is calculated as the performance degradation indicator
(PDI). Furthermore, to predict the trend of PDIs with confidence interval and automatically optimize
the prediction model on both accuracy and certainty, the multiobjective prediction model is proposed
based on the non-dominated sorting genetic algorithm and Gaussian process regression. Finally,
monitoring data from an actual large FTU was used for effectiveness verification. The stability and
smoothness of the PDI curve are improved by 3.2 times and 1.9 times, respectively, by DBSCAN
compared with 3-sigma. The root-mean-squared error, the prediction interval normalized average,
the prediction interval coverage probability, the mean absolute percentage error, and the R2 score of
the proposed method achieved 0.223, 0.289, 1.000, 0.641%, and 0.974, respectively. The comparison
experiments demonstrate that the proposed method is more robust to low-quality data and has better
accuracy, certainty, and reliability for the prognostic of the FTU under complex operating conditions.

Keywords: Francis turbine unit; prognostic; performance state evaluation; degradation trend predic-
tion; DBSCAN; Gaussian mixture model; NSGA-II; Gaussian process regression

1. Introduction

With the optimization of global energy structure, hydropower has been vigorously
developed [1]. As critical equipment of hydropower utilization, it is important to ensure
the safe and stable operation of Francis turbine units (FTUs) [2]. In order to transform
the service mode of the FTUs from traditional schedule-based maintenance to state-based
maintenance, the prognostic of FTUs has received more and more attention [3]. There are
two main parts in the prognostic of FTUs, including performance state evaluation and
degradation trend prediction [4]. Based on this, the current and future states of FTUs can
be determined so as to formulate a targeted maintenance strategy. However, in practical
engineering environments, there are three significant difficulties, including low data quality,
complex variable operation conditions, and prediction model parameter optimization.
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The state monitoring systems of FTUs work in the harsh environment of high humidity,
high vibration, and strong electromagnetic. Due to sensor failure, electromagnetic interfer-
ence, and missing communication packets, the data quality of the actual measured signal is
usually low, which is mainly manifested as data anomaly and data loss [5,6]. Most signal
denoising methods, including spectrum analysis and signal reconstruction, are effective
for signals with a high sampling rate and consistent sampling frequency [7–9]. However,
data loss has a great influence on their practical application. Suppression of abnormal
data in practical low-quality data sets of FTUs is rarely discussed in existing studies. As
an unsupervised learning algorithm, clustering can adaptively detect potential patterns
among multi-dimensional data [10]. The density-based spatial clustering of applications
with noise (DBSCAN) has the ability to identify the isolated noise from data sets with
arbitrary shapes, and the DBSCAN is confirmed to be efficient and robust for low-quality
data sets [11,12]. Therefore the DBSCAN is adopted to clean the actual monitoring data set
of the FTU in this study.

Generally, FTUs need to participate in the load and frequency regulation of the power
grid, and the incoming water levels fluctuate significantly with seasonal variation. There-
fore, the operating condition parameters of FTU change frequently [13]. Since the monitor-
ing vibration signals are highly correlated to operation condition parameters, the traditional
performance evaluation method with a fixed threshold is difficult to reflect the actual state
of FTUs accurately [14]. Machine learning has been widely used in equipment fault di-
agnosis and performance evaluation due to its good pattern recognition capability [15].
To establish the performance state evaluation model under variable operation conditions,
An et al. and Shan et al. adopted the radial basis function and backpropagation neural
network (BPNN), respectively, to fit the mapping relationship between water head, active
power, and vibration amplitude, as the healthy state model (HSM) of the FTU [4,16]. These
studies established the definite functional relation between operation condition parameters
and monitoring signal, but the randomness of the signal may still affect the accuracy and
stability of these value-to-value mapping models. To deal with it, Rai et al. adopted the
Gaussian mixture model (GMM) to fit the probability density distribution (PDD) of vibra-
tion features as the HSM of a rolling bearing. The results showed the HSM based on GMM
was more accurate and monotonous [17]. However, in this work, the operation condition
parameters were constant. Thus, the variable operation condition parameters and the
signal randomness are sufficiently considered in this paper, and the GMM is adopted to fit
the probability distribution of the running data set as the HSM of the FTU under complex
operating conditions.

After constructing the proposed HSM, the real-time state of the FTU can be quantified
as performance degradation indicator (PDI) values. Thus, time-series prediction methods
can be used to solve the degradation trend prediction problems. For example, Li et al.
combined the convolutional filters and the gated recurrent unit to construct a degradation
trend prediction model for a turbofan based on data [18]. Jin et al. presented a novel
adaptive residual long short-term memory network to predict cutter head torque across
domains. The prediction performance is effectively improved by using the knowledge of
the source domain dataset [19]. However, most deep learning models only output point
prediction values, and it is difficult to quantify the uncertainty of results directly [20]. As
a probability prediction model, the Gaussian process regression (GPR) has been widely
proven to perform well in uncertain prediction problems [21–23]. However, its property is
greatly affected by model parameters. Manual parameter tuning is inefficient and relies on
prior knowledge. Therefore, some research adopted intelligent optimization algorithms
to optimize prediction model parameters automatically [24–26]. However, the accuracy
of the prediction model was taken as the only optimization objective in these researches.
The confidence interval (CI) width represents the certainty of probability prediction, which
is also an important objective to consider. As one of the most popular multiobjective
optimization algorithms, the non-dominated sorting genetic algorithm (NSGA-II) reduces
the complexity of genetic algorithms with fast calculation and good convergence [27–29].
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Thus the NSGA-II is adopted to optimize the GPR on the two objectives of accuracy and
certainty to construct the multiobjective GPR (MOGPR) for degradation trend prediction
of FTUs.

According to the above discussion, in the relative field of the prognostic of FTUs, there
are few targeted processing methods for low-quality data obtained in practical engineering
environments. Meanwhile, existing evaluation methods of FTU under complex conditions
rarely consider the randomness of monitoring data. Moreover, in the interval prediction of
PDIs, it is still difficult to optimize model parameters automatically while considering both
the accuracy and certainty of results.

In this paper, an ensemble prognostic method of FTUs using low-quality data under
variable operation conditions is proposed. The major contributions are outlined as follows:

(1) A monitoring data set cleaning approach of FTUs based on DBSCAN is proposed to
identify both the singulars and outliers, which enhances the stability and smoothness
of the obtained PDI curve.

(2) The running data set of the FTU is constructed by fusing the operation condition
parameters and the monitoring data. The HSM is established based on the GMM
to realize accurate performance evaluation of the FTU under complex operating
conditions to improve the robustness of the performance evaluation model against
data missing and data randomness.

(3) Coupling NSGA-II and GPR, the MOGPR is constructed to automatically tune model
parameters, avoiding the dependence on prior knowledge, and the accuracy and
certainty of probability prediction are improved synchronously.

The remainder of this paper is organized as follows: In Section 2, the proposed
approach framework and related theories are expounded. In Section 3, an engineering
application of the proposed method is presented. In Section 4, different data cleaning
methods, HSM construction, and trend prediction are compared and discussed. Finally, a
summary is presented in Section 5.

2. Proposed Approach

To evaluate and predict the performance state of FTUs more accurately under the
circumstance of low-quality data and variable operation conditions, an ensemble prognostic
method of FTUs using low-quality data under variable operation conditions is proposed in
this paper, which mainly includes four steps: data acquisition, data cleaning, performance
state evaluation, and degradation trend prediction. The proposed framework flow chart
is shown in Figure 1. First, the monitoring data of the water head, active power, and
vibration amplitude of the top cover are integrated to construct the running data set of
the FTU. Second, aiming at data loss and data anomaly, the data cleaning operation based
on DBSCAN is implemented. Third, to solve the problem of monitoring data fluctuating
with operation conditions, the HSM is established based on GMM. Then the negative
log-likelihood probability (NLLP) is calculated as the PDI of the FTU. The relative trend
of PDIs over time reflects the process of performance degradation. Fourth, the MOGPR
model is constructed to predict the performance degradation trend of the FTU and takes
both prediction accuracy and confidence interval into consideration. Finally, the validity of
the performance evaluation model and degradation trend prediction model is evaluated
by multi-criterions.
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Figure 1. Flowchart of the proposed approach.

2.1. Data Acquisition

Due to their task of regulating the power grid, the operation condition parameters of
FTUs change more frequently than other kinds of rotating machines. Therefore, unlike most
traditional methods, operation condition parameters are taken into full consideration in
the performance state evaluation in this study. The major operation condition parameters
of FTUs include rotation speed (n), water head (H), active power (P), flow rate (Q), guide
vanes opening degree (α), etc. Since the duration of transient operation conditions is
particularly short compared with the total working time of FTUs, only steady operation
conditions are considered in this research. So n can be considered equal to the rated value
of the FTU. For a specific FTU, there is a certain relationship between H, P, Q, and α. If
two of them are identified, others can be inquired from the comprehensive operation curve
of the FTU [30]. Thus H and P are chosen as the studied operation condition parameters.
As a critical component of the FTU, the top cover is used to seal the runner and support
the main shaft. Its vibration amplitude (V) can reflect the performance state of the FTU.
In conclusion, the running sample set of the FTU is formed by (H, P, V), including both
operation condition parameters and monitoring data.

2.2. Data Cleaning Based on DBSCAN

To solve the data anomaly in the raw running sample set, a data cleaning approach
based on DBSCAN is proposed. Traditional statistics-based methods such as the 3-sigma
principle are effective in detecting singular points, but they can hardly identify out-
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liers whose value is within the normal range [31]. DBSCAN clustering algorithm has
the advantages of high adaptability, extensible dimension, and applicability to arbitrary
data shape [32]. It can automatically identify the singularities and outliers in the multi-
dimensional data set. Its schematic diagram is shown in Figure 2, and the main steps are as
follows [33]:
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Step 1: For the sample set Φ = {ϕ1, ϕ2, · · · , ϕN}, the region whose Euclidean distance
from the sample point ϕi is less than ε is defined as the ε neighborhood of ϕi. If the sample
number in the neighborhood of ϕi is greater than the threshold M, ϕi is defined as the core
point. Samples that are not core points but are in the ε neighborhood of a core point are
defined as boundary points. Samples that are not core points and are not boundary points
are defined as noise points. The ε neighborhood of a core point is defined as a temporary
cluster C′ j.

Step 2: Traversal the sample set Φ, if the sample point ϕi in the temporary cluster C′m
is also a core point in another temporary cluster C′n, the union set C′m ∪ C′n is defined as a
new temporary cluster.

Step 3: Repeat Step 2 until the sample points in each temporary cluster are all core
points or boundary points, then each temporary cluster is determined as a cluster C′k.

2.3. Performance State Evaluation Based on GMM

The performance degradation process of the FTU is reflected in the PDD variation of
the running sample set (H, P, V). Thus the GMM is adopted to fit the three-dimensional
PDD function of the healthy data as the HSM. In GMM, the population distribution of the
sample set is assumed to be a combination of a series of Gaussian distributions:

P(X|θ) =
K

∑
k=1

wk Nk(x|θk) (1)

where X represents the healthy data set, wk represents the weight coefficient.
K
∑

k=1
wk = 1.

θk = (µk, σk) is the distribution parameters. Nk(x|θk) is the PDD function of the kth Gaussian
component given by:

Nk(x|θk) =
1√

2πσk
exp

(
− (x− µk)

2

2σk
2

)
(2)

The expectation-maximization algorithm is used to estimate wk, and θk of the GMM [34]:

θ̂ = argmaxP(x|θ) = argmax
K

∑
k=1

wk Nk(x|θk) (3)

where θ̂ is the maximum likelihood estimate value of θ.
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The NLLP represents the probability that current data is observed based on the prior
given by the GMM. It represents the difference between the PDD of running data X′ and
the constructed HSM. So the NLLP is calculated as the PDI of the FTU.

NLLP = − log P
(
X′
∣∣θ) (4)

2.4. Degradation Trend Prediction Based on MOGPR

Through the above procedures, the performance state of the FTU is quantified as
PDIs. The performance degradation prediction of the FTU is transformed to a time series
prediction task. In this section, the GPR and NSGA-II are combined to construct the
MOGPR model for the degradation trend prediction.

2.4.1. GPR Algorithm

As a nonparametric Bayesian inference model, GPR is widely used in probability
interval prediction [35,36]. In GPR, the distribution of possible values at each time point
is assumed to obey the Gaussian distribution, which can be expressed in terms of the
expectation function µ f and the covariance function κ(·) as:

Y = f (X) ∼ N
(

µ f , κ f f

)
(5)

where X is the independent variables, κ(·) is also called the kernel function, κ f f = κ(X, X).
The joint distribution of the actual observed values Y∗ and Y also follows the Gaussian

distribution. [
Y
Y∗

]
∼ N

([
µ f
µy

]
,

[
κ f f κ f y
κT

f y κyy

])
(6)

where κ f y = κ(X, X∗), κyy = κ(X∗, X∗).
Finally, the GPR model can be expressed as:

Y ∼ N
(

κT
f yκ−1

f f Y∗ + µ f , κyy − κT
f yκ−1

f f κ f y

)
(7)

The kernel functions κ(·) are used to enhance the representation of relationships be-
tween input samples. Various kernel functions have different properties and characteristics.
The commonly used kernel functions include radial basis function (RBF), matern (MA),
rational quadratic (RQ). The kernel function adopted in this study is composed of them.

κRBF
(
Xi, Xj

)
= exp

(
−
‖Xi − Xj‖2

2l2

)
(8)

 κMA
(
Xi, Xj

)
= 1√

2π
ρ1.5
(

1 +
√

3ρ
l

)
exp

(
−
√

3ρ
l

)
ρ =

√
3

l ‖Xi − Xj‖
(9)

κRQ
(
Xi, Xj

)
= 1 +

‖Xi − Xj‖2

2l2 (10)

These kernel functions all contain a length scale l. To improve the performance of the
model, the common approach is to adjust l manually, which is less efficient. Aiming at this
problem, the NSGA-II algorithm is introduced to automatically optimize the GPR model.
Since GPR outputs the PDD of predicted values, quantiles and confidence intervals (CIs)
can be calculated directly. Interval prediction results are usually evaluated by multiple



Sensors 2022, 22, 525 7 of 25

criteria, including the root-mean-square error (RMSE), which reflects the accuracy, and the
prediction interval normalized average (PINAW), which reflects certainty, defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi
∗)2 (11)

PINAW =
1

N∆y∗
N

∑
i=1

(ui − li) (12)

where N is the number of series data, ŷ and y∗ represents the prediction value and the
actual value, respectively. ∆y∗ is the difference between the maximum and minimum
values of the actual series, ui and li represents the upper and lower boundary of 95% CI.
Lower RMSEs and PINAWs indicate better accuracy and certainty of the prediction model.

2.4.2. NSGA-II Algorithm

NSGA-II makes excellent improvements on NSGA, and it has faster computational
efficiency and population diversity [37]. There are two basic concepts in NSGA-II: non-
dominated sorting and crowding distance. The procedure of non-dominated sorting
begins with the identification of non-dominated solutions. As shown in Figure 3, for two
members mi and mj, if all the objectives of mi are better than mj, mi is defined to dominate
mj. Then, the members which are not dominated by others constitute the current front.
Next, the members of the current front are removed, and the sorting is performed on the
remained population. The procedure is repeated until all the members are distributed to
different fronts.
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The crowding distance is used to measure the density of members. It is defined as the
sum of the side length of the cuboid shown in Figure 3.

cd(mi) =
K

∑
k=1

∣∣∣oi+1
k − oi−1

k

∣∣∣ (13)

where K is the dimension number of the objectives. Selecting members with a high crowding
distance can improve the diversity of the population.

The brief schematic of NSGA-II is illustrated in Figure 4, and the main steps are
as follows:

Step 1: The population is initialized. Then, the offspring population Qt is gener-
ated from the parental population Pt through crossover and mutation operations. The
population sizes of Pt and Qt are both N.

Step 2: The Pt and Qt are merged to form the Rt. The non-dominated sorting is
performed on Rt, and a series of fronts Fi are obtained.
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Step 3: The fronts are selected in sort order to form the Pt+1 until the population size
of Pt+1 exceeds N. The members of the last front Fl are sorted by the crowding distance.
The members are selected in order until the population size of Pt+1 equals N.

Step 4: The above steps are repeated until the maximum number of evolution is
reached. Then the first front is selected as the Pareto front.
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2.4.3. MOGPR Model

The GPR and the NSGA-II are coupled to construct the MOGPR model. The three-
dimensional decision vector is formed by the length scales of RBF, MA, and RQ in the GPR
model. The multiple objectives include both RMSE and PINAW. The schematic diagram of
the MOGPR is illustrated in Figure 5. The GPR model sets parameter values according to
the decision vector generated by NSGA-II and calculates the prediction results. Then the
results are compared with the actual values to obtain multi objectives. NSGA-II updates
population location according to the multi objectives. Through several epochs of evolution,
the Pareto front of the optimal result is finally output.
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3. Engineering Application

In this section, the long-term monitoring data of a large actual FTU is adopted to
conduct the experiments. The basic information of the FTU and the data source are
described first. Then the data cleaning based on DBSCAN is implemented on the raw
running data set. Next, the HSM of the FTU under variable operation conditions is
constructed based on GMM. Finally, the performance degradation trend of the FTU is
predicted by the proposed MOGPR.

3.1. Data Description

The studied FTU is located in the Dadu River basin, Sichuan, China. Its basic pa-
rameters are listed in Table 1. A set of PSTA-2100 state monitoring systems, including
on-site monitoring cabinet and upper computer system, is configured on the FTU. The
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on-site monitoring cabinet is formed by a sensor power module, data acquisition module,
synchronous clock module, and industry cabinet. It is located near the FTU. The top cover
vibration (V) is monitored by the acceleration sensor (PCB 352A60). The water head (H)
and the active power (P) are obtained through communication with the supervisory control
system of the plant following the modbus 485 protocol. The collected data are transmit-
ted to the upper computer through the communication link following TCP/IP protocol.
The actual length of the communication link, which consists of optical cables, switches,
routers, repeaters, and transceivers, is above 1000 m. The analyzed sample set (H, P, V) is
constructed by the data records exported from the upper computer. The overall structure
of the FTU and the data acquisition system are illustrated in Figure 6. To sum up, the data
acquisition process involves a series of devices and processes, which are prone to data loss
and data abnormality.

Table 1. Basic parameters of the FTU.

Parameters Values Units

Inlet diameter of the runner 6964 mm
Number of runner blades 15 \
Number of guide vanes 24 \

Rated power 611 MW
Rated rotate speed 125 r/min

Rated flow rate 435 m3/s
Rated water head 156.7 m

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 6. Structure of the FTU and the data acquisition system. 

The exported data includes 104,454 historical records from 20 January 2019 to 11 Oc-
tober 2019 for a total of 264 days, as shown in Figure 7. The on-site dataset is quite different 
from the high-quality data obtained in the ideal experimental environment, such as the 
bearing life cycle dataset published by the Center for Intelligent Maintenance Systems, 
University of Cincinnati [38]. Most experimental data sets are less disturbed by external 
interference and have stable sampling frequency. However, it can be seen that the data 
loss and data anomaly are very obvious in the raw on-site data set. Data loss leads to 
unequal time stamps of samples. As shown in Figure 8, the time intervals between adja-
cent samples ranged from 10 s to 103 s, which makes it difficult to analyze the frequency 
domain features of signals. In addition, because of the task of grid regulation and seasonal 
changes in the water head, the operation condition parameters of the FTU change fre-
quently and drastically. Low data quality and variable operation conditions greatly influ-
ence the performance state evaluation and degradation trend prediction of the FTU. 

 
(a) 

1/20 3/5 4/18 6/1 7/15 8/28 10/11

126

144

162

180

H
（

m
）

Date (Month/Day)

Data lossData loss

Healthy sample Evaluation sample
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The exported data includes 104,454 historical records from 20 January 2019 to 11
October 2019 for a total of 264 days, as shown in Figure 7. The on-site dataset is quite
different from the high-quality data obtained in the ideal experimental environment, such as
the bearing life cycle dataset published by the Center for Intelligent Maintenance Systems,
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University of Cincinnati [38]. Most experimental data sets are less disturbed by external
interference and have stable sampling frequency. However, it can be seen that the data
loss and data anomaly are very obvious in the raw on-site data set. Data loss leads to
unequal time stamps of samples. As shown in Figure 8, the time intervals between adjacent
samples ranged from 10 s to 103 s, which makes it difficult to analyze the frequency domain
features of signals. In addition, because of the task of grid regulation and seasonal changes
in the water head, the operation condition parameters of the FTU change frequently and
drastically. Low data quality and variable operation conditions greatly influence the
performance state evaluation and degradation trend prediction of the FTU.
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Figure 7. On-site measured data: (a) Water head; (b) Active power; (c) Vibration amplitude of
top cover.
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3.2. Data Cleaning

The raw running sample set (H, P, V) is exhibited in Figure 9. Due to the characteristic
of the FTU, there is a specific limited operation region within the operating conditions.
In the limited area, the stability and efficiency of the FTU decrease. In practice, the FTU
is avoided from working in the limited area, so the sample points are concentrated in
two regions. Because of various interference factors, the data anomaly is very obvious
in the raw data set. The data anomaly mainly includes singular points whose values
deviate significantly from the normal level and outliers whose values are within the normal
scope, but their distribution deviates from the valid samples. To reduce the impact of
data anomaly, DBSCAN was adopted to identify the singulars and outliers in the original
sample set. The ε and M were set as 7.5 and 200, respectively. The processing result is
shown in Figure 10. The two sample concentrated regions are marked as cluster 1 and
cluster 2. Singulars and outliers are both marked as anomaly data automatically. Since the
DBSCAN considers the distribution density of samples rather than the value of data, it
performs well in identifying both outliers and singularities in the low-quality data set.
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3.3. Performance State Evaluation of the FTU

Routine maintenance was implemented before 20 January 2019 on the studied FTU,
and the restart test run performed normally. Moreover, as shown in Figure 7, the period
from 20 January to 6 May 2019 includes most of the possible operating conditions of the
FTU. Therefore, a total of 58,175 valid data points during this period were selected to
construct the healthy sample set.

The GMM was adopted to fit the three-dimensional PDD function of the healthy
sample set for the HSM construction of the FTU, as illustrated in Figure 11a, where different
colors represent different Gaussian components of the HSM. On this basis, the NLLP was
calculated as the PDI of the FTU. The distribution of PDIs on the H = 125 m section and
P = 110 MW section of the HSM is shown in Figure 11b,c. It shows that there is a complex
mapping relationship between PDIs and operation condition parameters. The PDIs are
relatively lower in regions with dense distribution of healthy samples.
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Figure 11. HSM based on GMM (a) Result of GMM clustering (b) PDI distribution on H = 125 m
section; (c) PDI distribution on P = 110 MW section.

The valid data after 6 May 2019 were selected to construct the evaluation sample
set. All 300 evaluation samples were input into the HSM as a group to calculate the PDIs.
The timestamp corresponding to the last evaluation sample in each group was taken as
the evaluation time. The obtained performance degradation curve, including 135 PDIs,
is demonstrated in Figure 12. Although the PDI curve fluctuates locally due to low data
quality, the curve has an obvious upward trend reflecting the performance degradation
process of the FTU.
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Figure 12. Performance degradation curve of the FTU.

3.4. Degradation Trend Prediction of the FTU

To forecast the performance degradation trend of the FTU, a rolling prediction model
based on MOGPR was established. Every seven PDIs, as the time window, were input into
the prediction model, and the next PDI was predicted. The sliding step was set as one PDI
point. As the time window slides, the prediction model is constantly updated.

The RBF, MA, and RQ were chosen to construct the kernel function of the GPR
model. The length scales lRBF, lMA and lRQ were optimized with the NSGA-II according to
two objectives of RMSE and PINAW. The search scopes of the above three length scales
were all set as [10−5, 1]. The parameter configuration of the NSGA-II is listed in Table 2.
The prediction result that is closest to the origin in the Pareto front of multiobjective
optimization is exhibited in Figure 13. The proposed MOGPR takes both accuracy and
certainty of interval prediction into account. The maximum error does not exceed 0.47, and
the maximum width of CI does not exceed 3.41.

Table 2. Parameter configuration of the NSGA-II.

Parameter Value

Population size 10
Max number of evolutions 20

Crossover rate 0.8
Mutation rate 0.2
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4. Comparison Analyses

To validate the effectiveness of the proposed approach, different methods of data
cleaning, HSM construction, and trend prediction were compared. The experiments were
conducted by Python 3.7.9 in a calculation station with an Intel Core i9-10900K CPU, an
NVIDIA GeForce RTX 2080 Super GPU, and 64 GB RAM.

4.1. Comparison of Different Data Cleaning Methods

To validate the effectiveness of the proposed data cleaning method, the DBSCAN
and 3-sigma principle are compared in this section. Different data sets were adopted to
establish HSMs, including the raw data set Φ0, the 3-sigma-processed data set Φ1, and the
DBSCAN-processed data set Φ2. The processing result of the 3-sigma principle is shown in
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Figure 14. Compared with Figure 10, it can be discovered that the 3-sigma principle can
recognize partial singularities but can hardly identify outliers.

Then the PDI curves were calculated in the same way as Section 3.3. The STD and S
were adopted as the criteria of stability and smoothness, defined as follows:

STD =

√√√√ 1
N

N

∑
i=1

(
Ii − I

)2 (14)

S =

N−1
∑

i=1
|Ii+1 − Ii|

N − 1
(15)

where I represents the PDI and N is the number of PDIs in the curve. Smaller S and STD
indicate that the curve is smoother and the represented performance degradation trend
is clearer.
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The comparison results are shown in Table 3 and Figure 15. It can be seen that:

(1) Due to the influence of data anomaly, the performance degradation curve obtained by
the raw data set presents many mutation points, which is difficult to accurately reflect
the real performance state of the FTU.

(2) There are 28.7% and 50.2% decreases in the STD and S of the raw PDI curve, re-
spectively, using 3-sigma, while there are 93.1% and 97.2% decreases in the STD
and S, respectively, using DBSCAN. The stability and smoothness of PDI curves
are improved by 3.2 times and 1.9 times, respectively, by DBSCAN compared with
3-sigma

(3) After data cleaning based on DBSCAN, the calculated PDI curve has the lowest STD
and S (1.42 and 0.24), which indicates the curve reveals the performance degradation
trend more clearly.

Table 3. Comparison of different data cleaning methods.

Data Set Method STD S

Φ0 Raw data 20.61 8.65
Φ1 3-sigma principle 14.70 4.31
Φ2 DBSCAN 1.42 0.24
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The comparison results are illustrated in Figure 16. As the sample quantity decreases, 
the results’ STD based on GMM increases slowly when r is greater than 0.6. The results’ 
STDs based on SVM and BPNN are relatively higher and have no significant relationship 
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Figure 15. Comparison of different data cleaning methods.

4.2. Comparison of Different Methods for HSM Construction

To compare the robustness of HSMs towards data loss, different ratios (r) of randomly
selected healthy samples were adopted to build HSMs based on GMM, SVM, and BPNN,
respectively, r ∈ [0.2, 0.4, 0.6, 0.8, 1]. The major parameters of the models mentioned above
are listed in Table 4. Then the entire healthy sample set was input into the HSMs to calculate
PDIs. Each experiment was repeated 100 times, and the STDs of results were calculated.
In order to make the PDI results of different HSMs comparable, the maximum-minimum
normalization was implemented to transform the value range of PDIs to [0, 1]. Unlike
GMM, SVM and BPNN establish the mapping relationship between operation condition
parameters and vibration amplitude values. Thus the PDI of HSMs based on SVM and
BPNN was defined as:

PDI =
1
N

N

∑
i=1

∣∣V∗ − V̂(H∗, P∗)
∣∣ (16)

where V∗, H∗, and P∗ represent the real values of vibration amplitude, water head, and
active power. V̂ denotes the mapping value outputted by the HSM.

Table 4. Parameter setting of compared models.

Model Parameter Value

GMM Component number 50

SVM
Kernel type RBF

Regularization parameter 1.0
Epsilon 0.2

BPNN

Number of layers 3
Number of layer nodes 20

Learning rate 0.01
Epochs 100

The comparison results are illustrated in Figure 16. As the sample quantity decreases,
the results’ STD based on GMM increases slowly when r is greater than 0.6. The results’
STDs based on SVM and BPNN are relatively higher and have no significant relationship
with the data quantity of HSM construction. Since the HSM based on GMM looks at the
PDD of samples rather than the specific values of individual samples, the actual distribution
of the population can be estimated from the sample distribution as long as the total quantity
of samples is enough. Therefore, the proposed HSM is less affected by data loss.
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4.3. Comparison of Different Prediction Methods

To verify the effectiveness of the proposed MOGPR, different prediction models are
compared, including two multiobjective optimization machine learning models named
MOQRLSTM and MOQRNN, two machine learning models without parameter optimiza-
tion named QRLSTM and QRNN [39], three nonparametric statistical regression models
named locally weighted linear regression (LWLR) [40] and kernel regression (KR) [41]. The
loss functions of QRLSTM and QRNN are defined as quantile regression functions [42],
which makes them predict conditional quantiles. According to the two objectives of RMSE
and PINAW, the node numbers of each hidden layer of QRLSTM and QRNN are optimized
by NSGA-II to construct the MOQRLSTM and MOQRNN. The NSGA-II is set as the same
as Section 3.4. LWLR and KR are widely used to predict time series data with trend terms
of different scales because their algorithms are simple, and the time costs are low. The main
parameters of the mentioned models are listed in Table 5.

Table 5. Parameter setting of compared models.

Model Parameter Range or Value 1

MOGPR
Kernel length scale [10−5, 1]

Kernel type RBF+MA+RQ

MOQRLSTM
Number of layer nodes [5, 60]

Number of layers 3

MOQRNN
Number of layer nodes [5, 60]

Number of layers 3

GPR
Kernel length scale 10−4

Kernel type RBF+MA+RQ

QRLSTM
Number of layer nodes 20

Number of layers 3

QRNN
Number of layer nodes 20

Number of layers 3
LWLR Estimating fraction 0.4

KR Kernel type Gaussian kernel
1 For the three multiobjective optimization prediction models, some parameters are optimized in a range. For the
five prediction models without parameter optimization, the parameters are certain values.

For a more complete performance comparison of the various models, in addition to
the two objectives of RMSE and PINAW, the other fourcriteria named prediction interval
coverage probability (PICP), mean absolute percentage error (MAPE), R2_score, and prob-
ability integral transform (PIT) are introduced [43]. The RMSE represents the accuracy
of prediction results; the PINAW indicates the certainty of the prediction interval. Their
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definitions are given in Equations (11) and (12), respectively. The MAPE is complementary
to RMSE and reflects the relative accuracy of the prediction, defined as:

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi
∗

yi
∗

∣∣∣∣× 100% (17)

The R2_score represents the proportion that can be explained by the fitted regression
relationship in the overall change trend of the dependent variable, defined as:

R2_score =

N
∑

i=1
(ŷi − y)

2

N
∑

i=1
(y∗ i − y)

2 (18)

where y is the mean of the actual value y∗. A R2_score close to 1 indicates that the prediction
model is more reliable.

The PICP represents the probability that the predicted CI contains the observed values,
expressed as:

PICP = 1
N

N
∑

i=1
fi

fi =

{
0, y∗i /∈ [li, ui]
1, y∗i ∈ [li, ui]

(19)

where fi indicates whether the observed value is within the predicted CI. A higher PICP
indicates the interval prediction result is more accurate.

The PIT values reflect the correlation between the prediction distribution and the
actual distribution, defined as:

PIT =
∫ y∗

−∞
P̂(y) dy (20)

where P̂ is the prediction distribution and y∗ is the observed value. If the distribution of
PIT values is similar to the uniform distribution, the prediction reliability is better.

The Pareto fronts of optimization results of MOGPR, MOQRLSTM, and MOQRNN
are illustrated in Figure 17. The results of MOGPR are generally closer to the origin. The
lowest PINAW values reached by the 3 models are similar (about 0.243~0.271), while the
lowest RMSE value obtained by MOGPR (about 0.199) is smaller than MOQRLSTM’s
(about 0.262) and MOQRNN’s (about 0.273). As two independent optimization objectives,
RMSE and PINAW have the same dimension of quantity and similar value range. In this
study, the importance of the two objectives is considered equal. So the result closest to the
origin in the Pareto front is selected as the final result of three multiobjective optimization
prediction models.

The multi metrics of different models are listed in Table 6, including RMSE, PINAW,
PICP, MAPE, R2_score, and cost time. The prediction results are shown in Figure 18, and
the quantile-quantile (QQ) plots of PITs are illustrated in Figure 19. The areas between the
purple dotted lines in QQ plots represent PITs that follow the uniform distribution at a 5%
significance level. The analysis of the results is as follows:

(1) The RMSE and the MAPE of MOGPR are the lowest (0.223 and 0.641%), and the
R2_score of MOGPR is the highest (0.974). As shown in Figure 18a, MOGPR has a
good prediction effect on both long-term trends and local fluctuation of the PDI curve.
It proves that the prediction accuracy of MOGPR is the best.

(2) The PINAW of LWLR is the lowest (0.080), but the RMSE of LWLR is the highest
(0.472). As can be seen from Figure 18g, LWLR cannot effectively forecast the local
fluctuation of data. Except for LWLR, the PINAW of MOGPR is lower than other
models, which demonstrates that MOGPR has better certainty.
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(3) The RMSEs, PINAWs, MAPEs, and R2_scores of multiobjective optimization models
(MOGPR, MOQRLSTM, and MOQRNN) are improved compared with original mod-
els (GPR, QRLSTM, and QRNN), which indicates that the multiobjective optimization
process can effectively improve the performance of the original models.

(4) The PICPs of most models are higher than 0.95, apart from LWLR. The PICPs of
MOGPR, GPR, and KR achieve 1.0, which means all the actual points fall within the
prediction 95% CIs. It also indicates that compared with other criteria, PICP is easier
to reach the maximum value, so it is not suitable to be an optimization objective.

(5) Because of the process of parameter optimization, the cost time of the three multi-
objective optimization prediction models (MOGPR, MOQRLSTM, and MOQRNN)
is obviously higher. Among these three models, MOGPR has the fastest calcula-
tion speed. Because compared with neural network algorithms, the GPR has fewer
parameters.

(6) As shown in Figure 19, the PIT values’ distribution of MOGPR is closest to the uniform
distribution, which is displayed as the red diagonal in the QQ plot. In addition, all PIT
points are located within the 5% significance band, which indicates that the prediction
CI of MOGPR is reliable. The PITs of the LWLR distribute around 0 or 1, which
indicates that the LWLR is most unsuitable for interval prediction of PDI compared
with other models.
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Figure 17. Pareto fronts of optimization results.

Table 6. Results of comparison experiments.

Model. RMSE PINAW PICP MAPE (%) R2_Score Time (s)

MOGPR 0.223 0.289 1.000 0.641 0.974 1086.1
MOQRLSTM 0.324 0.316 0.957 1.001 0.946 19,408.1
MOQRNN 0.399 0.395 0.961 1.252 0.918 18,639.2
QRLSTM 0.408 0.448 0.984 1.148 0.914 137.2

QRNN 0.417 0.394 0.953 1.143 0.910 114.3
GPR 0.378 0.373 1.000 1.064 0.926 2.3

LWLR 0.472 0.080 0.348 1.231 0.885 1.4
KR 0.378 0.373 1.000 1.025 0.926 6.2
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Figure 18. Results of interval prediction: (a) MOGPR; (b) MOQRLSTM; (c) MOQRNN; (d) GPR;
(e) QRLSTM; (f) QRNN; (g) LWLR; (h) KR.
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In summary, among the eight compared models, MOGPR has better accuracy, certainty,
and reliability of probability prediction. Besides, the calculation effectiveness of MOGPR is
higher than other multiobjective optimization prediction models.

5. Conclusions

In this study, aiming at the three major practical engineering difficulties of low data
quality, complex variable operation conditions, and prediction model parameter opti-
mization, an ensemble prognostic method of FTUs using low-quality data under variable
operation conditions is proposed. Firstly, to comprehensively reflect the performance of the
FTU under complex operation conditions, the running data set is constructed by combining
operation condition parameters and monitoring data. Secondly, to reduce the impact of
anomaly data, the DBSCAN is adopted to clean both outliers and singulars in the raw
running data set. Thirdly, based on the GMM and the probability theory, the HSM is
established, which improves the robustness of the evaluation model against data missing
and data randomness. Fourthly, the MOGPR is proposed to predict the performance degra-
dation trend with a confidence interval and to automatically optimize model parameters on
both accuracy and certainty. Finally, a series of comparison experiments were implemented
on practical data set from an actual large FTU.

The experimental results demonstrate that: (1) The data cleaning approach based
on DBSCAN performs better in identifying both outliers and singularities. The stability
and smoothness of PDI curves are improved by 3.2 times and 1.9 times, respectively, by
DBSCAN compared with 3-sigma. (2) Compared with SVM and BPNN, the HSM based
on GMM has better robustness against data loss. (3) The proposed MOGPR has better
accuracy, certainty, and reliability of probability prediction. The root-mean-squared error,
the prediction interval normalized average, the prediction interval coverage probability,
the mean absolute percentage error, and the R2 score of the proposed method achieved
0.223, 0.289, 1.000, 0.641%, and 0.974, respectively.

Thus, the proposed method can be applied to the performance evaluation and degra-
dation trend prediction of FTUs in a practical engineering environment. In further research,
if the running data across multiple maintenance periods are available, the corresponding
relationship between PDI values and actual state can be established according to mainte-
nance records. On this basis, the multi-level degradation state of the FTU can be divided,
and corresponding maintenance strategies can be formulated to provide technical support
for state-based maintenance.
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Abbreviations

FTU Francis turbine unit
NLLP Negative log-likelihood probability
DBSCAN Density-based spatial clustering of applications with noise
BPNN Backpropagation neural network
HSM Healthy state model
GMM Gaussian mixture model
PDD Probability density distribution
PDI Performance degradation indicator
GPR Gaussian process regression
MOGPR Multi-objective GPR
CIs Confidence intervals
NSGA-II Non-dominated sorting genetic algorithm
RMSE Root-mean-square error
PINAW Prediction interval normalized average
LWLR Locally weighted linear regression
KR Kernel regression
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