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Abstract: Fingerprinting localization is a promising indoor positioning methods thanks to its ad-
vantage of using preinstalled infrastructure. For example, WiFi signal strength can be measured by
pre-existing WiFi routers. In the offline phase, the fingerprinting localization method first stores of
position and RSSI measurement pairs in a dataset. Second, it predicts a target’s location by comparing
the stored fingerprint database to the current measurement. The database size is normally huge, and
data patterns are complicated; thus, an artificial neural network is used to model the relationship of
fingerprints and locations. The existing fingerprinting locations, however, have been developed to
predict only single locations. In practice, many users may require positioning services, and as such,
the core algorithm should be capable of multiple localizations, which is the main contribution of this
paper. In this paper, multiple fingerprinting localization is developed based on an artificial neural
network and an analysis of the number of targets that can be estimated without loss of accuracy is
conducted by experiments.

Keywords: WiFi fingerprinting localization; artificial neural network; multiple targets estimation

1. Introduction

There are different methods for indoor localization based on RF signals. In the Time of
Arrival (TOA), Time Difference of Arrival (TDOA), and Angle of Arrival (AoA) methods [1],
a target is estimated by calculating the time differences, distances, and angles, respectively,
between a target and transmitters using the received signals from deployed beacons. On the
other hand, the WiFi fingerprinting approach estimates a target location based on pattern
recognition through machine learning methods. This paper focuses on WiFi fingerprinting
localization. Figure 1 illustrates multiple fingerprinting indoor localization using a WiFi
router and its measurements, with different colors representing different users’ trajectories.

The Wi-Fi indoor positioning method requires a database of signal strength fingerprints
collected from surrounding areas for each predefined location. In an indoor environment
with many obstacles, such as walls blocking radio waves, more fingerprint data are required
for higher positioning accuracy. In considering the resolution of the Wi-Fi signal strength
according to the distance, fingerprint data are usually collected at intervals of 1 to 2 m to
form a training database. When providing the positioning service, the current location
is predicted by comparing the currently received signal strength set with the previously
built database. Because this is the same as the training and test phases of machine learning
approaches, k-nearest neighbors, support vector machine, Gaussian processes, and deep
neural networks can be used for fingerprinting localization [2–5].

When applying a deep neural network for WiFi indoor positioning, a wireless signal
strength set is configured as an input of the neural network, a location is set as an output
terminal, then a hidden network is learned as a positioning model. In the learning phase,
the model is trained using the signal strength fingerprint data collected over the entire
positioning region, and in the test phase the predicted position is obtained by inputting the
query signal strength set to the learned neural network model.
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Figure 1. Multiple fingerprinting indoor localization.

Most indoor localization focuses on estimating the location of a single target [6–12],
with only a few addressing multi-target localization. In [13,14], multi-targeting was
achieved using UHF RFID and microphone devices, respectively. These methods require a
number of devices to be located in a room, which is not feasible for general localization
purposes. In [15,16], a WiFi fingerprint was used for multiple targets. In [15], an extraction
method of signal reflection corresponding to multiple users was proposed. This technique
requires a controlled environment in which measurements of near-static WiFi devices are
available. In [16], graph-based optimization was used to fuse WiFi and dead reckoning for a
single target. When this filtration method is expanded to multi-user scenarios, the number
of users and measurements strongly affects the time complexity.

Existing neural network-based positioning technology is inefficient in terms of real-
time processing speed because it has no choice but to perform estimation calculations as
many times as requested when a large number of users request positioning service. When
indoor positioning service is provided from a server to local smart-devices in a centralized
way, the service quality depends on the time required to estimate the location, not on the
learning processing time. Therefore, a new positioning method for simultaneous multiple
users is needed.

As it becomes necessary to infer many locations at the same time, the dimensionality
of the machine learning input data increases. Because a deep neural network has excellent
reasoning ability for learning high-dimensional data, it is suitable for multi-location esti-
mation problems. This paper handles prepocessing and standardization of WiFi received
signal strength indicator (RSSI) measurements, which are significant for obtaining good
learning performance.

To evaluate the proposed multi-target estimation approach based on an artificial neural
network for predicting 3D information, including both location and floor, experimental
data were collected in a five-story building. We analyzed the number of targets that could
be estimated without loss of significant accuracy. The experimental results show that fifteen
targets can be accurately estimated with similar performance in the single localization.

The rest of this paper is organized as follows. Section 2 describes the proposed multi-
target WiFi fingerprinting localization approach. Section 3 reports our experimental results.
Section 4 presents our conclusions.

2. WiFi Fingerprinting Indoor Localization

Suppose that there are a total of d WiFi routers in which the indoor positioning
service is to be established. In a multi-story building, the location is expressed as a three-
dimensional vector such as (x coordinate, y coordinate, floor). By storing RSSI measure-
ments received from d routers at collecting locations, a fingerprint database consisting of
(location, d-dimensional RSSI set) pairs is constructed, in which router locations are not
necessarily known. To include environmental variations in the data, RSSIs are measured
several times at a location. Table 1 shows the fingerprint database format.
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Table 1. Example of WiFi RSSI fingerprint database.

AP 1 AP 2 · · · AP d

Position 1 −85 dBm −68 dBm · · · Null
Position 2 Null −51 dBm · · · −92 dBm

...
...

...
...

...
Position N Null Null · · · −45 dBm

Because certain signals from distantly located routers are not observable, the finger-
print database has many elements filled with empty spaces (null). Because null spaces can-
not be processed in machine learning, these are intentionally converted to a −100 dB value.

The following Sections 2.1 and 2.2 present feature extraction for WiFi RSSI measure-
ments and standardization for labelled location data, respectively. Section 2.3 presents deep
learning-based multi-target localization.

2.1. WiFi RSSI Feature Extraction

Principal component analysis (PCA) [17] is a data transformation method for reducing
the dimensionality of data and extracting the features data by minimizing information
loss. It can be understood as an unsupervised learning method, as it does not require label
information such as location; thus, in this paper, it is used to extract the features of WiFi
fingerprint measurement data.

Suppose D = {(xi, yi)}N
i=1 are fingerprint training datasets, where xi is a vector of

RSSI measurements at a location yi provided by

xi = [s1
i , s2

i , · · · , sd
i ]

T ∈ Rd, (1)

yi = [xi, yi, fi]
T ∈ R3, (2)

where sj
i is a scalar indicating the RSSI value at the ith location received from the jth WiFi

router over a total of d routers, xi and yi are the 2D location, and fi is floor level.
The original data x are transformed to the feature dataset x̄ by the transformation

matrix Q, as follows:

x̄ ← Q · x, (3)

where Q ∈ Rl×d, x̄ ∈ Rl , x ∈ Rd, l � d. (4)

In this paper, finding an optimal Q is achieved by the PCA algorithm, which solves a
generalized eigenvalue problem. Let {ρi}d

i=1 be the generalized eigenvectors associated
with the generalized eigenvalues {λi}d

i=1 of the following generalized eigenvalue problem:

Aρi = λi Iρi, i = 1, . . . , d, (5)

where I is an identity matrix and A is a scatter matrix provided by

A =
N

∑
i=1

(xi − µ)(xi − µ)T , (6)

with the mean of all the RSSI samples µ:

µ =
1
N

N

∑
i=1

xi. (7)

Then, the optimal matrix Q̂ is calculated by solving the optimization problem pre-
sented by
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Q̂ = argmaxQ
|QT AQ|
|QT IQ| , (8)

where the condition of the eigenvalue problem is that the generalized eigenvectors are orthogonal:

ρT
i ρj = 0, for i 6= j, (9)

and the generalized eigenvectors are normalized:

ρT
i ρi = 1, for i = 1, . . . , d. (10)

Finally, when the eigenvalues are sorted in descending order such that

λ1 ≥ λ2 ≥ · · · ≥ λd, (11)

the transformation matrix Q is provided by

Q =
(√

λ1ρ1|
√

λ2ρ2| · · · |
√

λlρl

)
∈ Rl×d. (12)

It should be noted that the last small values of the eigenvalues and eigenvectors
do not affect the transformation. Thus, we choose a proper l to cut down the original
dimensionality from d to l.

2.2. Label Standardization

In a WiFi fingerprint localization system, the two-dimensional coordinate values in
the position vector yi are generally expressed in meters and the floor values are expressed
as integers, ensuring that the scale of the data values between position and floor is different.
In addition, the location data are not evenly distributed, as the two-dimensional location is
concentrated in the hallway due to the nature of the indoor space. This characteristic can
have a negative effect on the accuracy of all general machine learning algorithms, including
artificial neural networks. In this paper, standardization is used to convert the original
location label data yi = [xi, yi, fi]

T to ȳi, as follows:

ȳi ← (yi − µs)/σs, (13)

where µs and σs are the mean and standard deviation of {yi}N
i=1, respectively.

As a summary of the data preprecessing, the PCA transforms the RSSI measurement
data from x to x̄, and standardization transforms the location data from y to ȳ. As a result,
the new feature database D̄ = {x̄i, ȳi}N

i=1 is obtained.

2.3. Multi-Target Estimation Based on Artificial Neural Network

An artificial neural network consists of several layers. In a layer, neural nodes have a
linear combination composed of learning parameters. When the combined signal propa-
gates to the next layer, a nonlinear model such as a rectified linear unit (ReLU) activation
function decides the output of the layer. As the signal propagates to multiple layers,
the nonlinearity increases. The success of deep learning in finding optimal node parameters
depends on determining the appropriate number of hidden layers and neural nodes.

Figure 2 shows the structure of a deep neural network for general single-location
learning. In this case, the input layer of the neural network uses the l-dimensional RSSI
vector, x̄ ∈ Rl in (3).

Figure 3 is a neural network structure for multi-location recognition. It is a parallel
extension of the single-location neural network shown in Figure 2. As shown in Figure 3,
as the number of positions to be simultaneously estimated increases, more neural network
nodes and a higher number of learning parameters are required. When the input data and
output data are expanded, as shown in Figure 3, the dimensionality of the data increases.
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Figure 2. Deep neural network structure for single-position learning.

Figure 3. Extended deep neural network structure for multi-position learning.

General machine learning techniques including deep neural network require large
amounts of training data for high dimensionality data [18]. The datasets D̄ = {x̄i, ȳi}N

i=1
have undergone preprocessing for single positioning. Given a fixed amount of data D̄,
in order to generate sufficient data for multi-location learning (that is, to make up the in-
put/output dataset represented in Figure 3), an additional rendering operation is required.

Let us suppose that the number of multiple locations to be estimated is K; then, the
composition of input data and output data of the neural network is as follows:

Xi = [x̄T
1 , x̄T

2 , · · · , x̄T
K]

T, (14)

Yi = [ȳT
1 , ȳT

2 , · · · , ȳT
K]

T. (15)

In (14) and (15), the jth component x̄T
j and ȳT

j are sampled from the original D̄ = {x̄i, ȳi}N
i=1.

It should be noted here that according to the sorting order of the pairs (x̄T
j , ȳT

j ) ∀j = 1, · · · , K,

data Xi and Yi can be heterogeneous. For example, X1 = [x̄T
1 , x̄T

2 , · · · , x̄T
K]

T and X2 = [x̄T
K,

x̄T
K−1, · · · , x̄T

1 ]
T are different sets unless all elements are equal. Therefore, an appropriate

amount of new training data to be used for multi-location learning can be generated by
repeating and aligning random extractions at D̄ while keeping the condition of ȳT

j 6= ȳT
k

for any j 6= k ∈ {1, · · · , N}. As a result, new training datasets for the multiple targets
F = {Xi, Yi}c

i=1 are made, in which parameter c is defined by a developer. Algorithm 1
summarizes the algorithm used to produce multi-target training data F from D̄.
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Algorithm 1 Rendering multi-target fingerprint training dataset

Input: D̄ = {x̄i, ȳi}N
i=1, single target fingerprint training data

Output: F = {Xi, Yi}c
i=1, multi-target fingerprint training data

Initialization: Set the desired number of multi-target training data c and the multi-target
K, and define Xi = Yi = φ as empty sets.

1: Initialize generator with θG, discriminator with θD and classifier with θC.
2: for i = 1, 2, . . . , c do
3: for j = 1, 2, . . . , K do
4: Sample (x̄j, ȳj) randomly from D̄ subject to x̄j 6∈ Xi and ȳj 6∈ Yi.
5: Add the samples by Xi ← Xi ∪ x̄j and Yi ← Yi ∪ ȳj
6: end for
7: (Here, the ith data in Equations (14) and (15) are made up.)
8: end for

3. Experimental Results
3.1. Setup

Figure 4 shows the experimental five-story building with a size of 60 × 60 m used to
evaluate the developed localization. For Wi-Fi fingerprint data collection, RSSI measure-
ments and the corresponding location data were collected along the corridor at intervals
of 1.5 m, and a total of 2207 learning data and 100 test data measurements were collected
distributed among the five floors. The RSSI data dimensionality is determined by the num-
ber of routers d, the total number of routers found in this test building is d = 508, and the
amount of data is N = 2207. The 2D location data were processed according to the Universal
Transverse Mercator coordinate system, and the floor values are integers from 1 to 5.

Figure 4. Experimental WiFi fingerprint data distribution along hallway of a multi-story building.

The deep neural network was trained and tested using Tensorflow. The training
parameters of the neural network were initialized through the Xavier method, the activation
function was defined as the ReLU function, the gradient descent method was performed
through the Adam-Optimizer, and the loss function of the training cost function was
defined as the root mean square error.

Through feature extraction using PCA, the original data with d = 508 were reduced
to feature data with l = 14. The reason for this setup is that the eigenvalues of the
transformed feature data after the fourteenth dimension of the PCA-driven feature data are
relatively small.

3.2. Result

The structure of the proposed deep neural network for indoor positioning consists of
one hidden layer and 220 nodes. This setup was used because when the number of hidden
layers was set two or more, the learning performance was degraded.
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Figure 5 shows the test performance according to the training epoch when the number
of positions to be estimated is 10, 15, 20, and 25, respectively. The test error on the y-axis
is defined as the sum of the Euclidean distance on the two-dimensional coordinates and
the 1 m penalty for the three-dimensional coordinates (i.e., floor), and is calculated as the
average of 100K number of measurements. Because the output value of the deep network
is not limited to within the real space, however, the test error may be very large in the early
stages of learning. As shown in Figure 5, over all training results, the test error decreases
according to the increment of the training epoch. However, as the number of simultaneous
estimated positions increases, the converged test mean error increases.

Figure 5. Positioning test error by deep neural network according to the number of estimated
positions: (a) K = 10, (b) K = 15, (c) K = 20, (d) K = 25.

Sometimes, a high test error occurs intermittently during the learning optimization
process, which shows the sensitivity of the multi-position neural network model to changes
in the neural network’s learning parameters.

As the size of the learning rate increases during the learning process, the change rate
of the updated parameter values is large. In general, a relatively large learning rate is set in
the early stages of learning, and a small rate is set in the later stages to guarantee learning
convergence. For our experiment, convergence was secured by changing the learning
rate from 0.01 to 0.001 after around 7000 epochs, meaning that the test error plots after
7000 epochs are almost changeless, as in Figure 5.

Table 2 shows the number of training epochs, the duration of training, the number
of training data items, and the average error. The mean error/standard deviation error
indicated in the fifth column of Table 2 is the average of only the test errors from the last
epoch of the learning phase to the 100th time. According to the number of estimated
positions increasing or decreasing, the number of training epochs, the training duration,
and the amount of data all increase or decrease. Theis result is obvious in that when the
number of multi-targets K increases, the average error increases. In this experiment, when
the number of position estimates was K = 10 and K = 15, good performance was obtained
without much difference from single position estimation accuracy. When K > 15, however,
the estimation performance becomes too inaccurate.
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Table 2. Experimental results.

Positions Learning Learning # of Training Ave. Test Error
K Iterations Time (s) Data ± Std (m)

1 3500 170.49 2575 2.29 ± 0.002
10 5000 394.43 67,080 2.60 ± 1.55
15 10,000 994.16 67,080 2.68 ± 0.03
20 15,000 1818.18 77,400 6.07 ± 1.48
25 15,000 2474.04 103,200 9.93 ± 2.86

As a baseline to compare accuracy and test time, k-NN [19] is implemented, in which
k = 10 after fine tuning; this approach uses the same PCA-driven feature data as the input.
For a single target, the k-NN experiment achieved an error of 2.69 m, which is similar to the
performance of proposed method when the target number was 15. The k-NN took 70 ms
for test time. Because the test-time complexity of k-NN is O(nm), in which n and m are
the number of training and test samples, respectively, it consumes time in proportional
to increment of the number of targets. On the other hand, the proposed algorithm took
50∼55 ms regardless of variations in the number of targets because of the consistent neural
network structure.

4. Conclusions

In this paper, WiFi-based indoor positioning using a deep neural network for multi-
location learning and estimation is proposed. WiFi wireless signal strength fingerprint
original data were pre-processed using PCA to extract feature data and location through
standardization for use as input data for a neural network. The input data were further
rendered for multi-location learning in an artificial neural network structure. A positioning
experiment performed in a five-story building confirmed that accurate learning results
were derived when estimating less than 20 locations at the same time.
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by the Korean government (MSIT) (No. 2022R1F1A1070968).
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