
Citation: Qin, M.; Liu, T.; Hou, B.;

Gao, Y.; Yao, Y.; Sun, H. A

Low-Latency RDP-CORDIC

Algorithm for Real-Time Signal

Processing of Edge Computing

Devices in Smart Grid Cyber-Physical

Systems. Sensors 2022, 22, 7489.

https://doi.org/10.3390/s22197489

Academic Editors: Peng Zeng,

Ning Zhang, Lei Liu, Chunhe Song

and Juan M. Corchado

Received: 2 August 2022

Accepted: 28 September 2022

Published: 2 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Low-Latency RDP-CORDIC Algorithm for Real-Time Signal
Processing of Edge Computing Devices in Smart Grid
Cyber-Physical Systems
Mingwei Qin 1,2, Tong Liu 1,2,*, Baolin Hou 1,2 , Yongxiang Gao 1,2, Yuancheng Yao 1,2 and Haifeng Sun 3

1 School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, China
2 Robot Technology Used for Special Environment Key Laboratory of Sichuan Province,

Mianyang 621000, China
3 School of Computer Science and Technology, Southwest University of Science and Technology,

Mianyang 621000, China
* Correspondence: liutong@mails.swust.edu.cn; Tel.: +86-177-9313-8400

Abstract: Smart grids are being expanded in scale with the increasing complexity of the equipment.
Edge computing is gradually replacing conventional cloud computing due to its low latency, low
power consumption, and high reliability. The CORDIC algorithm has the characteristics of high-
speed real-time processing and is very suitable for hardware accelerators in edge computing devices.
The iterative calculation method of the CORDIC algorithm yet leads to problems such as complex
structure and high consumption of hardware resource. In this paper, we propose an RDP-CORDIC
algorithm which pre-computes all micro-rotation directions and transforms the conventional single-
stage iterative structure into a three-stage and multi-stage combined iterative structure, thereby
enabling it to solve the problems of the conventional CORDIC algorithm with many iterations and
high consumption. An accuracy compensation algorithm for the direction prediction constant is also
proposed to solve the problem of high ROM consumption in the high precision implementation of
the RDP-CORDIC algorithm. The experimental results showed that the RDP-CORDIC algorithm
had faster computation speed and lower resource consumption with higher guaranteed accuracy
than other CORDIC algorithms. Therefore, the RDP-CORDIC algorithm proposed in this paper may
effectively increase computation performance while reducing the power and resource consumption
of edge computing devices in smart grid systems.

Keywords: smart grid; edge computing; signal processing; CORDIC; scaling factor

1. Introduction

Over the past few years, cloud computing infrastructure has been the dominant
solution used to handle heavy computational tasks related to smart grid applications [1].
With the rise of smart grid cyber–physical systems and the growing number of Internet
of Things (IoT) devices, cloud computing can no longer satisfy all the computing needs
of smart grid applications. Edge computing can move data processing tasks from remote
cloud computing centers to devices at the edge of the network. Edge computing technology
alleviates network congestion, latency and packet loss in smart grid architectures under
cloud computing [2,3]. The architecture of edge-enabled smart grid cyber-physical systems
is shown in Figure 1, which consists of an access layer, an edge layer, a network layer, a
platform layer, and an application layer. Here, the ability to process intelligent edge data is
provided by the edge computing devices at the Edge Layer.

Sensors 2022, 22, 7489. https://doi.org/10.3390/s22197489 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4177-5799
https://doi.org/10.3390/s22197489
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197489?type=check_update&version=1

Sensors 2022, 22, 7489 2 of 17
Sensors 2022, 22, x FOR PEER REVIEW 2 of 18

Access

Layer

Edge

Layer

Network

Layer

Platform

Layer
Cloud computing server Storage server Web server

Application

Layer Customer serviceSmart Grid Operation Cloud Application

4G/5G

Technology for Smart Grid

Figure 1. Basic Structure of Edge-enabled Smart Grids.

Many scholars have proposed applications of edge computing, which are especially

suitable for smart grids. A cloud edge collaborative intelligent method for object detection

was proposed in the literature [4], and it is applied to insulator string recognition defect

detection in the power IIoT. A fault detection method for pumping units based on edge

intelligence, which effectively improves the fault detection accuracy while maintaining

low computational requirements, was proposed in [5]. The important features of edge

computing applied to smart grid mainly include: support for real-time [6–10] and low

power [11–15] consumption. Data processing is the most time-consuming and energy-in-

tensive part of edge computing. Furthermore, since edge computing devices cannot guar-

antee high-capacity storage, processing these large volumes of data is an important issue

to be addressed [16].

Most of the current edge computing devices use an edge computing framework

based on heterogeneous computing, as shown in Figure 2. In this framework, the compu-

tational power provided by edge devices mainly depends on hardware accelerators,

which include Digital Signal Processing (DSP), Application Specific Integrated Circuit

(ASIC) and Field Programmable Gate Array (FPGA). In the heterogeneous framework

based on CPU+FPGA [17], FPGA has the characteristics of reconfiguration and energy

efficiency. The literature [18] appropriately places DSP operators on edge devices, so that

the edge layer can reduce the energy consumption of each event by as much as 4%. The

edge computing device based on CPU+ASIC structure [19] has a significantly better accel-

eration ratio than the existing GPU+CPU method, and has the advantages of small size

and low power consumption. A signal processing algorithm named CORDIC is often used

in hardware to handle complex data computation problems in real-time. It can implement

many complex functions and mathematical problems with simple addition, subtraction,

and shift operations. Table 1 lists some applications of the CORDIC algorithm, including

trigonometric functions [20], hyperbolic functions [21], FFT [22] and singular value de-

composition [23]. Nonetheless, the computational speed of the conventional CORDIC al-

gorithm is limited by the number of iterations, i.e., the more iterations of the CORDIC

algorithm, the higher the computational accuracy and the longer the time delay. There-

fore, reducing the number of iterations of the CORDIC algorithm, while ensuring the com-

putational accuracy of the algorithm, can reduce the computational latency and hardware

resource consumption.

Figure 1. Basic Structure of Edge-enabled Smart Grids.

Many scholars have proposed applications of edge computing, which are especially
suitable for smart grids. A cloud edge collaborative intelligent method for object detection
was proposed in the literature [4], and it is applied to insulator string recognition defect
detection in the power IIoT. A fault detection method for pumping units based on edge
intelligence, which effectively improves the fault detection accuracy while maintaining
low computational requirements, was proposed in [5]. The important features of edge
computing applied to smart grid mainly include: support for real-time [6–10] and low
power [11–15] consumption. Data processing is the most time-consuming and energy-
intensive part of edge computing. Furthermore, since edge computing devices cannot
guarantee high-capacity storage, processing these large volumes of data is an important
issue to be addressed [16].

Most of the current edge computing devices use an edge computing framework based
on heterogeneous computing, as shown in Figure 2. In this framework, the computa-
tional power provided by edge devices mainly depends on hardware accelerators, which
include Digital Signal Processing (DSP), Application Specific Integrated Circuit (ASIC)
and Field Programmable Gate Array (FPGA). In the heterogeneous framework based on
CPU+FPGA [17], FPGA has the characteristics of reconfiguration and energy efficiency. The
literature [18] appropriately places DSP operators on edge devices, so that the edge layer
can reduce the energy consumption of each event by as much as 4%. The edge computing
device based on CPU+ASIC structure [19] has a significantly better acceleration ratio than
the existing GPU+CPU method, and has the advantages of small size and low power
consumption. A signal processing algorithm named CORDIC is often used in hardware to
handle complex data computation problems in real-time. It can implement many complex
functions and mathematical problems with simple addition, subtraction, and shift opera-
tions. Table 1 lists some applications of the CORDIC algorithm, including trigonometric
functions [20], hyperbolic functions [21], FFT [22] and singular value decomposition [23].
Nonetheless, the computational speed of the conventional CORDIC algorithm is limited
by the number of iterations, i.e., the more iterations of the CORDIC algorithm, the higher
the computational accuracy and the longer the time delay. Therefore, reducing the number
of iterations of the CORDIC algorithm, while ensuring the computational accuracy of the
algorithm, can reduce the computational latency and hardware resource consumption.

Sensors 2022, 22, 7489 3 of 17
Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

Control

function

Model-based businessd

orchestration

Compute

Edge

Management

Functional

areas

Basic

Resources

StorageTSN

Analysis

function

Optimization

function

Direct resource calls

CPU CORDIC

Algorithm

FPGA/DSP/ASIC

Heterogeneous Computing

Figure 2. Edge computing framework based on heterogeneous computing.

Table 1. Application of CORDIC Algorithm.

Application Category Functions Implemented

basic arithmetic
multiplication

division

trigonometric function

sin x

cos x

tan x

inverse trigonometric function

arcsin x

arcsin−1 x

arctan−1 x

hyperbolic function

cosh x

sinh x

tanh x

tanh−1 x

other common functions
√𝑥

In(x)

ex

other applications

Fast Fourier transform

Matrix eigenvalue estimation

Singular value decomposition

Digital frequency synthesis

In summary, this work aimed to discover a high-performance CORDIC algorithm.

As a result, we proposed a RDP-CORDIC algorithm and implemented the hardware de-

sign of the algorithm. The RDP-CORDIC algorithm, characterized by fewer iterations, less

hardware resource consumption and faster processing speed, can effectively improve the

data processing speed and reduce the latency and power consumption of edge computing

devices in smart grid cyber-physical systems. The main contributions of this work are as

follows:

• We proposed a rotation direction prediction method of the CORDIC algorithm,

which completed the calculation of all the micro-rotation directions by inputting the

angle and direction prediction constants, providing the basis for the subsequent

merge iteration;

• A constant compensation algorithm for direction prediction was proposed to achieve

higher accuracy of direction prediction, being able to solve the problem of large

memory consumption under the condition of high accuracy;

• The single-stage iterative structure of the CORDIC algorithm was replaced by a

three-stage and multi-stage iterative structure. Based on this structure, the CORDIC

Figure 2. Edge computing framework based on heterogeneous computing.

Table 1. Application of CORDIC Algorithm.

Application Category Functions Implemented

basic arithmetic
multiplication

division

trigonometric function
sin x
cos x
tan x

inverse trigonometric function
arcsin x

arcsin−1 x
arctan−1 x

hyperbolic function

cosh x
sinh x
tanh x

tanh−1 x

other common functions

√
x

In(x)
ex

other applications

Fast Fourier transform
Matrix eigenvalue estimation
Singular value decomposition

Digital frequency synthesis

In summary, this work aimed to discover a high-performance CORDIC algorithm. As
a result, we proposed a RDP-CORDIC algorithm and implemented the hardware design
of the algorithm. The RDP-CORDIC algorithm, characterized by fewer iterations, less
hardware resource consumption and faster processing speed, can effectively improve the
data processing speed and reduce the latency and power consumption of edge computing
devices in smart grid cyber-physical systems. The main contributions of this work are as
follows:

• We proposed a rotation direction prediction method of the CORDIC algorithm, which
completed the calculation of all the micro-rotation directions by inputting the angle and
direction prediction constants, providing the basis for the subsequent merge iteration;

• A constant compensation algorithm for direction prediction was proposed to achieve
higher accuracy of direction prediction, being able to solve the problem of large
memory consumption under the condition of high accuracy;

• The single-stage iterative structure of the CORDIC algorithm was replaced by a
three-stage and multi-stage iterative structure. Based on this structure, the CORDIC
algorithm design with high accuracy, low latency, and low power consumption
was achieved.

Sensors 2022, 22, 7489 4 of 17

2. Related Work

The CORDIC algorithm was proposed by Volder in 1959 and was later generalized
by Walther. Subsequently, some other methods were proposed that aimed to enhance
the precision and reduce iterations and resource consumption. Among them, Radix-4
CORDIC algorithms [24] worked on zero hopping technology to reduce the number of
iterations for rotation to 50%. Later, a hybrid radix 2–4 CORDIC algorithm with high-
performance compensation technique waspresented [25] with reduced number of iterations
by 1/4, including scale factor calculation and compensation. Nevertheless, the computation
and correction of variable scale factor was a focused issue for higher radix CORDIC
algorithms [26–29] and advanced hybrid CORDIC algorithms [30]. The scale-free CORDIC
algorithm [31,32] approximated the sine and cosine functions by the Taylor series, thereby
eliminating the need for the scalar factors, except for a limited convergence range and
poor accuracy. A new hybrid CORDIC algorithm was proposed [33] to be able to further
reduce the latency of CORDIC by reducing the number of iterations equal to (3N/8) + 1.
A technique reported in low latency CORDIC algorithm [34] utilized the binaryto-bipolar
recoding (BBR) method to reduce the overall iterations to (N + 1)/3, with no scale factor
compensation. Similar to [23], the CORDIC algorithms [35–37] cut down time and memory
at the expense of accuracy. The CORDIC II algorithm proposed in [38] had excellent
performance in terms of resource consumption and latency, but its low accuracy held
it back. Table 2 lists some important features of the above related CORDIC algorithms,
including the rotation radix, prediction of rotation direction and whether the scaling factor
is fixed.

Table 2. Features of related CORDIC algorithms.

CORDIC Algorithm Radix Rotation Direction Prediction Fixed Scaling Factor

R-2 CORDIC [26] R-2 × √

R-4 CORDIC [24] R-4 × ×
R-8 CORDIC [28] R-8 × ×

scaling-free CORDIC [31] MIX-R × √

Mixed-R-scaling-free
CORDIC [29] MIX-R × √

BBR-CORDIC [34] R-2
√ ×

CORDIC II [38] R-2 × ×
RDP-CORDIC [proposed] R-2

√ √

3. Conventional CORDIC Algorithm

The CORDIC algorithm contains two modes (rotation mode, vector mode) and three
coordinate systems (circular coordinates, linear coordinates, hyperbolic coordinates). Dif-
ferent functions can be derived under different modes and different coordinate systems.
The CORDIC algorithm rotation mode of the circle coordinate system was taken as an
example to construct the simplest vector rotation model, as shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18


1 0 0(,)v x y

2 (,)t tv x y

X

Y

R

Figure 3. Rotation model for CORDIC algorithm.

Suppose vector v1 is rotated by θ to obtain vector v2, and the coordinates of v1 and v2

are (x0, y0), (xt, yt) respectively, then, the equation of change of vector coordinates can be

expressed by Equation (1).

0 0 0 0

0 0 0 0

cos sin cos (tan)

sin cos cos (tan)

t

t

x x y x y

y x y y x

   

   

= − = −


= + = +

 (1)

By dividing the single rotation angle of Equation (1) into multiple directed rotations

θi = tan−1(2−i), each rotation can be expressed by the iterative Equation (2).

1

1

1

cos (2)

cos (2)

i

i i i i i

i

i i i i i

i i i i

x x d y

y y d x

z z d







−

+

−

+

+

 = −  


= +  
 = − 

 (0) 1

 1

i i

i

if z d

else d

 =

= −

(2)

where zi+1 indicates the remaining angle and di is the direction of rotation. (xi+1, yi+1) indi-

cates the coordinates of (xi, yi) after the next rotation. In the rotation mode, the remaining

angle zi+1 value was used as a direction reference, and after n iterations, the zi+1 value

tended to zero and the vector vi almost tended to the vector, thus realizing the successive

approximation calculation.

Since cos θi in Equation (2) involved multiplication in the iterative calculation pro-

cess, it can be proposed not to participate in the iterative operation. Let 𝐾 =
∏ cos𝜃𝑖 𝑛

𝑖=0 =1/[(1 + 2−2i)0.5], 1/K is the scaling factor mentioned above, then the iteration

equations of the radix-2 CORDIC algorithm in rotation mode at the (i + 1)th step are as

follows:

1

1

1

1

2

2

tan (2)

i

i i i i

i

i i i i

i

i i i

x x d y

y y d x

z z d

−

+

−

+

− −

+

 = −  


= +  
 = − 

 (0) 1

 1

i i

i

if z d

else d

 =

= −
 (3)

To facilitate the subsequent verification of the performance of the CORDIC algo-

rithm, the principles for computing the sine and cosine functions are described below.

Combining Equation (1) with Equation (3), a formula for the CORDIC algorithm that cal-

culates the sine and cosine functions can be introduced. If given z0 =  , the coordinates

of Equation (3) are (xn, yn) after n iterations of calculation.

0 0

0 0

cos sin1

sin cos

n

n

x x y

y xK y

 

 

−   
    

+   
 (4)

From Equation (4), it can be found that taking x0 = K and y0 = 0, after n iterations

of calculation, xn and yn will be equal to the values of cos θ and sin θ, respectively.

Figure 3. Rotation model for CORDIC algorithm.

Sensors 2022, 22, 7489 5 of 17

Suppose vector v1 is rotated by θ to obtain vector v2, and the coordinates of v1 and v2
are (x0, y0), (xt, yt) respectively, then, the equation of change of vector coordinates can be
expressed by Equation (1).{

xt = x0 cos θ − y0 sin θ = cos θ(x0 − y0 tan θ)
yt = x0 sin θ + y0 cos θ = cos θ(y0 + x0 tan θ)

(1)

By dividing the single rotation angle of Equation (1) into multiple directed rotations θi
= tan−1(2−i), each rotation can be expressed by the iterative Equation (2).

xi+1 = cos θi(xi − di · yi · 2−i)
yi+1 = cos θi(yi + di · xi · 2−i)

zi+1 = zi − di · θi

i f (zi > 0) di = 1
else di = −1

(2)

where zi+1 indicates the remaining angle and di is the direction of rotation. (xi+1, yi+1)
indicates the coordinates of (xi, yi) after the next rotation. In the rotation mode, the
remaining angle zi+1 value was used as a direction reference, and after n iterations, the
zi+1 value tended to zero and the vector vi almost tended to the vector, thus realizing the
successive approximation calculation.

Since cos θi in Equation (2) involved multiplication in the iterative calculation process,
it can be proposed not to participate in the iterative operation. Let K = ∏n

i=0 cos θi =1/[(1
+ 2−2i)0.5], 1/K is the scaling factor mentioned above, then the iteration equations of the
radix-2 CORDIC algorithm in rotation mode at the (i + 1)th step are as follows:

xi+1 = xi − di · yi · 2−i

yi+1 = yi + di · xi · 2−i

zi+1 = zi − di · tan−1(2−i)

i f (zi > 0) di = 1
else di = −1

(3)

To facilitate the subsequent verification of the performance of the CORDIC algorithm,
the principles for computing the sine and cosine functions are described below. Combining
Equation (1) with Equation (3), a formula for the CORDIC algorithm that calculates the
sine and cosine functions can be introduced. If given z0 = θ, the coordinates of Equation (3)
are (xn, yn) after n iterations of calculation.(

xn
yn

)
≈ 1

K
·
(

x0 cos θ − y0 sin θ
x0 sin θ + y0 cos θ

)
(4)

From Equation (4), it can be found that taking x0 = K and y0 = 0, after n iterations of cal-
culation, xn and yn will be equal to the values of cos θ and sin θ, respectively. Therefore, the
calculation of sine and cosine functions based on the CORDIC algorithm was implemented.

4. RDP-CORDIC Algorithm

The micro-rotation direction of the conventional CORDIC algorithm is determined
by the remaining angle after the last iteration, which leads to the problem of high latency.
Although the high latency problem may be solved by way of a parallel pipeline structure,
it increases the hardware resource overhead, and the most effective way to solve the
high latency is to reduce the number of iterations. In this paper, a rotation direction
prediction CORDIC (RDP-CORDIC) algorithm was proposed to reduce the number of
iterations by calculating all micro-rotation directions in advance, so that the conventional
single-stage iterative structure could be changed into a multi-stage iterative structure. The
current direction prediction algorithms mainly include the Booth encoding method and
the binary-to-bipolar recoding (BBR) method. The Booth encoding method is responsible
for predicting the direction of rotation after [N − log2

3]/3 iterations, thus reducing the
number of iterations by about 1/2. The BBR is impressed by decomposing the input angle
θ into a combination of a larger angle and several 2−i radians so that the direction of
rotation is determined by the binary bit value of θ each rotation. Note that, the BBR method

Sensors 2022, 22, 7489 6 of 17

requires a ROM to store all the computation results after N/3 − 1 iterations, and the ROM
consumption increases as precision gets higher, e.g., 16-bit precision requires a ROM of
26 × 16 × 2 (bit) size.

4.1. Rotation Direction Prediction

Considering that the BBR method allows the binary bit value of angle to represent the
direction of micro-rotation, i.e., θ = ∑∞

i=0 di2−i = (dθ)2, this method fixes the rotation angle
as 2−i, resulting in large consumption of ROM resources. Therefore, the micro-rotation
angle chosen for the RDP-CORDIC algorithm was tan−1(2−i), and a new rotation direction
prediction method needs to be sought.

The input angle θ ∈ [0,π/4] can be expressed as:

θ =
n=∞

∑
i=0

σi tan−1
(

2−i
)

(5)

where, σi ∈ {−1, 1}, i ≥ 1. Let σi = 2di − 1, di ∈ {0, 1}, at which point s = 2, then
θ = ∑n=∞

i=1 (2di − 1) tan−1(2−i), and Equation (6) could be derived.

θ =
∞
∑

i=1
(2di − 1) tan−1(2−i)

=
∞
∑

i=1
(2di − 1)(2−i − 2−3i

3 + 2−5i

5 −
2−7i

7 + · · ·)

=
∞
∑

i=1
(2di − 1)(2−i)−

∞
∑

i=1
(2di − 1)(2−3i

3 −
2−5i

5 + 2−7i

7 − · · ·)

= 2dθ − 1 +
∞
∑

i=1
(2−i − tan−1(2−i))− 2

∞
∑

i=1
di(2−i − tan−1(2−i))

(6)

Let ε = ∑∞
i=1
(
2−i − tan−1(2−i)), λ = ∑∞

i=1 di(2−i−tan−1(2−i)), it came from Taylor
Formula that when i ≥ [(N − log2 3)/3], 2−i ∼= tan−1(2−i), λ could be reduced to Equa-
tion (7), where [*] means to take an integer greater than or equal to *.

λ =
[(N−log2 3)/3]

∑
i=1

di(2−i − tan−1(2−i)) (7)

ε is a constant of about 0.0421115429, the final rotation direction prediction formula is
introduced as in Equation (8).

dθ = 0.5θ + 0.5− 0.5ε + λ
= 0.5θ + λ + 0.478944228537446

(8)

From Equation (8), the direction of rotation could be calculated by entering the angle
and λ. The binary bit value of the final calculation pointed the direction of rotation.
Equation (6) gave the calculation of the value of d1, d2, d3, d4 and d5 in various combinations
for 16-bit precision. In order to determine the rules for the value of λ, the cumulative value
of the rotation angle corresponding to λ was viewed as the angle reference, which was
denoted as θcp. It should be noted that in the calculation, the values for d6~d16 were 0.
When calculating θcp, not only the sum of the angles of d1~d5 rotation may be covered, but
also the micro-selected rotation angles of d6~d16 should be accumulated. Equation (9) is the
calculation of the reference angle value θcp(m).

θcp(m) =
m

∑
i=1

(2di − 1) tan−1(2−i)−
16

∑
i=m+1

tan−1(2−i) (9)

Looking at the interval range of the input angle size, the redundant data is removed
and the final direction prediction constants are shown in Table 3. The final direction

Sensors 2022, 22, 7489 7 of 17

calculation result is affected by the accuracy of the direction prediction constants λ and θ.
In order to satisfy the accuracy of dθ , it is necessary to make the accuracy of λ higher than
that of dθ . For the 16-bit precision of dθ , λ needs 17-bit size precision. Since the integer bits
of both λ and θ are 0, each prediction constant in ROM only needs 16 bits in size. Therefore,
to implement the RDP-CORDIC algorithm with N bit precision, the size of the prediction
constants λ and θ in ROM is also the same as N bit.

Table 3. Prediction constant table for 16-bit precision direction.

{d1,d2,d3,d4,d5} λ θcp5

01111 0.03635239 −0.0305780
10000 0.03636256 0.03190169
10001 0.03643358 0.09425964
10010 0.03644375 0.15673931
10011 0.03699740 0.21813201
10100 0.03700756 0.28061168
10101 0.03707859 0.34296963
10110 0.03708875 0.40544930
10111 0.04137373 0.45937935
11000 0.04138389 0.52185901
11001 0.04145492 0.58421697
11010 0.04146508 0.64669663
11011 0.04201873 0.70808934
11100 0.04202890 0.77056900

The minimum angular reference value λcp5 for different values of λ is given in Table 3.
The process of rotation direction prediction can be summarized as follows:

1. Compare the input angle with θcp in the direction prediction constant, and select the
value of λ corresponding to a value close to and less than or equal to θcp;

2. The binary value dθ representing the micro-rotation direction was calculated based on
λ. Finally, the prediction of the micro-rotation direction in the non-iterative case was
performed.

4.2. ROM Resource Optimization

A 14 × 16 × 2 bit ROM resource was required to make the above-mentioned 16-bit
precision direction prediction. According to the theory of rotation direction prediction algo-
rithm proposed in Section 4.1, the N bit width accuracy required a ROM of 2[(N−log

2
3)/3] ×N

bit size, and the ROM consumption increased sharply with the increase of accuracy. The
reason for the sharp increase of ROM consumption was that the high accuracy direction
prediction asked for more λ values to be selected, leading to an increase in the table
of direction prediction constants. It may be useful to analyze the λ expansion and let
m = [(N − log2

3)/3)], then λm and λm+1 are as in Equations (10) and (11), respectively.

λm =
m

∑
i=1

di(2−i − tan−1(2−i)) (10)

λm+1 =
m+1
∑

i=1
di(2−i − tan−1(2−i))

= λm + dm+1(2−m−1 − tan−1(2−m−1))
(11)

Let µi = 2−i − tan−1(2−i), and the first 10 iterations of µi are given in Table 4.

Sensors 2022, 22, 7489 8 of 17

Table 4. Value of µi constants for the first 10 iterations.

i µi

1 0.0363523910
2 0.0050213369
3 0.0006450055
4 8.1190004043 × 10−5

5 1.0166569732 × 10−5

6 1.2713795232 × 10−6

7 1.5893989889 × 10−7

8 1.9868033028 × 10−8

9 2.4835211812 × 10−9

10 3.1044068054 × 10−10

Combined with Taylor’s formula, when m ≥ [(N + log2(3/20) − 3)/5], Equation (11)
can be reduced to Equation (12)

λm+1 = λm + dm+1 · 2−3 · µm (12)

Equation (12) is the relationship between λm+1 and λm, and similarly, the value of λm+i
can be calculated from λm. Thus, an accuracy compensation algorithm for λ is proposed,
where λ is composed of a fixed λs and an accuracy compensation λc.

λ = λs + λc (13)

In Equation (13), s = [(N + log2(3/20) − 3)/5], the accuracy compensation λc is
calculated as Equation (14).

λc =
m

∑
i=s+1

di · µs+1 · 2−3(i−s−1) (14)

Since the accuracy of the rotation direction that can be derived is equal to s × 3
+ log23 > m, di in Equation (14) can be calculated based on λs. To sum up, the ROM
consumption of the direction prediction constant was reduced from 2[N−log2 3]/3 ∗ N bit to
2[N+log2 (3/20)−3]/5 ∗N bit by using the direction prediction constant accuracy compensation
method, which achieved high accuracy and reduced the ROM consumption.

4.3. Iterative Merging

After getting the direction of rotation, the conventional single-stage iterative calcu-
lation Equation (3) now can be changed to a three-stage combined iteration, as shown in
Equation (15).

xi+3 = xi(1−
di ·di+1
2(2i+1) −

di ·di+2
2(2i+2) −

di+1·di+2
2(2i+3))− yi ·

i+2
∑
j=i

(2−j · dj) + yi ·
di ·di+1·di+2

2(3i+3)

yi+3 = yi(1−
di ·di+1
2(2i+1) −

di ·di+2
2(2i+2) −

di+1·di+2
2(2i+3)) + xi ·

i+2
∑
j=i

(2−j · dj)− xi ·
di ·di+1·di+2

2(3i+3)

(15)

When the number of iterations i > [(N − 3)/3], xi 2−(3i+3) and yi 2−(3i+3) dropped
to machine zero, Equation (15) removed yi ·

di ·di+1·di+2
2(3i+3) and xi ·

di ·di+1·di+2
2(3i+3) two terms, the

three-level combined iteration formula became Equation (16).
xi+3 = xi(1−

di ·di+1
2(2i+1) −

di ·di+2
2(2i+2) −

di+1·di+2
2(2i+3))− yi ·

i+2
∑
j=i

(2−j · dj)

yi+3 = yi(1−
di ·di+1
2(2i+1) −

di ·di+2
2(2i+2) −

di+1·di+2
2(2i+3)) + xi ·

i+2
∑
j=i

(2−j · dj)
(16)

Sensors 2022, 22, 7489 9 of 17

When i > [(N − 1)/2], xi 2−(2i+1) and yi 2−(2i+1) are machine zeros, and the subsequent
iterative process can be represented by the multilevel merge iteration of Equation (17).

xi+n = xi − yi ·
i+n
∑
j=i

2−j · dj

yi+n = yi + xj ·
i+n
∑
j=i

2−j · dj

(17)

In summary, the flow of rotation iteration is as follows:

1. For the number of iterations i ≤ [(N − 3)/3], the three-stage merge iteration Formula
(15) was used;

2. When [(N− 3)/3] < i≤ [(N− 1)/2], the three-stage merge iteration simplified Formula
(16) was used;

3. Finally when i > [(N − 1)/2], Formula (16) for multi-stage merge iteration calculation
was used.

5. Hardware Design of RDP-CORDIC Algorithm

The main hardware structures for implementing the CORDIC algorithm are loop
iterative structures and pipelined iterative structures. The loop iterative structure is simple
in design and consumes less hardware, but the computation speed slows down as the
accuracy increases. The pipelined iterative structure is more complex and consumes more
hardware, but the computation speed is much higher. For edge computing devices used in
smart grid cyber-physical systems, the faster pipelined iterative structure is more suitable.

5.1. RDP-CORDIC Algorithm Structure Design

The pipeline structures of the classical optimized CORDIC algorithm and the RDP-
CORDIC algorithm are shown in (a) and (b) of Figure 4, respectively. The direction of each
rotation of the classical optimized CORDIC algorithm depends on the sign of the remaining
angle θn, and the result needs to be iteratively calculated in a [(N − 1)/2] stage pipeline
method. The structure of RDP-CORDIC algorithm consists of two parts: the direction
prediction part on the left side and the rotation iteration on the right side. The direction
prediction module calculates all micro-rotation directions in advance, while the rotation
iteration part transforms the single-stage iterative structure into a three-stage and multi-
stage iterative structure since all micro-rotation directions are known. The new structure
cut off part of hardware overhead and latency compared to the conventional structure.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

One-stage

Iteration

1x 1y

2y 2x

nx ny

3y3x

One-stage

Iteration

Multi-stage

iteration

One-stage

Iteration

[(1)/2] 1Nx − −[(1)/2] 1Ny − −

[(1)/2]Nx − [(1)/2]Ny −

Add/Sub

1

1d

Add/Sub

Sign

2

2d

Sign

Add/Sub

[(1)/2] 1N − −

[(1)/2] 1Nd − −

Sign

1 1tan (2)− −

1 2tan (2)− −

1 [(1)/2] 1tan (2)N− − − +

1 3tan (2)− −

Booth coding

(1)/2] ~N Nd d−

[(1)/2]N −

Rom



cp

j

Sub

Sign

Shift

MUX

Add
0.5 0.5−

0.5

1j −

s

Shift/Add

1 ~s md d+
s

Direction coding

d



c

Three-stage

iteration

1x 1y

4y 4x

3 1 ~i nd d+

nx ny

1 3~d d

4 6~d d

7y7x

3 2 3~i id d−

3 1iy +3 1ix +

Three-stage

iteration

Multi-stage

iteration

Three-stage

iteration

3 2ix −3 2iy −

a pd

(a) (b)

Figure 4. Structure of the classical optimized CORDIC algorithm and the RDP_CORDIC algorithm:

(a) Classical optimized CORDIC algorithm pipeline structure; (b) Structure of RDP-CORDIC algo-

rithm.

As shown below, the workflow of the RDP-CORDIC algorithm consists of three

steps.

RDP-CORDIC workflow

1. Directional rough prediction

(1) Pre-store the direction prediction constants θcp, λs, and μi in a ROM of size 2[(N-

(log2(3/20)−3)/5] bits;

(2) Use the MSB of the input angle θas the lookup address of the ROM for reading

out θcp;

(3) Send the sign bit of the value of the input angle θ minus θcp to the selection input

port of the multiplexer, and the multiplexer outputs the corresponding value of λs;

(4) Add up λs, θ, and 0.5 − 0.5ε to get the rough rotation direction prediction value

dap.

2. Accurate direction prediction

(1) Shift and sum up the rough rotation direction prediction ds+1~dm with μs accord-

ing to Equation (14) to calculate the compensation value λc.

(2) Calculate the exact direction prediction value dθ by re-summing λ, θ and 0.5 −

0.5ε.

3. Iteration calculation

(1) In the iterative calculation part uses multiple three-level merge iteration mod-

ules and one multi-level merge iteration module;

(2) Set the input values of the iterative calculation module as x1 = K and y1 = 0;

(3) The rotation directions d1~d3s−1 are determined by the rough direction value dap,

and the rotation directions d3s ~dn are determined by the accurate direction value dθ.

5.2. Calculation of Sine and Cosine Function Based on RDP-CORDIC Algorithm

To verify the performance of the RDP-CORDIC algorithm, the RDP-CORDIC algo-

rithm was arranged to calculate the sine and cosine functions. Since the selected initial

rotation angle value was tan−1(2−i), where i was an integer greater than 0, the calculated

Figure 4. Structure of the classical optimized CORDIC algorithm and the RDP_CORDIC algorithm:
(a) Classical optimized CORDIC algorithm pipeline structure; (b) Structure of RDP-CORDIC algorithm.

Sensors 2022, 22, 7489 10 of 17

As shown below, the workflow of the RDP-CORDIC algorithm consists of three steps
(Algorithm 1).

Algorithm 1 RDP-CORDIC workflow

1. Directional rough prediction
(1) Pre-store the direction prediction constants θcp, λs, and µi in a ROM of size

2[(N − (log2(3/20) − 3)/5] bits;
(2) Use the MSB of the input angle θ as the lookup address of the ROM for reading out θcp;
(3) Send the sign bit of the value of the input angle θ minus θcp to the selection input port of

the multiplexer, and the multiplexer outputs the corresponding value of λs;
(4) Add up λs, θ, and 0.5 − 0.5ε to get the rough rotation direction prediction value dap.

2. Accurate direction prediction
(1) Shift and sum up the rough rotation direction prediction ds+1~dm with µs according to

Equation (14) to calculate the compensation value λc.
(2) Calculate the exact direction prediction value dθ by re-summing λ, θ and 0.5 − 0.5ε.

3. Iteration calculation
(1) In the iterative calculation part uses multiple three-level merge iteration modules and one

multi-level merge iteration module;
(2) Set the input values of the iterative calculation module as x1 = K and y1 = 0;
(3) The rotation directions d1~d3s−1 are determined by the rough direction value dap, and the

rotation directions d3s~dn are determined by the accurate direction value dθ .

5.2. Calculation of Sine and Cosine Function Based on RDP-CORDIC Algorithm

To verify the performance of the RDP-CORDIC algorithm, the RDP-CORDIC algorithm
was arranged to calculate the sine and cosine functions. Since the selected initial rotation
angle value was tan−1(2−i), where i was an integer greater than 0, the calculated angle
range was limited to [0, π/4]. The symmetry of trigonometric function were combined with
the trigonometric change to expand the input angle range, and the final change relationship
is shown in Table 5.

Table 5. Angle interval conversion.

Input Angle Range θe Angle after Conversion θ cos θe sin θe

[0, π/4) θe cos θ sin θ
[π/4, π/2) π/2 − θe sin θ cos θ
[π/2, 3π/4) θe − π/2 −sin θ cos θ
[3π/4, π) π − θe −cos θ sin θ
[π, 5π/4) θe − π −cos θ −sin θ

[5π/4, 3π/2) 3π/2 − θe −sin θ −cos θ
[3π/2, 7π/4) θe − 3π/2 sin θ −cos θ

[7π/4, 2π] 2π − θe cos θ −sin θ

Based on the RDP-CORDIC algorithm, the implementation architecture of sine and
cosine function calculation is shown in Figure 5, including an angle interval folding module,
a direction prediction module, multiple three-stage iteration modules, a multi-stage merge
iteration, and a triangular constant change module. The working principle is that the angle
interval folding module transforms the input angle of any size into the interval [0~2π] and
then sends the 3 bit angle range code to the angle transformation module.The rotation
direction prediction module calculates all micro-rotation directions in advance based on
the input angle, and then passes the direction values to the back-end iterative calculation
module; after three-stage of running iterations and multi-stage of combined iterations, the
calculated sine and cosine function values are output. Finally, the sine and cosine signals
obtained by simulation with Vivado’s Simulation software are shown in Figure 6.

Sensors 2022, 22, 7489 11 of 17

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

angle range was limited to [0, π/4]. The symmetry of trigonometric function were com-

bined with the trigonometric change to expand the input angle range, and the final change

relationship is shown in Table 5.

Table 5. Angle interval conversion.

Input Angle Range θe Angle after Conversion θ cos θe sin θe

[0, π/4) θe cos θ sin θ

[π/4, π/2) π/2 − θe sin θ cos θ

[π/2, 3π/4) θe − π/2 −sin θ cos θ

[3π/4, π) π − θe −cos θ sin θ

[π, 5π/4) θe − π −cos θ −sin θ

[5π/4, 3π/2) 3π/2 − θe −sin θ −cos θ

[3π/2, 7π/4) θe − 3π/2 sin θ −cos θ

[7π/4, 2π] 2π − θe cos θ −sin θ

Based on the RDP-CORDIC algorithm, the implementation architecture of sine and

cosine function calculation is shown in Figure 5, including an angle interval folding mod-

ule, a direction prediction module, multiple three-stage iteration modules, a multi-stage

merge iteration, and a triangular constant change module. The working principle is that

the angle interval folding module transforms the input angle of any size into the interval

[0~2π] and then sends the 3bit angle range code to the angle transformation module.The

rotation direction prediction module calculates all micro-rotation directions in advance

based on the input angle, and then passes the direction values to the back-end iterative

calculation module; after three-stage of running iterations and multi-stage of combined

iterations, the calculated sine and cosine function values are output. Finally, the sine and

cosine signals obtained by simulation with Vivado’s Simulation software are shown in

Figure 6.

1 3ix +

Angle interval
folding

Three-level
iteration

Multilevel iterative
merging and Angle

transformation



1 3iy +

cos

sin

1 1 3~ id d + 2 3 ~i nd d+

3bit angle range coding

1x K=

1 0y =

Directional
precomputation

e 

Figure 5. Implementation of RDP-CORDIC algorithm with sine and cosine functions.

Figure 6. Simulation waveforms of calculated sine and cosine functions.

Figure 5. Implementation of RDP-CORDIC algorithm with sine and cosine functions.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

angle range was limited to [0, π/4]. The symmetry of trigonometric function were com-

bined with the trigonometric change to expand the input angle range, and the final change

relationship is shown in Table 5.

Table 5. Angle interval conversion.

Input Angle Range θe Angle after Conversion θ cos θe sin θe

[0, π/4) θe cos θ sin θ

[π/4, π/2) π/2 − θe sin θ cos θ

[π/2, 3π/4) θe − π/2 −sin θ cos θ

[3π/4, π) π − θe −cos θ sin θ

[π, 5π/4) θe − π −cos θ −sin θ

[5π/4, 3π/2) 3π/2 − θe −sin θ −cos θ

[3π/2, 7π/4) θe − 3π/2 sin θ −cos θ

[7π/4, 2π] 2π − θe cos θ −sin θ

Based on the RDP-CORDIC algorithm, the implementation architecture of sine and

cosine function calculation is shown in Figure 5, including an angle interval folding mod-

ule, a direction prediction module, multiple three-stage iteration modules, a multi-stage

merge iteration, and a triangular constant change module. The working principle is that

the angle interval folding module transforms the input angle of any size into the interval

[0~2π] and then sends the 3bit angle range code to the angle transformation module.The

rotation direction prediction module calculates all micro-rotation directions in advance

based on the input angle, and then passes the direction values to the back-end iterative

calculation module; after three-stage of running iterations and multi-stage of combined

iterations, the calculated sine and cosine function values are output. Finally, the sine and

cosine signals obtained by simulation with Vivado’s Simulation software are shown in

Figure 6.

1 3ix +

Angle interval
folding

Three-level
iteration

Multilevel iterative
merging and Angle

transformation



1 3iy +

cos

sin

1 1 3~ id d + 2 3 ~i nd d+

3bit angle range coding

1x K=

1 0y =

Directional
precomputation

e 

Figure 5. Implementation of RDP-CORDIC algorithm with sine and cosine functions.

Figure 6. Simulation waveforms of calculated sine and cosine functions. Figure 6. Simulation waveforms of calculated sine and cosine functions.

5.3. More Applications of the RDP-CORDIC Algorithm

As described in the introduction section, the RDP-CORDIC algorithm can also be used
in more areas of smart grids. In a smart grid system, the frequency of the power system is
an important indicator of power quality and needs to be detected in real time. If there is a
problem in a section of the smart grid, the source of the fault can be cut off in time to protect
the grid. Based on CORDIC algorithm to implement FFT, it can efficiently measure the
higher harmonic and interference noise of power signal. The core of FFT implementation
using CORDIC algorithm is to use CORDIC algorithm to implement complex multiplication
operations in FFT. The complex multiplication operation in FFT is as in Equation (18).

Xk = X0 ∗Wnk
N (18)

where X0 = x0 + j × y0, Xk = xk + j × yk, bringing Wnk
N = e−j 2π

N nk into Equation (18), the
imaginary and real parts of Xk after being simplified are as in Equation (19).{

xk = x0 cos(− 2nkπ
N)− y0 sin(− 2nkπ

N)

yk = y0 cos(− 2nkπ
N) + x0 sin(− 2nkπ

N)
(19)

The multiplication of the complex sequence and the rotation factor can be seen as
the vector X0 rotated by θ = −2nkπ/N, Then, using the CORDIC algorithm idea, we can
transform Equation (19) into Equation (1). So the complex multiplication of FFT can then
be implemented by the RDP-CORDIC algorithm.

In addition, the CORDIC algorithm can also realize singular value decomposition
(SVD) for image denoising, data compression, etc. With the increase of matrix dimension,
the computation volume of SVD grows exponentially, which has a great impact on the

Sensors 2022, 22, 7489 12 of 17

computation real-time of edge computing devices. Taking the 2× 2 matrix G as an example,
its bilateral Jacobi SVD algorithm was calculated as Equations (20) and (21).[

cos θL − sin θL
sin θL cos θL

][
a b
c d

][
cos θR − sin θR
sin θR cos θR

]
=

[
δ1 0
0 δ2

]
(20)

{
θR + θL = arctan(c+b

d−a)

θR − θL = arctan(c−b
d+a)

(21)

In Equation (20), a, b, c, d are the four elements of the second-order matrix G. θR and θL
are the left and right rotation angles, calculated by Equation (21). The values of δ1 and δ2
are the singular values of the matrix G. In the above operation, both the arc tangent funcion
and the sine/cosine function can be implemented by the CORDIC algorithm. The structure
of the 2 × 2 SVD module based on the RDP-CORDIC algorithm is shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

5.3. More Applications of the RDP-CORDIC Algorithm

As described in the introduction section, the RDP-CORDIC algorithm can also be

used in more areas of smart grids. In a smart grid system, the frequency of the power

system is an important indicator of power quality and needs to be detected in real time. If

there is a problem in a section of the smart grid, the source of the fault can be cut off in

time to protect the grid. Based on CORDIC algorithm to implement FFT, it can efficiently

measure the higher harmonic and interference noise of power signal. The core of FFT im-

plementation using CORDIC algorithm is to use CORDIC algorithm to implement com-

plex multiplication operations in FFT. The complex multiplication operation in FFT is as

in Equation (18).

0 * nk

k NX X W= (18)

where X0 = x0 + j × y0, Xk = xk + j × yk, bringing 𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2𝜋

𝑁
𝑛𝑘 into Equation (18), the imag-

inary and real parts of Xk after being simplified are as in Equation (19).

0 0

0 0

2 2
cos() sin()

2 2
cos() sin()

k

k

nk nk
x x y

N N

nk nk
y y x

N N

 

 


= − − −


 = − + −


(19)

The multiplication of the complex sequence and the rotation factor can be seen as the

vector X0 rotated by θ = −2nkπ/N, Then, using the CORDIC algorithm idea, we can trans-

form Equation (19) into Equation (1). So the complex multiplication of FFT can then be

implemented by the RDP-CORDIC algorithm.

In addition, the CORDIC algorithm can also realize singular value decomposition

(SVD) for image denoising, data compression, etc. With the increase of matrix dimension,

the computation volume of SVD grows exponentially, which has a great impact on the

computation real-time of edge computing devices. Taking the 2*2 matrix G as an example,

its bilateral Jacobi SVD algorithm was calculated as Equations (20) and (21).

1

2

cos sin cos sin 0

sin cos sin cos 0

L L R R

L L R R

a b

c d

    

    

− −      
=      

      

 (20)

R

R

arctan()

arctan()

L

L

c b

d a

c b

d a

 

 

+
+ = −


− − =

 +

(21)

In Equation (20), a, b, c, d are the four elements of the second-order matrix G. θR and

θL are the left and right rotation angles, calculated by Equation (21). The values of 𝛿1 and

𝛿2 are the singular values of the matrix G. In the above operation, both the arc tangent

funcion and the sine/cosine function can be implemented by the CORDIC algorithm. The

structure of the 2 × 2 SVD module based on the RDP-CORDIC algorithm is shown in Fig-

ure 7.

Figure 7. Structure of 2 × 2 SVD module based on RDP-CORDIC algorithm. Figure 7. Structure of 2 × 2 SVD module based on RDP-CORDIC algorithm.

6. Performance Testing and Analysis

The hardware design of the 16-bit fixed-point decimal RDP-CORDIC algorithm was
implemented on the Xilinx Kintex7 325T series FPGA hardware platform using Verilog
HDL. In the first place, the effect of ROM resource optimization of the predictive direction
CORDIC algorithm proposed in Section 4.2 was tested, and the size of RAM resources
consumed before and after the optimization was compared. Subsequently, the proposed
RDP-CORDIC algorithm was tested and compared with other related CORDIC algorithms
in terms of latency, resource consumption, and power consumption. Based on the hardware
structure of the RDP-CORDIC algorithm, the maximum absolute value errors of the sine
and cosine functions, logarithmic function, square root function, hyperbolic sine, and
hyperbolic cosine function were also tested at 16-bit accuracy. Finally, we analyze the time
and maximum absolute value errors of the sine and cosine functions computed using the
RDP-CORDIC algorithm.

6.1. ROM Optimization Results of the RDP-CORDIC Algorithm

Figure 8 shows the comparison of ROM resource consumption before and after ROM
optimization for this algorithm, from which it can be seen that the ROM consumption
before the optimization is much higher than that after optimization. For 16-bit precision,
the unoptimized algorithm requires a ROM size of 448 bits., while the optimized algorithm
requires only 160 bits. for 32-bit precision, the unoptimized algorithm requires a ROM
size of 56,320 bits, while the optimized algorithm consumes only 1888 bits. as the data
bit width increases, the difference in ROM consumption before and after optimization
increases significantly.

Sensors 2022, 22, 7489 13 of 17

Figure 8. ROM resources required at different bit widths before and after optimization.

6.2. Performance Comparison of CORDIC Algorithms

The test results of the RDP-CORDIC algorithm and other related CORDIC algorithms
in terms of latency and resource consumption are shown in Table 6. Apparently, in terms
of latency, the R-4 CORDIC, R-8 CORDIC and Mixed-R CORDIC reduced latency but
increased ROM consumption and had high hardware complexity. The RDP-CORDIC
algorithm had a 70% lower latency compared to the conventional CORDIC algorithm,
being parallel to the BBR-CORDIC algorithm. In terms of resource consumption, the RDP-
CORDIC algorithm was similar to the CORDIC II algorithm, but the CORDIC II algorithm
displayed a larger latency. Although the ROM consumption of the new algorithm was
slightly higher than that of the conventional R-2 CORDIC algorithm, the RDP-CORDIC
algorithm was clearly more advantageous, exchanging the ultra-small ROM capacity for
70% latency and 40% other resource consumption. In terms of power consumption, the
proposed RDP-CORDIC algorithm facilitated an ultra-low power consumption of 28 mW.
A comprehensive comparison showed that the RDP-CORDIC algorithm illustrated some
advantages over other CORDIC algorithms in terms of latency, resource consumption and
power consumption.

Table 6. Performance comparison results of different CORDIC algorithms.

CORDIC Algorithm Number of
Iterations LUTs + FF ROM Power (mW)

R-2 CORDIC [26] 17 2362 0 71
R-4 CORDIC [24] 9 1886 24 × 16 66
R-8 CORDIC [28] 7 1566 36 × 16 65

Mixed-R-scaling-freeCORDIC [29] 8 1771 12 × 16 53
BBR-CORDIC [34] 5 1643 102 × 16 82

CORDIC II [38] 7 1433 24 × 16 32
RDP-CORDIC [proposed] 5 1438 12 × 16 28

6.3. Test of Calculation Error and Calculation Time of Variousfunctions

Figure 9 shows the absolute error curves for the calculation of sine and cosine functions,
logarithmic function, sqrt function and hyperbolic sine and hyperbolic cosine functions
based on the RDP-CORDIC algorithm at 16-bit data width. The maximum magnitude error

Sensors 2022, 22, 7489 14 of 17

of the sine and cosine functions is clearly less than 3.04 × 10−5. The reason for the different
errors for each input angle is that the error is 0 only when the accumulated value of the
angle of directional rotation is equal to the input angle. However, the direction of rotation is
not certain for different input angles, which results in the difference between the totalized
rotation value and the input angle value. For other functions, the input test data is limited
to a different range due to the characteristic limitations of the CORDIC algorithm. As in
Figure 9c–f, the input angles are limited to [0.2, 9.5], [0.03, 2], [−1.12, 1.12] and [−1.12, 1.12],
respectively. The test results show that the RDP-CORDIC algorithm performs well on
a variety of functions, with maximum absolute errors less than 7.7 × 10−4. Because the
computation time of each function is the same through the CORDIC algorithm, the sine and
cosine functions are used for the test computation time. The time of the single computation
of the sine and cosinefunctions for different CORDIC algorithms are compared in Table 7,
and it can be found that the RDP-CORDIC algorithm takes only 60 ns at a system clock of
100 MHz.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

70% latency and 40% other resource consumption. In terms of power consumption, the
proposed RDP-CORDIC algorithm facilitated an ultra-low power consumption of 28 mW.
A comprehensive comparison showed that the RDP-CORDIC algorithm illustrated some
advantages over other CORDIC algorithms in terms of latency, resource consumption and
power consumption.

Table 6. Performance comparison results of different CORDIC algorithms.

CORDIC Algorithm Number of Iterations LUTs + FF ROM Power (mW)
R-2 CORDIC [26] 17 2362 0 71
R-4 CORDIC [24] 9 1886 24 × 16 66
R-8 CORDIC [28] 7 1566 36 × 16 65

Mixed-R-scaling-freeCORDIC [29] 8 1771 12 × 16 53
BBR-CORDIC [34] 5 1643 102 × 16 82

CORDIC II [38] 7 1433 24 × 16 32
RDP-CORDIC [proposed] 5 1438 12 × 16 28

6.3. Test of Calculation Error and Calculation Time of Variousfunctions
Figure 9 shows the absolute error curves for the calculation of sine and cosine func-

tions, logarithmic function, sqrt function and hyperbolic sine and hyperbolic cosine func-
tions based on the RDP-CORDIC algorithm at 16-bit data width. The maximum magni-
tude error of the sine and cosine functions is clearly less than 3.04 × 10−5. The reason for
the different errors for each input angle is that the error is 0 only when the accumulated
value of the angle of directional rotation is equal to the input angle. However, the direc-
tion of rotation is not certain for different input angles, which results in the difference
between the totalized rotation value and the input angle value. For other functions, the
input test data is limited to a different range due to the characteristic limitations of the
CORDIC algorithm. As in Figure 9c–f, the input angles are limited to [0.2, 9.5], [0.03, 2],
[−1.12, 1.12] and [−1.12,1.12], respectively. The test results show that the RDP-CORDIC
algorithm performs well on a variety of functions, with maximum absolute errors less
than 7.7 × 10−4. Because the computation time of each function is the same through the
CORDIC algorithm, the sine and cosine functions are used for the test computation time.
The time of the single computation of the sine and cosinefunctions for different CORDIC
algorithms are compared in Table 7, and it can be found that the RDP-CORDIC algorithm
takes only 60 ns at a system clock of 100 MHz.

(a) (b)

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18

(c) (d)

(e) (f)

Figure 9. The various functions calculation error base on RDP-CORDIC algorithm: (a) Absolute er-
ror of sine signal value; (b) Absolute error of cosine signal value; (c) Absolute error of ln(x) value;
(d) Absolute error of sqrt value; (e) Absolute error of sinh value; (f) Absolute error of cosh value.

Table 7. Time consumed for the first calculation of the sine and cosine function.

CORDIC Algorithm Time (ns)
R-2 CORDIC [26] 190
R-4 CORDIC [24] 100
R-8 CORDIC [28] 80
BBR-CORDIC [34] 60

CORDIC II [38] 90
RDP-CORDIC [proposed] 60

Finally, the maximum absolute error of sine and cosine functions realized with each
algorithm under different bit widths was tested, and the test results are shown in Figure
10. The results show that the RDP-CORDIC algorithm maintains the optimal performance
in various bit width cases, and the error of the RDP-CORDIC algorithm is much lower
than that of the CORDIC II algorithm, with similar resource consumption to that of the
RDP-CORDIC algorithm. The reason why the RDP-CORDIC algorithm has higher accu-
racy compared with other algorithms is that the RDP-CORDIC algorithm calculates the
rotation direction by formula once before iteration, while other CORDIC algorithms need
to calculate the rotation direction each time, and multiple calculations may cause accuracy
degradation.

Figure 9. The various functions calculation error base on RDP-CORDIC algorithm: (a) Absolute error
of sine signal value; (b) Absolute error of cosine signal value; (c) Absolute error of ln(x) value; (d)
Absolute error of sqrt value; (e) Absolute error of sinh value; (f) Absolute error of cosh value.

Sensors 2022, 22, 7489 15 of 17

Table 7. Time consumed for the first calculation of the sine and cosine function.

CORDIC Algorithm Time (ns)

R-2 CORDIC [26] 190
R-4 CORDIC [24] 100
R-8 CORDIC [28] 80
BBR-CORDIC [34] 60

CORDIC II [38] 90
RDP-CORDIC [proposed] 60

Finally, the maximum absolute error of sine and cosine functions realized with each
algorithm under different bit widths was tested, and the test results are shown in Figure 10.
The results show that the RDP-CORDIC algorithm maintains the optimal performance
in various bit width cases, and the error of the RDP-CORDIC algorithm is much lower
than that of the CORDIC II algorithm, with similar resource consumption to that of the
RDP-CORDIC algorithm. The reason why the RDP-CORDIC algorithm has higher accuracy
compared with other algorithms is that the RDP-CORDIC algorithm calculates the rotation
direction by formula once before iteration, while other CORDIC algorithms need to calculate
the rotation direction each time, and multiple calculations may cause accuracy degradation.

 Figure 10. Maximum absolute error of sine and cosine signals calculated by various CORDIC
algorithms at different bit widths.

7. Conclusions

Edge computing devices used in smart grid cyber-physical systems require real-time
high-speed data processing capabilities with low power requirements. The CORDIC al-
gorithm is widely used as a high-speed real-time numerical computation algorithm in
hardware accelerator for edge computing devices. Limited by the excessive number of
iterations and resource consumption, conventional CORDIC algorithms are too large to
perform well in edge computing of smart grids. In this paper, a RDP-CORDIC algorithm
was proposed in attempt to predict all micro-rotation directions in the non-iterative case,
and then transform the conventional single-stage iteration structure into three-stage com-
bined iteration and multi-stage combined iteration structure. An accuracy compensation
algorithm for the direction prediction constants of the RDP-CORDIC algorithm was also

Sensors 2022, 22, 7489 16 of 17

proposed, which reduces the ROM consumption to 0.33% of the original at 16-bit accu-
racy. Finally, the hardware design of RDP-CORDIC algorithm was implemented on Xilinx
Kintex7 325T series FPGA platform, along with the calculation of sine function, cosine func-
tions, logarithmic function and other functions, accordingly. The test results showed that
the RDP-CORDIC algorithm was plainly superior to other CORDIC algorithms in terms
of latency, resource consumption and power consumption. The time and the maximum
absolute error of the sine and cosine functions computed by the RDP-CORDIC algorithm
also had some advantages over other CORDIC algorithms. It was experimentally confirmed
that the proposed RDP-CORDIC algorithm was able to reduce resource consumption and
increase the computational speed while maintaining the computational accuracy compared
to other improved CORDIC algorithms. In the edge computing for signal processing of
smart grid cyber-physical systems, the RDP-CORDIC algorithm exhibited its potential to
effectively improve the speed of real-time data processing and reduce the power consump-
tion of edge computing. The application of the RDP-CORDIC algorithm will be the focus
of our future work: to improve the speed of smart grid topology identification and line
loss rate calculation. Further efforts will be made with a particular focus on the signal
processing capability of edge computing devices in the smart grid cyber-physical system.

Author Contributions: Conceptualization, M.Q. and T.L.; methodology, T.L.; hardware, T.L.; valida-
tion, B.H. and Y.Y.; formal analysis, T.L.; investigation, M.Q.; resources, M.Q.; data curation, B.H.;
writing—original draft preparation, T.L.; writing—review and editing, T.L. and Y.Y.; visualization,
H.S. and Y.G.; supervision, M.Q. and Y.G.; project administration, M.Q.; funding acquisition, M.Q.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC),
(Grant No. 62261051). This research was also funded by the Sichuan Provincial Science and Technol-
ogy Department “Research on Key Technologies of Adaptive Communication in Complex Environ-
ment”, project number 2019YJ0309.

Acknowledgments: We thank H.W., Q.Z., F.K., Z.Z., Y.L., Z.C., W.Z. and C.G. for the completion of
this article. The correspondence author TL especially thanks RR for her support to him. We thank
the project “Research on Key Technologies of Adaptive Communication in Complex Environment”
(Project No. 2019YJ0309) of the Sichuan Provincial Science and Technology Department for its support
of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gilbert, G.M.; Naiman, S.; Kimaro, H.; Bagile, B. A Critical Review of Edge and Fog Computing for Smart Grid Applications. In

IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 763–775. [CrossRef]
2. Wang, Z.; Jiang, D.; Wang, F.; Lv, Z.; Nowak, R. A Polymorphic Heterogeneous Security Architecture for Edge-Enabled Smart

Grids. Sustain. Cities Soc. 2021, 67, 102661. [CrossRef]
3. Qin, M.; Gao, Y.; Hou, B.; Wang, H.; Zhou, W.; Yao, Y. Research on Efficient Channel Decoding Algorithm for Memory Channel

and Short Packet Transmission in Smart Grid. Front. Energy Res. 2022, 10, 1014. [CrossRef]
4. Song, C.; Xu, W.; Han, G.; Zeng, P.; Wang, Z.; Yu, S. A Cloud Edge Collaborative Intelligence Method of Insulator String Defect

Detection for Power IIoT. IEEE Internet Things J. 2021, 8, 7510–7520. [CrossRef]
5. Song, C.; Liu, S.; Han, G.; Zeng, P.; Yu, H.; Zheng, Q. Edge Intelligence Based Condition Monitoring of Beam Pumping Units

under Heavy Noise in the Industrial Internet of Things for Industry 4.0. IEEE Internet Things J. 2022, 1. [CrossRef]
6. Zhang, Y.; Liang, K.; Zhang, S.; He, Y. Applications of edge computing in PIoT. In Proceedings of the 2017 IEEE Conference on

Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–4.
7. Hussain, M.; Alam, M.S.; Beg, M.M. Fog assisted cloud models for smart grid architectures-comparison study and optimal

deployment. arXiv 2018, arXiv:1805.09254.
8. Pan, X.; Jiang, A.; Wang, H. Edge-Cloud Computing Application, Architecture, and Challenges in Ubiquitous Power Internet of

Things Demand Response. J. Renew. Sustain. Energy 2020, 12, 062702. [CrossRef]
9. Albayati, A.; Abdullah, N.F.; Abu-Samah, A.; Mutlag, A.H.; Nordin, R. A Serverless Advanced Metering Infrastructure Based on

Fog-Edge Computing for a Smart Grid: A Comparison Study for Energy Sector in Iraq. Energies 2020, 13, 5460. [CrossRef]
10. Kumar, S.; Agarwal, S.; Krishnamoorthy, A.; Vijayarajan, V.; & Kannadasan, R. Improving the response time in smart grid using

fog computing. In Proceedings of the 2nd International Conference on Data Engineering and Communication Technology, Pune,
India, 15–16 December 2017; Springer: Singapore, 2019; pp. 563–571.

http://doi.org/10.1007/978-3-030-18400-1_62
http://doi.org/10.1016/j.scs.2020.102661
http://doi.org/10.3389/fenrg.2022.949453
http://doi.org/10.1109/JIOT.2020.3039226
http://doi.org/10.1109/JIOT.2022.3141382
http://doi.org/10.1063/5.0014059
http://doi.org/10.3390/en13205460

Sensors 2022, 22, 7489 17 of 17

11. Lei, W.; Jiang, Y.; Wen, H.; Xu, A.; Ming, Z.; Hou, W.; Yin, Y. New Features of Automatic Meter Reading System: Based on
Edge Computing. In Proceedings of 2019 International Conference on Energy, Power, Environment and Computer Applica-
tion(ICEPECA 2019)., Wuhan, China, 20–21 January 2019; pp. 364–368.

12. Yu, D.; Ma, Z.; Wang, R. Efficient Smart Grid Load Balancing via Fog and Cloud Computing. Math. Probl. Eng. 2022, 2022,
3151249. [CrossRef]

13. Yang, K.; Jiang, L.; Low, S.; Liu, S. Privacy-Preserving Energy Scheduling for Smart Grid with Renewables. IEEE Access 2020, 8,
132320–132329. [CrossRef]

14. Diamantoulakis, P.D.; Bouzinis, P.S.; Sarigannidis, P.G.; Ding, Z.; Karagiannidis, G.K. Optimal Design and Orchestration of Mobile
Edge Computing with Energy Awareness. IEEE Trans. Sustain. Comput. 2022, 7, 456–470. [CrossRef]

15. Song, C.; Han, G.; Zeng, P. Cloud Computing Based Demand Response Management Using Deep Reinforcement Learning. IEEE
Trans. Cloud Comput. 2021, 10, 72–81. [CrossRef]

16. Zhu, Z.; Zhang, J.; Zhao, J.; Cao, J.; Zhao, D.; Jia, G.; Meng, Q. A Hardware and Software Task-Scheduling Framework Based on
CPU+FPGA Heterogeneous Architecture in Edge Computing. IEEE Access 2019, 7, 148975–148988. [CrossRef]

17. Amarasinghe, G.; de Assunção, M.D.; Harwood, A.; Karunasekera, S. A Data Stream Processing Optimisation Framework
for Edge Computing Applications. In Proceedings of the 2018 IEEE 21st International Symposium on Real-Time Distributed
Computing (ISORC), Singapore, 29–31 May 2018; pp. 91–98. [CrossRef]

18. Yunzhou, Z.; Mo, Z.; Haoqi, L.; Gang, Z. Innovative Architecture of Single Chip Edge Device Based on Virtualization Technology.
Pervasive Mob. Comput. 2019, 52, 100–112. [CrossRef]

19. Kumar, P.A. FPGA Implementation of the Trigonometric Functions Using the CORDIC Algorithm. In Proceedings of the 2019 5th
International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019;
pp. 894–900. [CrossRef]

20. Fu, W.; Xia, J.; Lin, X.; Liu, M.; Wang, M. Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx
and Coshx Based on Improved CORDIC Algorithm. Electronics 2021, 10, 2533. [CrossRef]

21. Mahdavi, H.; Timarchi, S. Area–Time–Power Efficient FFT Architectures Based on Binary-Signed-Digit CORDIC. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 66, 3874–3881. [CrossRef]

22. Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M. Efficient FPGA Implementation of Approximate Singular Value Decomposition based
on Shallow Neural Networks. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), Washington DC, USA, 6–9 June 2021; pp. 1–4. [CrossRef]

23. Nguyen, H.-T.; Nguyen, X.-T.; Pham, C.-K. A Low-Latency Parallel Pipeline CORDIC. IEICE Trans. Electron. 2017, E100.C, 391–398.
[CrossRef]

24. Villalba, J.; Zapata, E.L.; Antelo, E.; Bruguera, J.D. Radix-4 vectoring cordic algorithm and architectures. J. VLSI Signal Process.
Syst. Signal Image Video Technol. 1998, 19, 127–147. [CrossRef]

25. Antelo, E.; Bruguera, J.D.; Zapata, E.L. Unified Mixed Radix 2-4 Redundant CORDIC Processor. IEEE Trans. Comput. 1996, 45,
1068–1073. [CrossRef]

26. Bruguera, J.D.; Antelo, E.; Zapata, E.L. Design of a Pipelined Radix 4 CORDIC Processor. Parallel Comput. 1993, 19, 729–744.
[CrossRef]

27. Antelo, E.; Villalba, J.; Bruguera, J.D.; Zapata, E.L. High Performance Rotation Architectures Based on the Radix-4 CORDIC
Algorithm. IEEE Trans. Comput. 1997, 46, 855–870. [CrossRef]

28. Parmar, Y.; Sridharan, K. Precomputation-Based Radix-4 CORDIC for Approximate Rotations and Hough Transform. IET Circuits
Devices Syst. 2018, 12, 413–423. [CrossRef]

29. Tang, W.; Xu, F. A Noniterative Radix-8 CORDIC Algorithm with Low Latency and High Efficiency. Electronics 2020, 9, 1521.
[CrossRef]

30. Changela, A.; Zaveri, M.; Verma, D. Mixed-Radix, Virtually Scaling-Free CORDIC Algorithm Based Rotator for DSP Applications.
Integration 2021, 78, 70–83. [CrossRef]

31. Jaime, F.J.; Sanchez, M.A.; Hormigo, J.; Villalba, J.; Zapata, E.L. Enhanced Scaling-Free CORDIC. IEEE Trans. Circuits Syst. I Regul.
Pap. 2010, 57, 1654–1662. [CrossRef]

32. Moroz, L.; Taras, M.; Herasym, M. Improved scaling-free CORDIC algorithm. In Proceedings of the 2013 11th East-West Design
and Test Symposium (EWDTS), Rostov-on-Don, Russia, 27 September 2013; IEEE Computer Society: Washington, DC, USA, 2013.

33. Shukla, R.; Ray, K.C. Low Latency Hybrid CORDIC Algorithm. IEEE Trans. Comput. 2014, 63, 3066–3078. [CrossRef]
34. Yao, Y.; Feng, Z. BBR-Based Iteration-Free CORDIC Algorithm. J. Circuits Syst. Comput. 2018, 27, 1850076. [CrossRef]
35. Zhang, Y.Y.; Liu, J.R.; Wang, Z.Y.; Mo, J.J.; Yu, F.X. Implementation of direct digital frequency synthesizer based on three-step

rotation coordinate rotation digital computer algorithm. J. Zhejiang Univ. Eng. Sci. 2019, 53, 2034–2040.
36. Khurshid, B.; Khan, J.J. An Efficient Fixed-Point Multiplier Based on CORDIC Algorithm. J. Circuits Syst. Comput. 2020, 30,

2150080. [CrossRef]
37. Kumar, A.; Kumar, A.; Singh Tomar, G. Hardware Chip Performance of CORDIC Based OFDM Transceiver for Wireless

Communication. Comput. Syst. Sci. Eng. 2022, 40, 645–659. [CrossRef]
38. Garrido, M.; Kallstrom, P.; Kumm, M.; Gustafsson, O. CORDIC II: A New Improved CORDIC Algorithm. IEEE Trans. Circuits

Syst. II Express Briefs 2016, 63, 186–190. [CrossRef]

http://doi.org/10.1155/2022/3151249
http://doi.org/10.1109/ACCESS.2020.2983110
http://doi.org/10.1109/TSUSC.2021.3103476
http://doi.org/10.1109/TCC.2021.3117604
http://doi.org/10.1109/ACCESS.2019.2943179
http://doi.org/10.1109/ISORC.2018.00020
http://doi.org/10.1016/j.pmcj.2018.12.004
http://doi.org/10.1109/ICACCS.2019.8728315
http://doi.org/10.3390/electronics10202533
http://doi.org/10.1109/TCSI.2019.2922988
http://doi.org/10.1109/AICAS51828.2021.9458453
http://doi.org/10.1587/transele.E100.C.391
http://doi.org/10.1023/A:1008061701575
http://doi.org/10.1109/12.537131
http://doi.org/10.1016/0167-8191(93)90061-O
http://doi.org/10.1109/12.609275
http://doi.org/10.1049/iet-cds.2017.0492
http://doi.org/10.3390/electronics9091521
http://doi.org/10.1016/j.vlsi.2021.01.005
http://doi.org/10.1109/TCSI.2009.2037391
http://doi.org/10.1109/TC.2013.173
http://doi.org/10.1142/S0218126618500767
http://doi.org/10.1142/S0218126621500808
http://doi.org/10.32604/csse.2022.019449
http://doi.org/10.1109/TCSII.2015.2483422

	Introduction
	Related Work
	Conventional CORDIC Algorithm
	RDP-CORDIC Algorithm
	Rotation Direction Prediction
	ROM Resource Optimization
	Iterative Merging

	Hardware Design of RDP-CORDIC Algorithm
	RDP-CORDIC Algorithm Structure Design
	Calculation of Sine and Cosine Function Based on RDP-CORDIC Algorithm
	More Applications of the RDP-CORDIC Algorithm

	Performance Testing and Analysis
	ROM Optimization Results of the RDP-CORDIC Algorithm
	Performance Comparison of CORDIC Algorithms
	Test of Calculation Error and Calculation Time of Variousfunctions

	Conclusions
	References

