
Citation: Cruz, L.A.; Coelho da Silva,

T.L.; Magalhães, R.P.; Melo, W.C.D.;

Cordeiro, M.; de Macedo, J.A.F.;

Zeitouni, K. Modeling Trajectories

Obtained from External Sensors for

Location Prediction via NLP

Approaches. Sensors 2022, 22, 7475.

https://doi.org/10.3390/s22197475

Academic Editor: Aboelmagd

Noureldin

Received: 13 July 2022

Accepted: 13 September 2022

Published: 2 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Modeling Trajectories Obtained from External Sensors for
Location Prediction via NLP Approaches
Lívia Almada Cruz 1,* , Ticiana Linhares Coelho da Silva 1, Régis Pires Magalhães 1 ,
Wilken Charles Dantas Melo 1, Matheus Cordeiro 1 , José Antonio Fernandes de Macedo 1 and Karine Zeitouni 2

1 Insight Data Science Lab, Federal University of Ceará, 60440-900 Fortaleza, Brazil
2 Laboratoire DAVID, University of Versailles Saint-Quentin-en-Yvelines, 78035 Versailles, France
* Correspondence: livia@insightlab.ufc.br

Abstract: Representation learning seeks to extract useful and low-dimensional attributes from com-
plex and high-dimensional data. Natural language processing (NLP) was used to investigate the
representation learning models to extract words’ feature vectors using their sequential order in the
text via word embeddings and language models that maintain their semantic meaning. Inspired by
NLP, in this paper, we tackle the representation learning problem for trajectories, using NLP methods
to encode external sensors positioned in the road network and generate the features’ space to predict
the next vehicle movement. We evaluate the vector representations of on-road sensors and trajectories
using extrinsic and intrinsic strategies. Our results have shown the potential of natural language
models to describe the space of features on trajectory applications as the next location prediction.

Keywords: trajectory modeling; representation learning; sensors trajectory; trajectory embedding;
location prediction; trajectory prediction

1. Introduction

The extensive use of geolocation devices allows for the collection of a large volume
of data from the trajectories of moving objects. Many machine learning tasks can benefit
from this kind of data, such as real-time mobility events’ monitoring (e.g., detecting typical
traffic flows, predicting traffic jams, or predicting the next location in road networks).

The challenge of determining the next important location of a moving object based on
previous trajectories is known as location prediction (or trajectory prediction). Location
prediction has drawn the researchers’ interest in recent years due to its various practical
applications, including traffic management, police patrol, and tourism recommendation.
This paper tackles the problem of learning how trajectories are represented for location pre-
diction in the context of external, fixed, and sparse on-road sensors (e.g., traffic surveillance
cameras) to capture vehicles’ trajectories.

Representation learning is an essential concept in machine learning, transforming
input data into a useful format using a learning algorithm. Representation learning for
trajectory modeling is concerned with building statistical or machine learning models
of the observed trajectories of vehicles or people. Such models may have different uses:
computing the probability of observing a given trajectory for anomaly detection [1]; es-
timating the importance of different characteristics that drivers may consider relevant
when following a trajectory; recovering sparse or incomplete trajectories, such as those
observed from external sensors [2]; aiding drivers in choosing an optimal route from an
origin to a destination; the online prediction of the next location of a vehicle given its
current location, [3] which is the application studied in this paper.

We evaluate representation learning methods to generate the feature space and predict
the next vehicle movement, which will allow for the displacement of a vehicle among the
video surveillance cameras to be predicted. In contrast with most early research, we forecast

Sensors 2022, 22, 7475. https://doi.org/10.3390/s22197475 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2327-9692
https://orcid.org/0000-0001-6737-4750
https://orcid.org/0000-0001-5318-5158
https://orcid.org/0000-0002-5602-6942
https://doi.org/10.3390/s22197475
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197475?type=check_update&version=2

Sensors 2022, 22, 7475 2 of 18

the next movement of objects as external sensors on the road network record their positions.
It is possible to determine the trajectories of the moving objects as a sequence of sensor
positions, assuming that each sensor record contains sufficient information to uniquely
identify the associated moving object, such as identifying vehicles by their license plates.

In Natural Language Processing (NLP), many works [4–8] have proposed representa-
tion learning models based on neural networks to extract the features of words, or sentences,
from their sequential order of words, while maintaining their semantic meaning. We take
inspiration from NLP word representation methods that model the semantics of a word
and its similarity with other words, by observing the many contexts of the word’s use in
the language. Geometric distances between word vectors reflect semantic similarities and
difference vectors encode semantic and syntactic relations [9].

Thus, we aim to investigate the following research questions:

• RQ1: Could NLP embedding models, more specifically, language models and word
embeddings, be used to represent the vector space of trajectories in location prediction
tasks using recurrent architectures?

• RQ2: Are the representations of sensors/locations from representation models in NLP
able to capture their context, i.e., the closest sensors/locations, both in terms of road
distance and connectivity?

• RQ3: Could trajectory representations from NLP embedding models adequately
capture trajectories’ similarities?

State-of-the-art papers include the adoption of neural embeddings for model loca-
tions, points of interest (PoIs) [10–12] or to learn the temporal interactions between users
and items [13]. The papers [14–16] also focus on the next location prediction task from
trajectories obtained by external sensors and assume that a road network constrains ob-
ject movements. Their trajectories report predefined positions (i.e., sensors’ location) on
the road network, which makes trajectories much more sparse than the usual GPS raw
trajectories. Thus, the location prediction is different from (i) the papers that consider
GPS trajectories, which occur in continuous locations [3,17], and (ii) the next stop location
prediction, which is usually applied to points of interest or event places as [18–21], since the
prediction involves movement rather than stops. In addition, none of the previous works
investigated whether the embedding encoders leverage the location prediction models or
how the embedding space represents the spatial relationships between the sensors and the
trajectory’s similarities.

The rest of this article is structured as follows. Section 2 explains the main concepts
needed to understand this paper. Section 3 introduces the related work. Section 4 discusses
the data, the NLP methods for obtaining embedding vectors, and the next location pre-
diction architecture we used to achieve our goals. Section 5 presents and discusses the
experimental evaluation. Section 6 concludes this work and suggests future developments.

2. Preliminaries

The Public Security Secretariat and Social Defense (SSPDS, acronym in Brazilian
Portuguese) of the state of Ceará, in Brazil, has developed the Approach Police System
(SPIA, acronym in Brazilian Portuguese) to deal with the mobility of criminals. SPIA uses
the video surveillance system and teams of police actions, especially motorcycle patrol.
SPIA processes the data obtained by cameras equipped with a license plate recognition
(LPR) system in real-time. SPIA checks whether each captured vehicle plate is related to a
declared theft. If so, it informs the Integrated Police Operation Center (CIOPS, acronym
in Brazilian Portuguese), where a vehicular approach police action is executed. Next,
CIOPS operators plann how to approach the stolen vehicle through a visual examination
of the video-monitoring cameras scattered around the city. Implemented in 2017, SPIA
has led to a 48% reduction in vehicle theft actions in the state of Ceará. Figure 1 depicts
a map of Fortaleza and its metropole region, with the surveillance cameras (red points)
used by SPIA in 2019 plotted on that map. Despite the efficiency of SPIA, one of the
most complex activities is predicting the trajectory of vehicle movement. At present, this

Sensors 2022, 22, 7475 3 of 18

is carried out manually, with several police agents simultaneously checking the video
monitoring cameras. The modus operandi also requires the availability of several police
vehicles scattered throughout the city, which must be dedicated to the service in question.
Consequently, this current mode of operation is costly and subject to errors.

Figure 1. Map of Fortaleza city with external sensors (surveillance cameras) positioned on the road
network in 2019.

This paper considers the context in which trajectories are obtained from external
sensors placed at fixed positions on roadsides, such as the ones collected by the SPIA. The
moving objects have a unique identifier, for example, a vehicle’s license plate. The external
sensors on the road network register the passage of moving objects.

Sensors may fail to capture the license plate and then produce incomplete trajectories
with missing observations [14,15]. Furthermore, sensors are spatially sparse and not equally
distributed, producing sparse trajectories. Figure 2 presents the histogram of road distances
from one sensor to the nearest sensor (Figure 2a) and the third nearest sensor (Figure 2b)
of our dataset. On average, the sensors are 440 m apart from their nearest neighbor. The
nearest sensor is at least 600 m away from more than 25% of the sensors. Analyzing the
distances between the third closest sensors, more than 40% of all sensors have their top
three closest sensors located more than one kilometer away.

0 1000 2000 3000 4000
distance (meters)

0

50

100

150

200

nu
m

be
r o

f s
en

so
rs

Histogram of Sensor Distances (1-NN)

(a)

0 2000 4000 6000 8000
distance (meters)

0

25

50

75

100

125

150

175

200

nu
m

be
r o

f s
en

so
rs

Histogram of Sensor Distances (3-NN)

(b)

Figure 2. Histograms of road distances to nearest sensors on the road network. (a) Distances to the
1st nearest sensor. (b) Distances to the 3rd nearest sensor.

Sensors 2022, 22, 7475 4 of 18

We present some definitions to support our problem statement in the same way as in
our previous work [14,16].

Definition 1 (Trajectory). A trajectory is a function F(t), that returns the location of a moving
entity (e) at a given time t. In other words, it is a finite set of chronologically sequenced points
t1 −→ t2 −→ · · · −→ tn. F(t) = (x, y), where (x, y) is the spatial information, latitude and
longitude, where the object was at time t.

Definition 2 (External Sensor Observation). When the sensor registers a vehicle’s passage, it
produces the tuple o = (m, s, t) where m is the identifier of the moving object, s is the sensor
identifier, and t is a timestamp.

Definition 3 (External Sensor Trajectory). Let O be the set of observations generated by a set
of sensors S. Let Om ⊂ O be the set of observations related to the moving object m. We define
an External Sensor Trajectory (EST) of a moving object as the sequence of observations o1 =
(m, s1, t1) −→ o2 = (m, s2, t2) −→ · · · −→ oj = (m, sj, tj), such that ∀i, 1 ≤ i ≤ j, oi ∈ Om
and ti < ti+1.

Now, we can define the problem that this paper tackles.

Definition 4 (EST Prediction). Let G be the street network, S be the set of external sensors
implanted on G, O be the set of historical observations produced by S, and TEST be the set of historical
trajectories derived from O. Given the latest n observations of a driver m, oi = (m, si, ti) −→
oi+1 = (m, si+1, ti+1) −→ · · · −→ oi+n−1 = (m, si+n−1, ti+n−1), the problem consists of
predicting the next sensor, si+n, that is to be visited by m.

In general terms, the problem is predicting the next sensor from a given partial
trajectory. The research questions presented in the last section that guides this work
focus on investigating the natural language models to represent the trajectory sensors and
exploring whether the prediction model improves.

We can observe a substantial similarity between natural language and EST. First,
natural language and EST can be approximated by context. Given the context, we can
predict the next word in the natural language.

Likewise, a road network constraints the movement of drivers, so their observation
only occurs at fixed (predefined) positions (i.e., sensors’ location) on the road network.
Thus, given a sequence of external sensors crossed by a driver, we can predict the next
sensor on the driver’s trajectory.

Both domains can be viewed as time-dependent series. Regardless of the language, the
dictionary can provide multiple choices that could succeed a word in a sentence. Likewise,
there are various choices of paths in the driver’s trajectory; therefore, there are multiple
possibilities for external sensors’ observation.

To motivate the use of natural language models in the representation learning of
trajectory sensors, we verify that the frequency of trajectory sensors approximately follows
a Zipf Law. The Zipf Law controls the word frequency distribution in natural language [22].
In [10], the authors observed the same Zipf’s Law behavior on human mobility habits and
used this analogy to apply natural language models to learning representation for living
habits. Figure 3 (observed in the dataset utilized in our experiments) shows the distribution
of sensor observations, which roughly follow Zipf’s Law, as expected. In the plot, axis y is
the frequency with which each sensor appears in trajectories; axis x is the frequency rank,
where rank k is the kth most frequent sensor.

Sensors 2022, 22, 7475 5 of 18

100 101 102

rank (log)

100

101

102

fre
qu

en
cy

 (l
og

)

Rank vs Frequency of sensors (log-log scale)

Figure 3. Statistics of sensor observations satisfy Zipf’s Law.

3. Related Works

In what follows, we split the related works into two categories: representation learning,
i.e., models that learn how to extract useful information from data that help to build classi-
fiers or other predictors. We focus on works that use NLP applications of representation,
learning to deal with trajectory data. The second category is papers that tackle the problem
of location prediction.

3.1. Representation Learning for Mobility Data

Representation learning refers to the machine learning methods that seek to transform
complex, high-dimensional (and often redundant) representations into an effective and
low-dimensional representation while preserving the information embedded in the raw
data [23].

Several works have proposed representation learning for different applications as
a modeling of the sequential interactions between users and items/products for social
networks or e-commerce, where each user/item can be embedded in a Euclidean space,
and its evolution can be modeled with an embedding trajectory in this space. JODIE [13]
learns the temporal iterations between users and items via embeddings, through a coupled
recurrent neural network, where the item embeddings are based on learning a future user
embedding projection.

Habit2vec [10] models a person’s habit as a vector that upgrades the word2vec model
according to the particular characteristics of trajectories. The paper aims to find the sim-
ilarities between living patterns that engage in similar behavior at similar times instead
of staying in geographically neighboring locations. Habit2vec trains the trajectories into a
three-layer neural network model, Continuous Bag-of-Words (CBOW), to learn the embed-
ding vectors of habits. After modeling the living habit into an embedding in a single space,
the authors use classical clustering methods, such as K-Means and density-based methods,
to cluster similar living habits.

In [24], the author proposes a time-aware trajectory embedding model in next-location
recommendation systems to deal with sequential information and data sparsity problems.
The user’s preference should reflect the evolving characteristics of user interests. The
work [25] presents a sequence-to-sequence model to learning trajectory representations
and compute the similarities between trajectories. The approach generates low sampling
trajectories from high sampling trajectories without changing the underlying route. During
training, the encoder embeds the low sampling trajectory in a vector representation, and the
decoder tries to recover the original trajectory using the embedded vector. To incorporate

Sensors 2022, 22, 7475 6 of 18

spatial proximity in the model, a spatial proximity loss function was proposed that penalizes
the error as much as the distance between spatial cells.

Mob2Vec [12] is a framework for learning representations of human mobility using
trajectories obtained from Call Details Records (CDR). Mob2Vec uses Sqn2Vec [26], an
unsupervised approach based on Paragraph Vector (PV) [27]. Mob2Vec firstly summarizes
trajectories, removing irrelevant and noisy locations. Then, Mob2Vec obtains the vector rep-
resentations of trajectories using Sqn2Vec. Finally, this aggregates the vectors of trajectories
from the same user to obtain a unique representation.

TraceBERT [11] addresses the problem of location-based trajectory modeling. Trace-
BERT infers the lack of spatial observations of moving objects based on the previously
visited locations along the trajectory. The proposed solution models each location as a
word in the Bidirectional Encoder Representations from Transformers (BERT) model [28].
The BERT model works by masking certain words over the text, and tries to predict them
based on the context provided by the unmasked words. As in this work, TraceBERT trains
the BERT model on trajectories rather than text, masking the locations along the path and
using the BERT model to infer the missing locations. Unlike TraceBERT, this work applies
the NLP models to obtain the pre-trained embedding of sensors in order to incorporate
them into a location prediction model. We evaluate how the embedding representation
impacts the performance of predictors, both with and without fine-tuning. Additionally,
we investigate how the learned representation can capture the spatial and connectivity
relationships between sensors and trajectory similarities.

3.2. Prediction Models for Location Prediction

Location prediction uses the historical tracking of users to learn mobility patterns and
predict a user’s future location given its most recent previous partial trajectory. Several
researchers have studied this problem due to its usability on many location-based services,
such as traffic control, route planning, and recommendation, to name a few.

MyWay [29] predicts human movements based on a single user’s behavior, a global
model based on all user behaviors, and a hybrid approach. Personal mobility profiles
capture user routines, and is applied to define routines as the representative trajectories
of each cluster. An individual profile is a set of one user’s routines, and a global profile is
a set of all individual profiles. For the predictions, they match the current trajectory with
the profiles. TPRED [17] predicts the next stop of a moving object using a prefix tree, in
which the nodes represent the object’s permanence in a specific location within a temporal
partition , and the edges represent the observations of movements between nodes.

SERM [19] is a model based on RNN that learns from check-in tweets data to predict
the next location. SERM uses trajectory data (user, location, time) and semantic features
(keywords). For the location feature, SERM performs the discretization of the geographic
space of cities into a grid of cells. The temporal feature is divided into time slots, and
the semantic information of the trajectory is recovered from the hashtags of tweet check-
ins posted by users at the locations. DeepMove [3] is a location prediction framework
in the next time window. It contains a recurrent module that seeks to capture complex
dependencies in the most recent trajectory and a historical attention module to capture
the regularity and periodicity of movement in long historical records. The paper [30]
proposes a group-based approach to predict the next stop of a single user. The trajectories
were obtained from the movements of a group of travelers in the indoor environment.
Profile information (such as gender and age) is used to classify people into groups. The
method mines sequential rules from significant sequential patterns and then estimates the
probability of visiting a location based on the recent movement of the user and his group.

A model to predict user movement in the next few minutes or hours based on a long-
term spatiotemporal memory (LSTM) is presented in [31]. The LSTM models the context of
the visit by identifying areas of interest (AOI), which represent relevant areas of geographic
space, such as commercial areas and shopping centers. The proposed architecture modifies
the internal operations of the LSTM by adding spatiotemporal factors to the network gates.

Sensors 2022, 22, 7475 7 of 18

TTDM [32] explores a set of historical trajectories to build a weighted graph in which
the locations are the nodes, and the transitions between locations are the edges. TTDM
predicts the next location based on the shortest travel time between candidate locations
and integrates the strategy based on travel time with the Markov Model presented by [33]
through linear interpolation.

The paper [15] defines EST Prediction problem and shows an in-depth study of the
challenges of analyzing trajectories derived from external sensors, such as the problem
of incompleteness and data scarcity. The general goal of [15] is to predict the next sensor
from the trajectories that pass by sensors located on the road network. The [15] approach
is RNN-based. To deal with the problems of incompleteness and scarcity, different data
imputation methods are used and compared. The paper [14] presents a multitask neural
network model based on space and time to tackle the same problem addressed by [15]. Next-
location prediction in an external sensor network is also addressed in [34], which introduces
a deep learning model for the historical trajectories obtained by traffic surveillance devices,
deployed along with a city’s street network. The model incorporates semantic features,
such as climatic and traffic flow information.

Location prediction from external sensors has to deal with trajectory data that are
more sparse than the usual GPS raw trajectories with continuous locations [3,17,29]. As
in the next stop prediction [18–21], sensors’ locations are discrete. However, additional
information (such as user profile, user id, or semantic tags of the POIs) on those used
by [19,30] are not available for our task.

In contrast to the previous works, we examine how sensor representations leverage the
EST prediction task for a recurrent network model. We also show how the representation
derived for sensors and trajectories performs in terms of trajectory similarity, as well as the
distance and connectivity of sensors in the road network.

4. Data and Methods

This section explains the methodology used in this work to investigate the use of
representation learning architectures for NLP on external sensors’ trajectories.

Firstly, we represented the trajectories as sequences of sensor labels. Since we want
to evaluate these methods’ potential to capture the spatial representation, we discarded
the temporal feature. We labelled each sensor using a geocode hash function applied to
its geolocation.

Then, we trained a text representation learning model to learn a representation of the
labels’ sensors. Mapping these to the text representation, we considered one sensor label as
one word, a trajectory as a text, and the set of trajectories as the corpus of documents. The
output of this step is a set of embedding vectors, with each one representing a sensor label.

We hypothesized that the vector embedding captured a relationship between sensors,
such as spatial proximity or frequent use together. We experimented with the embedding
vectors using different embedding models from NLP, such as Word2Vec [4] and BERT [28].

4.1. Data Preparation

We used the same dataset and pre-processing steps as in our previous work [16]. The
trajectory data came from a real traffic monitoring application, which had 489 sensors
monitoring vehicles at Fortaleza city in Ceará, Brazil. The dataset contained 2990 stolen
vehicles and 22,530 sensor observations collected from January 2019 to June 2019. Each
record included the vehicle license plate, timestamp, latitude, longitude, and speed. We
used the sensor’s location to infer its identification.

We segmented the trajectories in order to identify trips. Firstly, the trajectories were
segmented by day, where the points from the same vehicle on the same day comprised
one trajectory. Using the results of this segmentation, we computed the average time and
standard deviation of the time that elapsed between successive observations. Then, when
the displacement time between two consecutive sensors was longer than the average time

Sensors 2022, 22, 7475 8 of 18

plus two standard deviations, we applied another segmentation in the daily trajectories.
Finally, we only maintained trajectories bigger than two records in the dataset.

We assumed that drivers generally prefer the shortest path between two locations [15].
Therefore, we completed the transitions between two consecutive sensors according to the
shortest path. In other words, if sensor sj appears after sensor si in a trajectory, we assumed
that all sensors on the shortest path from si to sj were missing sensors; thus, we completed
the trajectory considering these sensors.

Like in [11,16], we kept only the representative locations and discarded the sensors
that occurred at less than the 25th percentile of frequency (18 observations) which may not
be significant for global patterns. After applying this filter, the total number of sensors was
369. Figure 4 shows a histogram of the number of observations for each sensor in the final
data, which depicts the unbalance between sensors’ frequencies. Finally, we evaluated the
models using the holdout 80–20 approach, where we randomly chose 80% of trajectories
for training and 20% for the test.

50 100 150 200 250 300
frequency

0

25

50

75

100

125

150

175

nu
m

be
r o

f s
en

so
rs

Histogram of Sensor Observations

Figure 4. Histogram of the number of observations by each sensor.

4.2. Embedding Models

Here, we briefly explain the NLP methods that were applied to generate the em-
beddings. In this work, the pre-trained embeddings are used to represent sensors in the
location prediction task.

Word2Vec is a representation learning framework for words based on feedforward
neural networks. Word2Vec presents two main architectures: the Continuous Bag-of-
Words (CBOW) Model and the Continuous Skip-gram Model. In both architectures,
word vectors are trained based on a slide window of n-grams on the corpus, such as
(wi−t, wi−t−1, . . . wi . . . wi+t, wi+t+1). The CBOW predicts the current word wi based on the
window context (wi−t, wi−t−1, wi+t, wi+t+1). The Skip-gram predicts surrounding words
(wi−t, wi−t−1, wi+t, wi+t+1) given the current word wi. The main drawback of Word2Vec is
that it is trained on a separate local context window instead of a global context.

The transformers architecture [35] introduced the self-attention mechanism, a sequence
model that is able to create an embedding space of words that provides token representa-
tions based on the representation of the more relevant tokens in the sequence. BERT [28]
is a multi-layer transformer encoder. that was proposed to mitigate the unidirectionality
constraint of its previous language models. Unidirectionality implies that the model can
only access the previous tokens in the self-attention Transformer layers. Contrary to unidi-
rectionality, BERT creates an embedding space of words, considering both the left and right
contexts.

The pre-trained word representations of BERT can be obtained using two different
tasks, a masked language model (MLM), or a next sentence prediction. The MLM model
randomly masks a percentage of the input tokens in the sequence. During training, the
goal is to predict the masked tokens on the sequence based on their left and right contexts.

Sensors 2022, 22, 7475 9 of 18

This step results in the pre-trained representations for the tokens in a specific vocabulary.
Word2Vec and BERT MLM are the solutions that were investigated in our experiments to
learning sensor representations.

4.3. EST Prediction Model

Recurrent Neural Networks (RNN) [36] compose a class of neural networks that work
on sequences of arbitrary lengths. Sequential data, such as trajectories, has a particular
characteristic, where the order in which the instances appear in the sequence matters.
Unlike Multilayer Perceptron (MLP), neural networks. which process each data input
independently of the previous piece, RNNs can remember previous information in the
sequence and update the network weights considering this past information. A Long
Short-Term Memory Network (LSTM) [37] is an RNN tat is designed to overcome the
vanishing and exploding gradient problem in vanilla RNN. An LSTM comprises several
memory cells, with each one defining a hidden layer. A memory cell has a recurrent edge
with a value associated with it, called a cell state.

The EST prediction model investigated, which was also based on the previous pa-
pers [14–16] is a recurrent based model. The first layer (1) is an Embedding Layer, which
applies a linear transformation on the high-dimensional input vectors to reduce their di-
mensionality while trying to preserve the similarity between instances from the original
space of features in the new feature space. The original representation of the input in our
problem is the one-hot encoding representation, in which the dimensionality of the vectors
is the number of existent sensors. A one-hot encoding represents categorical values as
binary vectors, where all values are zero except the index of the categorical input, which is
marked as one. The parameters of the embedding layer can be trained (or tuned) while
training the other parameters in the neural network for the following location prediction or
can be pre-trained using a representation learning model. The output of the embedding
layer is sent to (2) a LSTM Layer, which is able to learn the moving patterns from the sensor
sequence. In sequence, we have (3) a Dropout Layer, to help to prevent overfitting problems
by randomly hiding some input units at each iteration of the training phase. Moreover,
(4) an Output Layer is a fully connected layer. The activation function of the output layer
is the Softmax. The Softmax function converts the output into a vector that indicates the
probability of each sensor being the target. Figure 5 shows the EST prediction architecture
that was utilized in our experiments.

Pr
e-

pr
oc

es
si

ng

Historical

Trajectories

Recurrent Model

Em
be

dd
in

g
La

ye
r

[s1,...,sk]

O
ut

pu
t L

ay
er

(S

of
tm

ax
)

Sk+1

tanh

LS
TM

 L
ay

er

.

Sequence of

sensors one-hot vectors

.

.

tanh tanh

D
ro

po
ut

 L
ay

er

Figure 5. LSTM EST prediction architecture.

Our EST prediction model received fixed-length sub-trajectories corresponding to the
last w sensors that were observed. Thus, we used the sliding window strategy in the
training step to convert the trajectories into fixed-length sensor sequences. In the sliding
window (Figure 6), we scanned the entire trajectory by moving a window one position
forward at each iteration. We began the window with the first sensor observation and
retrieved the w = 5 sensors in the window as features (o1, o2, o3, o4, o5) and the first sensor
outside the window, o6, as the target. Iteratively, we moved the window and repeated the
process until we found the last position in the trajectory.

Sensors 2022, 22, 7475 10 of 18

o4 o5 o6 o7 o8 o9o1 o2 o3

o4 o5 o6 o7 o8 o9o1 o2 o3

o4 o5 o6 o7 o8 o9o1 o2 o3

o4 o5 o6 o7 o8 o9o1 o2 o3

o1

o1 o2

o1 o2 o7 o8

o7

Window 1

Window 2

Window 3

Window 4

Input

Target

Figure 6. Sliding window approach.

5. Experimental Evaluation

From here, we conducted our research by splitting it into three sets of experiments:
(i) Analysis of Location Prediction—investigate whether NLP models have the potential
to model the vectorial space of features for location prediction; (ii) Analysis of Sensor
Embeddings—investigate whether sensor embeddings obtained from NLP models can
capture the relationship between sensor locations; (iii) Analysis of Trajectory Embeddings—
investigate whether the trajectory embeddings obtained from NLP models can capture the
behavior of the whole trajectory.

5.1. Analysis of Location Prediction

In this section, we conducted experiments to examine the research question RQ1:
Could NLP embedding models, more specifically, language models and word embeddings,
be used to represent the vector space of trajectories in location prediction tasks using
recurrent architectures?

To extract the embedding representation of sensors, we evaluated both BERT MLM
and Word2Vec. The embedding of words from NLP models was used as the embedding
layer on top of the LSTM-based model (as shown in Figure 5) to predict the next location.
The LSTM-based model was evaluated with and without fine-tuning on the embedding
layer. The fine-tuning adjusts the weights of the embedding layer on the training step for
one specific task (location prediction in our case). We also evaluated the pure LSTM model
as a baseline, i.e., LSTM with an embedding layer that was trained from zero.

In BERT MLM, part of the trajectory sensors is masked, and the model is trained to
predict the masked sensors considering the unmasked ones.

We propose applying a simple data augmentation strategy that works with a masked
model. We replicated the training dataset a number of n_replication times. As in [28],
we randomly chose the masked 15% of sensors on each replicated sample. In the case of
Word2Vec, we applied CBOW architecture. The variation in hyper-parameters of BERT
MLM and Word2Vec are shown in Table 1.

For the Word2Vec model, we varied the parameters (Table 1) and trained one EST
prediction model using the embeddings obtained by each parameter configuration of
Word2Vec. We reported the result for the configuration that acheived the best accuracy in
the EST prediction model. For BERT MLM, we masked the last sensor in the validation
data and collected the accuracy for each BERT MLM configuration. We trained an LSTM
using the configuration that reported the best BERT MLM accuracy.

Sensors 2022, 22, 7475 11 of 18

Table 1. Word2Vec and BERT MLM Parameters.

Word2Vec BERT MLM

embedding size = [16, 32, 64, 128] embedding size = [16, 32, 64, 128]
n-grams = [4, 6, 8, 10] sequence size = [32, 64]

intermediate sizes = [64]
hidden dims = [64, 128, 256]

num hidden layers, num attention heads = [8]

Using the pre-trained embeddings, we trained LSTM models to predict the next sensor
given the previous m (we varied m according to the set [5, 7, 15, 31]; when m = 5, the model
outperforms others) observed sensors on the same trajectory. The models were evaluated
using ACC@N and closeness_error metrics. The ACC@N measures the percentage of
instances where the correct prediction was among the N most probable outputs according
to the estimation given by the model, using the softmax activation. The closeness_error is
the road network distance between the predicted sensor and the expected one.

Models. Concerning the models in our work, we considered the following configu-
rations: (i) LSTM, where the embedding layer was trained from scratch on the prediction
task; (ii) LBERT, where the LSTM usined the pre-trained embeddings of BERT MLM as
an embedding layer; (iii) LBERT-FT, where the pre-trained BERT embedding layer was
fine-tuned under the next sensor prediction task; (iv) LW2V, where the LSTM used the
pre-trained embeddings of Word2Vec as an embedding layer; (v) LW2V-FT, where the
pre-trained Word2Vec embedding layer was fine-tuned under the next sensor prediction
task. Furthermore, we only report the results of the better parameter configurations.

Table 2 presents the results for the best model configuration for each strategy. The best
accuracy for each different window size was reported in Appendix A. The LSTM predictor
with the fine-tuned BERT embedding layer achieves the best result. The fine-tuning of the
BERT-embedding layer improved the accuracy ACC@1 by up to 7%; the same behavior
was found for ACC@2 and ACC@3. We believe that BERT better represents the feature
space of sensors for trajectories because it learns representations by adjusting the weight of
the context. In addition, the positional encoder of BERT captures sequential connexions
from the road network. The masked language model of BERT also simulates and learns
under the situation of missing data, where the sensor does not capture the passage of
a moving object. The LSTM predictor using Word2Vec embedding reached the lowest
accuracy, 52.14%, followed by its fine-tuned version. The fine-tuning of the Word2Vec
embedding layer did not significantly improve the predictor. One possible reason is that
Word2Vec models do not learn sequential patterns, but only the surrounding context. The
baseline LSTM achieves 66% of accuracy, these results are consistent with the ones obtained
by [16].

Table 2. Accuracy of prediction models.

ACC@1 ACC@2 ACC@3

LSTM 64.10 74.96 80.32
LBERT 66.84 79.70 85.05

LBERT-FT 73.71 85.35 90.01
LW2V 52.14 63.09 72.38

LW2V-FT 53.33 66.90 72.14

Table 3 reports the mean and percentiles of the closeness error obtained by the models.
The median and lower percentiles were omitted since, for all models, their values were zero.
The mean closeness error of LBERT-FT was the best one, with a value of 0.79 km, followed
by LBERT with 0.97 km and LSTM with 1 km. LW2V and LW2V-FT found the worst results,
in this order. LBERT-FT obtained 80% of all predictions with errors under 1.3 km. LBERT
reached a 70% lower of closeness error than 0.5 km and an 80% lower closeness than 1.6 km.

Sensors 2022, 22, 7475 12 of 18

We can conclude that BERT representation not only helped to increase the accuracy, but
also increased the proximity between predicted and expected sensors when the predictor
failed. However, with fine-tuning for location prediction tasks, BERT representations could
achieve better results.

Table 3. Mean and percentiles of the closeness error for predictions (in km).

Mean 60 70 80 90

LSTM 1.0 0.0 0.85 1.99 3.49
LBERT 0.97 0.0 0.56 1.67 2.78

LBERT-FT 0.79 0.0 0.0 1.36 2.78
LW2V 1.44 0.73 1.4 2.44 4.09

LW2V-FT 1.36 0.65 1.31 2.46 4.09

5.2. Analysis of Sensor Embeddings

These experiments are guided by the research question RQ2: Are the representations
of sensors/locations from representation models in NLP that can capture their context, i.e.,
the closest sensors/locations, in terms of both road distance and connectivity?

Our goal is to evaluate if the spatial relationship impacts the degree of similarity of the
sensor embeddings. We evaluate the relationship between spatial and embedding distances
and investigate how similar embeddings reflect the spatial proximity or connectivity in the
road network. To achieve this goal, we used BERT MLM, which leverages the best next-
location predictor from the experiments, as explained in the previous section (Section 5.1).
BERT MLM was used to generate the embedding space of the sensors. Figure 7 exemplifies
the embedding vectors of sensors in a space. The points (in red) are sensors, and the
markers (in black) connected by a line represent a pair of nearest sensors according to the
cosine distance between their embedding vectors.

Although the nearest embedding sensors vectors from BERT MLM are not directly
the closest in space, we can see, in Figure 7, that they are seen on the roads with some
connectivity and also in their spatial neighborhood. This suggests that BERT MLM could
capture some spatial relationship between sensors.

Figure 7. Example of nearest sensors according cosine distance between BERT MLM embedding
vectors.

To better understand the impact of spatial proximity on embedding similarity, we ana-
lyze the Mean Reciprocal Rank (MRR) of sensors concerning these metrics. In Information
Retrieval, the Reciprocal Rank (RR) calculates the rank at which the first relevant document
was retrieved. If the relevant document was retrieved at rank r, then RR is 1/r [38]. We
adapt the definition of RR measure for our particular goal (Definitions 5 and 6).

Definition 5 (Reciprocal Rank). Given a reference distance dre f , a query distance dquery, a query
object o and a set of objects O, the reciprocal rank of o with respect to the reference distance dre f and
the query distance dquery for the set O is 1/r, if the closest object to o, o∗ ∈ O according by dre f is
at rank r according by dquery.

Sensors 2022, 22, 7475 13 of 18

In these experiments, the reference distance dre f was set to be a spatial distance
(Euclidean and road distances), while the query distance dquery was the cosine distance
between embedding vectors.

Definition 6 (Mean Reciprocal Rank). The Mean Reciprocal Rank (MRR) is the average RR
across a set of query objects.

First, we collected the MRR using the Euclidean distance as dre f , and Cosine distance
as dquery. In that case, the MRR was 0.20, which means the nearest sensor according to
Euclidean distance is around the 5th most similar on the embedding space, on average.
Using the Road Network distance as dre f and cosine distance as dquery, MRR was 0.17, so
the nearest sensor in the road network is, on average, around the 6th most similar on the
embedding space. We believe that, on average, being in the top five or six is acceptable, as
we are learning a new space (embeddings) that can represent the sensors, which is not a
trivial task.

We also evaluated the variation in MRR for sensors inside a neighborhood using the
following methodology. We calculate the RR for each sensor considering a spatial distance
(both the Euclidean and the Road Network distances) as the reference distance and the
cosine distance between the embedding vectors as the query distance. The set of sensors to
be ranked (O) were filtered, leaving only the ones that were spatially close to the sensor
considered as the query object, i.e., the ones that fell inside the distance range. We varied
the range distance and collected the MRR according to the filtered sensors.

Figure 8 presents the result of this analysis for both Euclidean and road network
distances. One can observe that, among pairs of sensors with a distance of around 1.5 km,
the MRR is about 0.35, which means that the closest sensor in space was found at rank 2
or 3; when the filter of maximal distance increases, the MRR decreases. Even when the
maximal distance is around 4 km for Euclidean space, the MRR is more significant than
0.25, and for the road distance of approximately 4 km, the MRR is 0.20. In other words,
the rank given by the embeddings of the closest sensor is around 4 and 5 for euclidean
and road distances, respectively. The embedding representation reached a rank that was
slightly similar to the spatial rank for the set of sensors that are not as spatially distant. We
argue that an efficient model of sensor representation does not necessarily reflect only the
spatial proximity, but may also reflect the connectivity in terms of road connectivity and
frequent paths. Overall, we note from the previous research question that BERT sensor
embeddings achieved better results for the next location prediction task. Furthermore, the
BERT embeddings tend to reflect more spatial similarity when considering the sensor’s
neighborhood as limited to a distance.

2,000 4,000 6,000 8,000 10,000
distance (meters)

0.2

0.3

0.4

0.5

m
rr

Mean Reciprocal Ranking vs Range Distance
Road Distance
Euclidean Euclidean

Figure 8. Mean reciprocal rank of embeddings among sensors inside a neighborhood in space.

Sensors 2022, 22, 7475 14 of 18

5.3. Analysis of Trajectory Embeddings

In this section, we investigated the research question RQ3: Could trajectory repre-
sentations from NLP embedding models adequately capture trajectories’ similarity? This
was conducted by evaluating the similarity between trajectory embeddings regarding the
similarity between raw trajectories.

We defined trajectory embedding as the average vector of the embedding of the
sensors comprising the trajectory. As in Section 5.2, we used BERT MLM to generate
the embedding representation of sensors. Figure 9 exemplifies different pairs of the most
similar trajectories in the test set according to the cosine distance of their embedding vectors.
Consider the trajectory source, the marker with a triangle, and the target, the other marker.
We divided the figure into three cases: when trajectories present high, medium, and low
spatial similarity.

We aim to show that the trajectory embeddings can capture the spatial likeness for
some cases but not for others. A further direction to improve the embedding quality is
training with more data or investigating other language models.

(a) (b) (c)

Figure 9. Example of most similar trajectories according to cosine distance between their embedding
vectors. (a) High spatial similarity. (b) Medium spatial similarity. (c) Low spatial similarity.

We evaluated the Reciprocal Rank and the Mean Reciprocal Rank (Definitions 5 and 6)
between raw EST trajectories and their embeddings using the Dynamic Time Warping
(DTW) and the Edit (ED) distances between raw trajectories, and also the cosine distance
between embedding vectors. DTW is one of the most popular trajectory distance measures.
It searches for all possible alignment points between two trajectories to find the one with
minimal distance. To measure the distance between sensors, we used the Euclidean dis-
tance. ED quantifies the dissimilarities between two sequences of strings by counting the
number of operations that are needed to transform one string into another. For more details
about trajectory similarity functions, we refer to the survey [39].

The experiment considers the cosine distance between trajectory embeddings as the
query distance. We perform two experiments: compute the MRR using DTW as a reference
distance and another one using ED as a reference distance. By using DTW as the reference
distance, MRR obtained the best results, with a value of 0.44. In other words, the embedding
rank for the most similar trajectory according to DTW is between 1 and 3, on average. The
MRR using ED as the reference distance was 0.27. We believe that being on the top from
one to three, on average, is a good result, as we are learning a new embedding space to
represent trajectories, which is a complex task due to the nature of these trajectory data.

Another experiment we performed was filtering out the set of trajectories objects
O to contain only those with the reference distance under a maximal value. Similar to
the analysis of sensor embeddings, we evaluated how the MRR performs on a subset
of trajectories when the neighborhood increases. Figure 10 shows the results. For the
most similar trajectories pairs (DTW distance of approximately 5), the MRR was close to
5. For trajectories on the neighborhood filtered by DTW equal to 85, the MRR reached the
minimum value (0.44) and remained almost constant when the neighborhood increases.
This result implies that BERT MLM embeddings could capture spatial similarity and

Sensors 2022, 22, 7475 15 of 18

connectivity when the sensors of similar trajectories did not exactly match. The highest
value of MRR using ED was 0.33, at the point at which ED was at a maximum of 10. This
result implies that BERT embedding can represent the sequence of discrete location labels
in a trajectory (measured by edit distance). With these experiments, we achieved our goal
of using an NLP model and evaluating its quality to represent the trajectories and capture
their spatial similarity.

0 25 50 75 100 125 150 175 200
distance

0.30

0.35

0.40

0.45

0.50

m
rr

Mean Reciprocal Ranking vs Range Distance
DTW
Edit distance

Figure 10. Mean reciprocal rank of the embeddings among trajectories pairs under a maximal
distance.

6. Conclusions and Future Works

In this paper, we investigated the use of NLP models to generate the embedding space
of features for external sensors’ trajectories. We analyzed the quality of the embedding
trajectories using extrinsic and intrinsic strategies. The extrinsic approach is concerned
with evaluating a trajectory prediction architecture using different embedding vectors.
In the intrinsic evaluation, we analyzed the reciprocal rank of embedding vectors using
well-known distance measures for locations (in our case, sensors) and trajectories. The
experimental evaluation has shown the applicability of BERT MLM to extract embedding
vectors and represent trajectories. BERT MLM demonstrated the best result for location
prediction tasks, mainly when fine-tuning the embedding layer. The reciprocal rank
analysis showed that embeddings can represent the spatial similarity for locations in a
restricted region surrounding the area. However, when the neighborhood expands, the
embedding distance among sensors does not maintain its correlation with spatial distance
(see Figure 8).

Additionally, when the query range of trajectories increases, the correlation between
trajectory similarities and the embedding distance does not considerably decrease (see
Figure 10). In future work, we propose to investigate distinct approaches to compare and
evaluate trajectories’ embeddings under different tasks and metrics. In future work, we
also aim to investigate how to apply few-shot learning approaches to NLP models in the
context of external sensor trajectories.

Author Contributions: Data curation, L.A.C. and W.C.D.M.; Investigation, L.A.C.; Methodology,
L.A.C., T.L.C.d.S. and R.P.M.; Software, L.A.C. and M.C.; Supervision, J.A.F.d.M. and K.Z.; Writing—
original draft, L.A.C., T.L.C.d.S. and R.P.M.; Writing—review and editing, J.A.F.d.M. and K.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper is partially supported by the MASTER project that has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement Nº777695.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 7475 16 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to confidentiality agreements, supporting data can only be made
available to bona fide researchers subject to a non-disclosure agreement.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

In this section, we report the accuracy of the best prediction models considering the
different window sizes. As explained in Section 5.1, the size of the window m is the number
of previous sensors observed in the trajectory, given as model input.

Table A1. Results for the best LSTM model with different window sizes.

Window Size Embedding Size ACC@1 ACC@2 ACC@3

5 128 0.641 0.750 0.803
7 128 0.611 0.714 0.760

15 128 0.554 0.669 0.718
31 128 0.357 0.433 0.482

Table A2. Results for the best LW2V model with different window sizes.

Window Size Embedding Size ACC@1 ACC@2 ACC@3

5 128 0.521 0.631 0.724
7 128 0.517 0.638 0.683

15 128 0.507 0.614 0.662
31 128 0.452 0.540 0.614

Table A3. Results for the best LW2V-FT model with different window sizes.

Window Size Embedding Size ACC@1 ACC@2 ACC@3

5 128 0.533 0.669 0.721
7 64 0.526 0.650 0.695

15 32 0.514 0.624 0.664
31 128 0.460 0.550 0.614

Table A4. Results for the best LBERT model with different window sizes.

Window Size Embedding Size ACC@1 ACC@2 ACC@3

5 128 0.668 0.797 0.851
7 128 0.587 0.748 0.814

15 128 0.405 0.579 0.654
31 128 0.480 0.659 0.783

Table A5. Results for the best LBERT-FT model with different window sizes.

Window Size Embedding Size ACC@1 ACC@2 ACC@3

5 128 0.737 0.854 0.900
7 128 0.735 0.854 0.899

15 128 0.724 0.839 0.881
31 128 0.709 0.832 0.879

Sensors 2022, 22, 7475 17 of 18

References
1. Ji, Y.; Wang, L.; Wu, W.; Shao, H.; Feng, Y. A method for LSTM-based trajectory modeling and abnormal trajectory detection.

IEEE Access 2020, 8, 104063–104073. [CrossRef]
2. Wu, H.; Mao, J.; Sun, W.; Zheng, B.; Zhang, H.; Chen, Z.; Wang, W. Probabilistic robust route recovery with spatio-temporal

dynamics. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, 13–17 August 2016; pp. 1915–1924. [CrossRef]

3. Feng, J.; Li, Y.; Zhang, C.; Sun, F.; Meng, F.; Guo, A.; Jin, D. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. In Proceedings of the 2018 World Wide Web Conference WWW ’18, Lyon, France, 23–27 April 2018; International
World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2018; pp. 1459–1468. [CrossRef]

4. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

5. Feng, F.; Yang, Y.; Cer, D.; Arivazhagan, N.; Wang, W. Language-agnostic bert sentence embedding. arXiv 2020, arXiv:2007.01852.
6. Akbik, A.; Bergmann, T.; Blythe, D.; Rasul, K.; Schweter, S.; Vollgraf, R. FLAIR: An easy-to-use framework for state-of-the-art

NLP. In Proceedings of the NAACL (Demonstrations), Minneapolis, MN, USA, 2–7 June 2019; pp. 54–59.
7. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the EMNLP, Doha,

Qatar, 25–29 October 2014; pp. 1532–1543.
8. Yang, Y.; Cer, D.; Ahmad, A.; Guo, M.; Law, J.; Constant, N.; Abrego, G.H.; Yuan, S.; Tar, C.; Sung, Y.H.; et al. Multilingual Universal

Sentence Encoder for Semantic Retrieval. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, Online, 5–10 July 2020; pp. 87–94.

9. Mikolov, T.; Yih, W.T.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Atlanta, GA, USA, 9–14 June 2013; pp. 746–751.

10. Cao, H.; Xu, F.; Sankaranarayanan, J.; Li, Y.; Samet, H. Habit2vec: Trajectory semantic embedding for living pattern recognition in
population. IEEE Trans. Mob. Comput. 2019, 19, 1096–1108. [CrossRef]

11. Crivellari, A.; Resch, B.; Shi, Y. TraceBERT—A Feasibility Study on Reconstructing Spatial–Temporal Gaps from Incomplete
Motion Trajectories via BERT Training Process on Discrete Location Sequences. Sensors 2022, 22, 1682. [CrossRef] [PubMed]

12. Damiani, M.L.; Acquaviva, A.; Hachem, F.; Rossini, M. Learning behavioral representations of human mobility. In Proceedings
of the 28th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2020;
pp. 367–376. [CrossRef]

13. Kumar, S.; Zhang, X.; Leskovec, J. Predicting dynamic embedding trajectory in temporal interaction networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August
2019; pp. 1269–1278. [CrossRef]

14. Cruz, L.A.; Zeitouni, K.; da Silva, T.L.C.; de Macedo, J.A.F.; Silva, J.S.d. Location prediction: A deep spatiotemporal learning from
external sensors data. Distrib. Parallel Databases 2021, 39, 259–280. [CrossRef]

15. Cruz, L.A.; Zeitouni, K.; de Macedo, J.A.F. Trajectory Prediction from a Mass of Sparse and Missing External Sensor Data. In
Proceedings of the 20th MDM, Hong Kong, China, 10–13 June 2019; pp. 310–319. [CrossRef]

16. Neto, J.S.D.S.; Da Silva, T.L.C.; Cruz, L.A.; de Lira, V.M.; de Macêdo, J.A.F.; Magalhães, R.P.; Peres, L.G. Predicting the Next
Location for Trajectories From Stolen Vehicles. In Proceedings of the 2021 IEEE 33rd International Conference on Tools with
Artificial Intelligence (ICTAI), Washington, DC, USA, 1–3 November 2021; pp. 452–456. [CrossRef]

17. Rocha, C.L.; Brilhante, I.R.; Lettich, F.; De Macedo, J.A.F.; Raffaetà, A.; Andrade, R.; Orlando, S. TPRED: A Spatio-Temporal
Location Predictor Framework. In Proceedings of the 20th IDEAS, Montreal, QC, Canada, 11–13 July 2016; pp. 34–42. [CrossRef]

18. Karatzoglou, A.; Jablonski, A.; Beigl, M. A Seq2Seq learning approach for modeling semantic trajectories and predicting the next
location. In Proceedings of the 26th ACM SIGSPATIAL, Seattle, WA, USA, 6–9 November 2018; pp. 528–531.

19. Yao, D.; Zhang, C.; Huang, J.; Bi, J. Serm: A recurrent model for next location prediction in semantic trajectories. In Proceedings
of the 2017 ACM on CIKM, Singapore, 6–10 November 2017; pp. 2411–2414. [CrossRef]

20. Hasan, S.; Ukkusuri, S.V. Reconstructing activity location sequences from incomplete check-in data: A semi-Markov continuous-
time Bayesian network model. IEEE Trans. Intell. Transp. Syst. 2017, 19, 687–698. [CrossRef]

21. Wu, H.; Chen, Z.; Sun, W.; Zheng, B.; Wang, W. Modeling Trajectories with Recurrent Neural Networks. In Proceedings of the
26th IJCAI, Melbourne, Australia, 19–25 August 2017; pp. 3083–3090.

22. Zhang, C.; Han, J.; Shou, L.; Lu, J.; La Porta, T. Splitter: Mining fine-grained sequential patterns in semantic trajectories. Proc.
VLDB Endow. 2014, 7, 769–780. [CrossRef]

23. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

24. Zhao, W.X.; Zhou, N.; Sun, A.; Wen, J.R.; Han, J.; Chang, E.Y. A time-aware trajectory embedding model for next-location
recommendation. Knowl. Inf. Syst. 2018, 56, 559–579. [CrossRef]

25. Li, X.; Zhao, K.; Cong, G.; Jensen, C.S.; Wei, W. Deep representation learning for trajectory similarity computation. In Proceedings
of the 2018 IEEE 34th international conference on data engineering (ICDE), Paris, France, 16–19 April 2018; pp. 617–628. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2997967
http://dx.doi.org/10.1145/2939672.2939843
http://dx.doi.org/10.1145/3178876.3186058
http://dx.doi.org/10.1109/TMC.2019.2902403
http://dx.doi.org/10.3390/s22041682
http://www.ncbi.nlm.nih.gov/pubmed/35214584
http://dx.doi.org/10.1145/3397536.3422255
http://dx.doi.org/10.1145/3292500.3330895
http://dx.doi.org/10.1007/s10619-020-07303-0
http://dx.doi.org/10.1109/MDM.2019.00-43
http://dx.doi.org/10.1109/ICTAI52525.2021.00073
http://dx.doi.org/10.1145/2938503.2938544
http://dx.doi.org/10.1145/3132847.3133056
http://dx.doi.org/10.1109/TITS.2017.2700481
http://dx.doi.org/10.14778/2732939.2732949
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1007/s10115-017-1107-4
http://dx.doi.org/10.1109/ICDE.2018.00062

Sensors 2022, 22, 7475 18 of 18

26. Nguyen, D.; Luo, W.; Nguyen, T.D.; Venkatesh, S.; Phung, D. Sqn2Vec: Learning Sequence Representation via Sequential Patterns
with a Gap Constraint. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Wurzburg, Germany,
16–20 September 2018; Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 569–584.

27. Dai, A.M.; Olah, C.; Le, Q.V. Document embedding with paragraph vectors. arXiv 2015, arXiv:1507.07998.
28. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. arXiv 2018, arXiv:1810.04805.
29. Trasarti, R.; Guidotti, R.; Monreale, A.; Giannotti, F. MyWay: Location prediction via mobility profiling. Inf. Syst. 2017, 64, 350–367.

[CrossRef]
30. Naserian, E.; Wang, X.; Dahal, K.; Wang, Z.; Wang, Z. Personalized location prediction for group travellers from spatial–temporal

trajectories. Future Gener. Comput. Syst. 2018, 83, 278–292. [CrossRef]
31. Kong, D.; Wu, F. HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction. In

Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; Volume 18, pp. 2341–2347.
32. Liu, Q.; Zuo, Y.; Yu, X.; Chen, M. TTDM: A Travel Time Difference Model for Next Location Prediction. In Proceedings of the

2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 216–225.
[CrossRef]

33. Chen, M.; Yu, X.; Liu, Y. Mining moving patterns for predicting next location. Inf. Syst. 2015, 54, 156–168. [CrossRef]
34. Fan, X.; Guo, L.; Han, N.; Wang, Y.; Shi, J.; Yuan, Y. A deep learning approach for next location prediction. In Proceedings of the

2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanjing, China, 9–11
May 2018; pp. 69–74. [CrossRef]

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.

36. Connor, J.T.; Martin, R.D.; Atlas, L.E. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994,
5, 240–254. [CrossRef] [PubMed]

37. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
38. Craswell, N. Mean Reciprocal Rank. In Encyclopedia of Database Systems; Liu, L., ÖZSU, M.T., Eds.; Springe: Boston, MA, USA,

2009; p. 1703. [CrossRef]
39. Su, H.; Liu, S.; Zheng, B.; Zhou, X.; Zheng, K. A survey of trajectory distance measures and performance evaluation. VLDB J.

2020, 29, 3–32. [CrossRef]

http://dx.doi.org/10.1016/j.is.2015.11.002
http://dx.doi.org/10.1016/j.future.2018.01.024
http://dx.doi.org/10.1109/MDM.2019.00-54
http://dx.doi.org/10.1016/j.is.2015.07.001
http://dx.doi.org/10.1109/CSCWD.2018.8465289
http://dx.doi.org/10.1109/72.279188
http://www.ncbi.nlm.nih.gov/pubmed/18267794
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1007/978-0-387-39940-9_488
http://dx.doi.org/10.1007/s00778-019-00574-9

	Introduction
	Preliminaries
	Related Works
	Representation Learning for Mobility Data
	Prediction Models for Location Prediction

	Data and Methods
	Data Preparation
	Embedding Models
	EST Prediction Model

	Experimental Evaluation
	Analysis of Location Prediction
	Analysis of Sensor Embeddings
	Analysis of Trajectory Embeddings

	Conclusions and Future Works
	Appendix A
	References

