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Abstract: With the advent of the digital information age, new data services such as virtual reality,
industrial Internet, and cloud computing have proliferated in recent years. As a result, it increases
operator demand for 5G bearer networks by providing features such as high transmission capacity,
ultra-long transmission distance, network slicing, and intelligent management and control. Software-
defined networking, as a new network architecture, intends to increase network flexibility and agility
and can better satisfy the demands of 5G networks for network slicing. Nevertheless, software-
defined networking still faces the challenge of network intrusion. We propose an abnormal traffic
detection method based on the stacking method and self-attention mechanism, which makes up
for the shortcoming of the inability to track long-term dependencies between data samples in
ensemble learning. Our method utilizes a self-attention mechanism and a convolutional network to
automatically learn long-term associations between traffic samples and provide them to downstream
tasks in sample embedding. In addition, we design a novel stacking ensemble method, which
computes the sample embedding and the predicted values of the heterogeneous base learner through
the fusion module to obtain the final outlier results. This paper conducts experiments on abnormal
traffic datasets in the software-defined network environment, calculates precision, recall and F1-score,
and compares and analyzes them with other algorithms. The experimental results show that the
method designed in this paper achieves 0.9972, 0.9996, and 0.9984 in multiple indicators of precision,
recall, and F1-score, respectively, which are better than the comparison methods.

Keywords: self-attention; ensemble learning; anomaly detection; SDN; 5G

1. Introduction

The advancement of communication technology has altered the face of human civiliza-
tion as it enters the digital information era. The advancement of information technology
will have an impact on the ease of living in human civilization. With the arrival of the
5G era, human society’s level of informatization will become even higher. In comparison
to 4G, the 5G network’s application scenarios will span the sectors of mobile Internet,
Internet of Vehicles, and the Industrial Internet. Simultaneously, operators have set greater
standards for 5G networks, including huge transmission capacity, ultra-long transmission
distance, network slicing, and intelligent management and control. Among them, the
software-defined network (SDN) is a new type of network design idea that intends to
increase network flexibility and agility and can better fulfill the network slicing demands
of 5G networks. The central concept of software-defined networking is to decouple past
network architecture into the control plane and the data plane and to previous abstract
network functions into applications in the network operating system in the control plane [1].
From top to bottom, the software-defined network architecture is split into the application
plane, control plane, infrastructure layer, and physical device layer [2,3], as illustrated in
Figure 1. The system components of the application plane include application applications
and network management systems. This applies to control plane service requests made
via the northbound interface provided by the SDN regulator [4]. One or more SDN con-
trollers comprise the control plane. In the software-defined network architecture, the SDN
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controller serves as a bridge between the application plane and the infrastructure layer.
On the one hand, the SDN controller exposes diverse programmable services to upper-layer
application software via the northbound interface, and network users can flexibly formu-
late network policies based on actual application scenarios; on the other hand, the SDN
controller constructs and maintains a global network view via the southbound interface to
control and manage network devices at the infrastructure layer, and inherits the control
plane functions. The infrastructure layer is made up of data-forwarding devices such as
switches and routers that were abstracted into network devices. The data flow is handled in
accordance with the instructions given by the SDN controller, thereby improving network
device management efficiency. The physical layer includes control equipment, including
field instruments, sensors, and actuators and performs duties such as information inter-
change between the ICS controller and field equipment. SDN has gotten much attention
from people from many areas of life.
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Figure 1. SDN network architecture diagram

However, software-defined networks are vulnerable to cyber-attacks in the same way
that traditional networks are. As previously said, SDN introduces the SDN controller,
which provides unified API services for the application plane and the infrastructure layer,
allowing the network to be centralized, programmable, and open. These characteristics,
such as permitting mismatched network packets to be submitted to the controller to request
forwarding rules, raise security issues for SDN. A network assault is frequently exhibited
as anomalous traffic. The term “abnormal traffic” refers to network traffic behavior that
deviates from the expected typical pattern. Server overload induced by DOS assaults,
worms’ privileged access, and server attacks will result in anomalous traffic [5]. SDN
network security risks primarily target the control plane, with the majority of attacks
targeting the network’s controller [6]. Malicious controllers, malware, and malicious
switches can all put SDN controllers at risk. The controller’s security has a direct influence
on SDN security since it is the centralized decision-making entity and processing hub
of SDN.

When aberrant traffic is detected, abnormal traffic detection technology monitors
network traffic transmission immediately, sends an alarm, or takes active reaction steps. The
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real-time monitoring of SDN traffic may maintain the security, confidentiality, and integrity
of SDN network information while also promoting the development and implementation
of SDN technology [5]. As a result, research on intrusion detection systems in the context
of SDN offers tremendous theoretical and application value for creating and upgrading
SDN technology.

Hinton, Geoffrey E. et al. [7] proposed the concept of deep learning in 2006. With the
continuous improvement in computer computing power and the continuous development
of algorithms, deep learning algorithms that require huge computing power have attracted
great attention from researchers and enterprises. Traditional detection algorithms based on
traffic feature statistics and machine learning perform better when small-scale datasets and
feature quantities are small. However, it still relies on the manual judgment and induction of
traffic characteristics. Deep learning algorithms can calculate optimal solutions from limited
data and do not require expert knowledge to find unknown and new abnormal traffic types.
With large-scale datasets and many features, it can also have better performance.

We propose an abnormal traffic detection method based on the stacking method and
self-attention mechanism (TSMASAM) that combines the self-attention mechanism and
ensemble learning to make up for the inability of ensemble learning to learn the associ-
ations between data. First, we propose a neural network composed of a self-attention
mechanism and a deep convolutional network which aims to automatically learn the corre-
lation between traffic samples, capture the feature space’s internal structure, and provide it
downstream in the form of a sample embedding task. Secondly, we design a novel stacking
integration method, which aims to detect and identify abnormal network traffic by integrat-
ing the sample embedding obtained above and the inspection results of the heterogeneous
base learner. Finally, we design a new loss function, which fully and comprehensively
considers the basic learner’s influence on the model’s overall performance by introducing
the basic learner’s loss value and the regular term composed of it and preventing the model
from falling into an overfitting state.

The main contributions of this paper are as follows:

• We propose a neural network composed of a self-attention mechanism and a deep
convolutional network, which learns from samples and converts them into sample
embeddings.

• We propose a stacking ensemble learning method composed of the autoencoder and
base learner, using the autoencoder to remove irrelevant information in the samples
and the stacking method to integrate the detection results of sample embedding and
the base learner.

• We design a novel loss function to observe the operation of the model through the
introduced regularization term and base learner loss value. We use a network traffic
dataset under an SDN architecture to evaluate the model’s performance. The results
show that the model has a better abnormal traffic detection effect than the comparison
model.

The structure of this paper is as follows: Section 2 briefly describes the research status
of related work; Section 3 introduces the experimental environment, model framework,
and specific design of TSMASAM; Section 4 details the experiments and performance
evaluation of TSMASAM proposed in this paper. In Section 5, we conclude the paper.

2. Related Works

The concept of abnormal traffic detection technology began in the 1980s, which refers
to a network security technology that monitors network traffic transmission, promptly
issues an alarm or takes active response measures when abnormal traffic is found. Anomaly
detection obtains a feature model by modeling and analyzing traffic characteristics, thereby
judging whether the network traffic is normal. Anomaly detection technology can be
roughly divided into: that based on traffic feature matching, based on traffic feature statis-
tics, and based on machine learning. There are essential differences in the modeling logic
of the three traffic characteristics, which bring about different detection scenarios and
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inspection effects. Algorithms based on traffic feature matching require professionals to
analyze and summarize the characteristics of abnormal traffic and then match them with
the observed traffic characteristic. The advantage of this approach is the higher accuracy
of identifying known attacks. However, algorithms based on traffic feature matching
rely on expert knowledge and are difficult to deal with unseen abnormal network traffic.
The anomaly detection algorithm based on data statistics is based on the normal distribu-
tion of network traffic characteristics. When the observed network traffic characteristics
deviation from the benchmark exceeds a certain threshold, it is regarded as abnormal
network traffic. The advantage of the algorithm based on data feature statistics is that
it is simple to implement and can also identify abnormal traffic in unknown networks,
but it is prone to misjudgment. Algorithms based on machine learning have a stronger
learning ability and can learn from incomplete traffic characteristics to abnormal traffic,
however, the models generally have high computational complexity and are not suitable for
high-response environments. However, with the substantial improvement in computing
technology, methods based on machine learning have received attention and research from
all parties.

Based on the traffic feature matching algorithm, the abnormal network traffic is known
quickly, but it cannot effectively deal with the unknown abnormal network traffic. Ref. [8]
proposed the model NADIR, a near real-time expert system, to replace the manual review
log method. NADIR compares the network activity summarized in user profiles with
expert rules that define network security policies, inappropriate or suspicious network
activity, and normal network and user activity. Ref. [9] proposed an adaptive real-time
intrusion detection expert system which contains a statistical subsystem to observe the
normal traffic of the computer. The statistical subsystem identifies user behavior as a
potential intrusion when it observes significant deviations from expected behavior. Ref. [9]
maintains a knowledge base of statistical topics consisting of profiles, and updates the
observed behaviors to the knowledge base daily. Before the new statistics are synchro-
nized to the knowledge base, the previous statistics are multiplied by a decay factor to
adaptively learn the behavior patterns of the observers. Ref. [10] proposed an approach
to specification-based and anomaly-based intrusion detection by starting from the state
machine specification of the network protocol and supplementing the state machine in-
formation with statistical information. Ref. [10] verified the effectiveness of this method
on the KDD99 dataset. Furthermore, Ref. [10] uses a protocol specification to simplify
the feature selection step. Ref. [11] described network intrusion detection expert system
(NIDX) by combining knowledge describing the target system, the historical profiles of
users’ past activities, and knowledge-based intrusion detection heuristics. NIDX classifies
user activity through the UNIX system calls and then uses knowledge and heuristics about
typical intrusion and attack techniques to determine whether the activity is anomalous.
Ref. [12] built a method to augment domain knowledge with machine learning to create
rules for intrusion detection expert systems. To this end, Ref. [12] adopted a combination
of genetic algorithms and decision trees to automatically generate rules for classifying
network traffic. The algorithm based on the feature matching relies on the analysis and
summary of professionals and is not sufficiently flexible to operate.

The algorithm based on data statistics can quickly identify abnormal traffic and deal
with unknown abnormal network traffic, but it is prone to misjudgment. A histogram-based
outlier detection (HBOS) algorithm was proposed to score data in linear time. Since HBOS
assumes no dependencies between features, the algorithm is technically faster than other
methods but less accurate [13]. HBOS detects global outliers such as the state-of-the-art
algorithm on multiple datasets but performs poorly on local outliers. Ref. [14] described the
anomaly detection problem as a binary composite hypothesis testing problem and devel-
oped a model-free and model-based approach using large deviation theory. Both methods
extracted a series of probability laws representing traffic patterns over different time periods
and then detect anomalies by evaluating the traffic and deviations from these laws. Ref. [15]
proposed a statistical signal processing technique based on mutation detection. Authors
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such as M. Thottan demonstrated the method’s feasibility in [15] and conducted related
experiments to verify the usability of the method. In addition, Ref. [15] introduced an
operator matrix to correlate various indicators and finally obtained a variable or indicator
to express all aspects of the network. Since not all mutation phenomena originate from net-
work anomalies, this may lead to model misjudgment. To cope with the new requirements
of network security brought by the complexity of cellular networks, Ref. [16] proposed an
anomaly detection algorithm based on Bayesian decision rules and applied it to mobile user
profiles to verify the method’s feasibility. In addition, the algorithm specializes in privacy
protection, however, the algorithm’s analysis function also violates users’ privacy. Ref. [17]
proposed a multi-level hierarchical Kohonen network (K-Map) for intrusion detection,
where each layer of the hierarchical graph is modeled as a simple winner-takes-all K-Map.
This multi-level hierarchical K-Map structure has the advantage of low computational
complexity, avoids costly peer-to-peer computations by organizing the data into clusters,
and reduces the size of the network. Ref. [18] proposed an anomaly detection algorithm
based on an unrestricted α-stable first-order model and statistical hypothesis validation
by automatically selecting a flow window to be used as a reference, compared with an
observed flow window. The algorithm of [18] focuses on detecting two anomaly types:
floods and flash crowds. Ref. [19] proposed a flow-based aggregation technique (FSAS),
which greatly reduces the amount of monitored data and handles large amounts of statis-
tical and grouped data. A stream, or IP stream, is a given series of IP packets. The FSAS
set flow-based statistical feature vectors reports to the acute neural network classification
model. Ref. [20] developed a new statistical decision-theoretic framework for network
traffic using Markov chain modeling. The algorithm first formulates the optimal anomaly
detection problem for the composite model of [20] via generalized likelihood ratio check
(GLRT). However, this algorithm leads to a very expensive combinatorial optimization
problem. Then, Ref. [20] developed two low-complexity anomaly detection algorithms,
the cross-entropy-based and GLRT-based methods. Ref. [21] implemented an algorithm de-
veloped in the SRI-based NIDES (next-generation intrusion detection expert system) project.
In addition, Ref. [21] also developed three OSPF routing protocol insider attacks to evaluate
the effectiveness of detection capabilities. Ref. [22] developed an anomaly detection method
for large networks. The algorithm first uses a Kalman filter to filter out “normal” traffic and
judges by comparing the predicted traffic matrix with the actual traffic matrix. Then, detect
whether there is any abnormality in the remaining filtering process. Ref. [22] here explains
how any anomaly detection method can be viewed as a problem in statistical hypothesis
testing. Ref. [23] believed that if the joint distribution of multi-dimensional data can be
effectively expressed, one can try to estimate the tail probability of each point, and then
the abnormal situation can be well evaluated. To date, Ref. [23] proposed a copula-based
anomaly detection algorithm. The copula is a statistical probability function for efficiently
modeling dependencies among multiple random variables. Ref. [23] used a non-parametric
method, obtains empirical copula through empirical cumulative distribution (Empirical
CDF), and then estimates the tail probability of joint distribution of all dimensions through
empirical copula. The advantage of the algorithm based on data feature statistics is that it
is simple to implement and can also identify abnormal traffic in unknown networks, but it
is prone to misjudgment.

Algorithms based on machine learning have a strong learning ability and can effec-
tively deal with unknown abnormal network traffic. Ref. [24] proposed a 5G-oriented
network defense architecture. To this end, Ref. [24] used deep learning techniques to
analyze network traffic by extracting features from it. In addition, the architecture allows
automatic the adjustment of the configuration of the network fabric to manage traffic fluc-
tuations. Experiments show that the method can adaptively adjust the anomaly detection
system and optimize resource consumption. Ref. [25] proposed an anomaly-based NIDS
implemented using deep learning techniques. The method demonstrates the ability and
adaptability to infer partial knowledge from incomplete data. With the advent of the
Internet of Things, the need to process streaming data in real-time has become critical.
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To this end, Ref. [26] proposed a hybrid data processing model using GWO and CNN
for anomaly detection. In order to increase the learning ability of the model, both GWO
and CNN learning methods have been enhanced; for the first, the generative ability to
explore, exploit and initialize the population is improved; for the second, the dropout
function is improved. Ref. [26] first used GWO for feature selection to obtain the best
trade-off between two objectives, i.e., reducing the error rate and minimizing the feature
set. Then, Ref. [26] used CNN for network anomaly classification. In Ref. [27], in order
to deal with the security issues brought by SDN, a deep neural network model was con-
structed and trained using the NSL-KDD dataset. During the training process, only six
basic features among the forty-one features were selected for training. However, the dataset
selected by this method is not in the SDN environment and is not necessarily suitable
for the SDN environment. To improve the reliability of SDN, Ref. [28] proposed a hybrid
deep learning-based anomaly detection scheme for suspicious flow detection in social
multimedia environments. The scheme consists of an anomaly detection module and an
end-to-end data transfer module. The anomaly detection module utilizes a modified, re-
stricted Boltzmann machine and a gradient descent-based support vector machine to detect
anomalous traffic. The end-to-end data transmission module is designed to meet the strict
QoS requirements of SDN. Since existing anomaly detection solutions all require a large
number of datasets for offline training, Ref. [29] proposed a neural network-based anomaly
detection system with dynamically updatable training models—Griffin, which utilizes an
ensemble of autoencoders from normal and abnormal traffic which is jointly screened in the
traffic, and the autoencoder, which is updated according to the mean square error. In order
to solve the problem of high memory consumption, low accuracy, and the high processing
and overhead of detection methods in the IoT environment, Ref. [30] proposed sFlow and
sampling based on adaptive rotation training, combined with the Snort intrusion detection
system and deep learning-based model, which is helpful for the IoT in cases of various
types of DDoS attacks. Due to the decoupled nature of SDN, Ref. [30] obtained the required
parameters by programming network devices. First, in the data plane, in order to reduce
the switches’ processing and network overhead, Ref. [30] distributed the deployment of
sFlow and sampling based on the adaptive round-robin. Second, to optimize the detection
accuracy in the control plane, Ref. [30] deployed the Snort IDS with the SAE deep learning
model. Algorithms based on machine learning have a stronger learning ability and can
learn from incomplete traffic characteristics to abnormal traffic, but the models generally
have high computational complexity and are not suitable for high-response environments.

3. Materials and Methods

TSMASAM is a deep learning model based on ensemble learning and the self-attention
mechanism. Combining the self-attention mechanism and ensemble learning makes up for
the relationship between data that cannot be learned by ensemble learning. The module
frame is shown in Figure 2. TSMASAM consists of two parts: sample association learning
and integrated detection network. The dataset we adopted (InSDN dataset) was generated
by simulating the environment under four virtual machines; the first virtual machine was
Kali Linux, which represents the attacker server; the second virtual machine was Ubuntu
16.4, which was used as ONOS the controller; the third was the Ubuntu 16.4 machine
as a Mininet and OVS switch; the fourth virtual machine was a Metasploitable 2-based
Linux machine as an exploit service to demonstrate the exploit. The controller of SDN was
implemented using the open source tool ONOS. This dataset contains anomalous traffic
from inside and outside attackers targeting the controller. Our approach builds on this to
detect traffic data passing through an SDN controller.
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3.1. Data Preprocessing

The experimental flow is shown in Figure 3. Before the data enter the model, the data
are preprocessed. This paper first normalizes the data. If there is missing information in the
dataset, the data row is deleted. Finally, this paper uses the hierarchical leave-out method
to split the dataset into two parts: the training set and the test set. Due to the unbalanced
nature of the data, this paper performs oversampling operations on the training set.
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Figure 3. Flow chart of TSMASAM experiment.

3.2. Related Definitions

Definition 1. The dataset is represented as X = [x1, . . . , xN ] ∈ Rm×N , where each sample is
represented as xi =

[
x1

i , . . . , xm
i
]
∈ Rm, by m-dimensional feature composition.

Definition 2. F = [ f (X)1, . . . , f (X)k] is expressed as the set of base learners with the number of
base learners k.

Definition 3. In the abnormal traffic detection model, input data X = [x1, . . . , xN ] is given.
The model aimed to learn a function H(X) to classify samples. Finally, according to the classification
result, determine whether the sample xi is abnormal:

ŷi =

{
1 , i f H(xi) = 1
0 , i f H(xi) = 0

(1)
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wherein ŷi = 1 means that the function H(X) predicts that the data sample xi is abnormal,
and ŷi = 0 implies that the function H(X) predicts that the data point xi is normal.

3.3. Sample Associative Learning

To explore the correlation between multiple sample features, the model introduces a
self-attention mechanism to automatically learn the correlation between samples, captures
the feature space’s internal structure, and uses a convolutional network to construct a
sample embedding to express the relationship between data samples. Given a set of input
samples X = [x1, . . . , xN ] ∈ Rm×N , the self-attention mechanism is used to learn the
sample xi =

[
x1

i , . . . , xm
i
]
∈ Rm relationship between traffic characteristics. Self-attention

maps samples to three different feature spaces, resulting in three vectors (query vector
qi ∈ RDk , key vector ki ∈ RDk , and value vector vi ∈ RDv ):

Q = WqX∈ RDk×N (2)

K = WkX∈ RDk×N (3)

V = WvX∈ RDv×N (4)

where Wq∈ RDk×Dx , Wk∈ RDk×Dx , Wv∈ RDv×Dx are the parameter matrix of feature map-
ping, and the Q = [q1, . . . , qN ], K = [k1, . . . , kN ], V = [v1, . . . , vN ] matrix consists of the
query vector, key vector and value vector, respectively. The purpose of setting Q, K, and V
is to find the correlation coefficient with other features by calculation, calculate a weight
for each feature, and then obtain a weighted result to judge the relationship between each
feature and other features. At most, the detection efficiency of traffic is improved by learn-
ing the information in these attention values. The main work of self-attention is to calculate
the dot product of the query Q and all K, scale it, derive the weight of the value V through
the softmax function, and then multiply the value V and the weight to obtain the attention
value:

µn = att((K, V), qn) (5)

= ∑N
j=1 anjvj (6)

= ∑N
j=1 so f tmax(s(k j, qn))vj (7)

= ∑N
j=1

exp(s(kj ,qn))

∑z exp(s(kz, qn))
(8)

among them, j, n ∈ [1, N] is the position of the input vector and the output vector sequence;
anj represents the weight value of the nth output concerned with the jth input; qn represents
the query vector of the nth input sample; k j represents the key of the jth input; vj represents
the value of the jth input, which contains the input information. Therefore, the calculated
attention value is equivalent to the attention value between the ith sample and the 1st, 2nd,
and ith inputs, that is, the correlation between each input. After obtaining the calculated
attention value µi, map µi to a new feature space to obtain the embedding vector ei ∈ RDs×k:

ei = so f tmax
(

f̄ (µi)
)

(9)

where
−
f (µi) is the feature mapping function. After the above calculation, the embedding

vector ei is finally obtained, and E = [e0, . . . , eN ] ∈ RDs×k×N is the sample embedding
matrix composed of the embedding vectors. In this paper, the mapping function we choose
is the convolutional neural network (CNN).
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3.4. Ensemble Detection Network
3.4.1. Auto Encoder

We use an autoencoder to denoise the original to obtain representative feature infor-
mation in the samples. After processing by the autoencoder, we obtain the reconstructed

information vector
−
X =

[−
x1, . . . ,

−
xN

]
∈ Rm×N :

hi = gθ1(xi) = σ(W1 × xi + b1) (10)

x̄i = gθ2(xi) = σ(W2 × xi + h2) (11)

where hi is the latent feature learned by the auto-encoder from the input information
xi, and gθ1(xi) and gθ2(xi) are the encoder and decoder functions in the auto-encoder.
The encoder function gθ1(xi) and the decoder function gθ2(xi) are composed of a multi-
layer fully connected network for feature transformation. The purpose of the encoder is to
perform feature transformation on the sample features, and the purpose of the decoder is
to reconstruct the original data from the latent features hi obtained by the encoder to obtain

the decoded data
−
xi.

3.4.2. Stacking Ensemble Detection Network

The stacking ensemble detection network learns to train the base learner by recon-

structing the data
−
X. In this paper, CNN, LSTM, and LENET networks are used as the

heterogeneous base learner of the network, and the classification judgment of traffic is

made according to the reconstructed data
−
X:

δi = f
(−

X
)

i
∈ RN (12)

∆ = F
(−

X
)
∈ RDo×k×N (13)

where f
(−

X
)

i
is the base learner, δi is the outlier matrix obtained after the base learner

f
(−

X
)

i
detection, and ∆ = [δ0, . . . , δk] ∈ RDo×k×N is composed of outliers obtained by

the base learner. The learner can be any supervised classifier. In theory, heterogeneous
base learners can make more robust coarse-grained detection. Diversity and heterogeneity
among base learners can provide different perspectives for classification.

In the second layer of the stacking ensemble detection network, we designed a fusion
module to train the fusion module by using the long-term dependencies between samples
captured by the self-attention mechanism and the prediction results of the base learner
as a new dataset. Based on the embedded vector ci and the outlier matrix δi, the stacking
ensemble detection network performs a dot product operation on the embedded vector ci
and the outlier matrix δi through a fusion module then obtains the final detection result
through a fully connected layer:

oi = so f tmax
(

∑k
j=0CF

(
cij, δij

))
(14)

= so f tmax
(

∑k
j=0cijδi j

)
(15)

where CF
(
cij, δij

)
is the embedding fusion function, and oi is the outlier vector obtained by

the fusion function. We choose the dot product method to fuse the embedding vectors in
our method. In theory, an excellent fusion method can effectively exploit the information
in the embedding vector.
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We design a new loss function to fully consider the sharing of each base model to the
model as a whole. The loss function of our method is calculated based on the cross-entropy
loss function:

L
(
Ŷ, Y, ∆

)
= W0 × CE

(
Ŷ, Y

)
+

k

∑
t=1

Wt × CE(δt, Y) + log

(
1 +

k

∏
t=1

CE(δt, Y)

)

where CE is the cross-entropy loss function, Wt is the weight value with a sum of 1, Y
is the label set, Ŷ is the outlier prediction made by the method in this paper, and ∆ is
the outlier prediction value set made by the base learner set. W0 × CE

(
Ŷ, Y

)
is the cross

entropy between the predicted value made by the method in this paper and the label set Y.
Wt×CE(δt, Y) is the cross entropy between the predicted value of each base learner and the
label set Y, which aims to fully consider the pre-detection results of the base learner during

the training process. log
(

1 +
k

∏
t=1

CE(δt, Y)
)

is used as the regular term of the loss function

to prevent the model from falling into an overfitting state. 1 +
k

∏
t=1

CE(δt, Y) guarantees that

the function value is always greater than 1. Wt is used as a hyperparameter in the model
training process to adjust the weight of the different items.

4. Experiment and Analysis
4.1. Experimental Environment and Datasets

The TSMASAM designed in this paper is implemented based on Python3, Pytorch1.2
and Numpy. The four CPU models are Intel(R), Xeon(R), CPU E5-2620 v2 @ and 2.10GHz,
the graphics card model is Matrox G200eR2, and the PyTorch version is the 1.2.0 server
environment. The InSDN dataset is generated from environment simulations under four
virtual machines; the first virtual machine is Kali Linux, which represents the attacker
server; the second virtual machine is Ubuntu 16.4, which acts as the ONOS controller; the
third Ubuntu 16.4 machine, as a Mininet and OVS switch; the fourth virtual machine is
a Metasploitable 2-based Linux machine that serves as an exploit service to demonstrate
the exploit. The controller of SDN is implemented using the open source tool ONOS. This
dataset contains anomalous traffic from inside and outside attackers targeting the controller.

This paper evaluates the performance of TSMASAM through two experiments. This
paper applies the network traffic simulation dataset [31] under the SDN architecture. It is
derived from the SDN virtual environment and is constructed by multiple virtual machines
using the SDN network architecture. Since the abnormal flow in [31] is much more than
normal, the research team randomly selects the flow data to simulate the sample imbalance
phenomenon in the real environment. The processed dataset contains 76,825 network
traffic, of which 8401 are abnormal, accounting for approximately 10.94% of the overall
sample. The research team used the hierarchical set-out method to divide the dataset
into the training set and test set, each of which contains a total of 84 traffic eigenvalues.
This dataset includes seven network attack types (Probe, DDoS, DoS, BFA, Web-Attack,
BOTNET, and U2R). The distribution of each network attack is shown in Figure 4. In this
experiment, seven network attack types (Probe, DDoS, DoS, BFA, Web-Attack, BOTNET,
and U2R) are regarded as abnormal, and the rest are regarded as normal traffic data.

To verify the generalization ability, not only the InSDN dataset [31] but also the KDD99
and UNSW-NB15 datasets are used in the experiments.
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Figure 4. Label distribution in the dataset.

4.2. Evaluation Indicators

There are only two types of anomaly detection targets in this paper. The positive
examples are normal data, and the negative ones are abnormal. The classification results of
the experiments can be divided into the following four categories:

• True positives (TP): TP represents the proportion of abnormal behavior correctly
identified as abnormal behavior;

• False positives (FP): FP represents the proportion of normal behavior incorrectly
identified as abnormal behavior;

• False negatives (FN): FN represents the proportion of abnormal behavior incorrectly
identified as normal behavior;

• True negatives (TN): TN represents the proportion of normal behavior correctly identi-
fied as normal behavior;

After classifying the results, this paper evaluates the algorithm’s performance by
Precision, Recall, and F1-score.

Precision =
TP

TP + FP
; (16)

Recall =
TP

TP + FN
; (17)

F1-score = 2× Precision× Recall
Precision + Recall

(18)

among them, precision indicates the rate of correct identification of abnormal behavior
and normal behavior. Recall describes how many real positive examples in the test set
are selected by the binary classifier. The core idea of the F1-score is that, while improving
precision and recall as much as possible, we also want the difference between the two to be
as small as possible.

4.3. Performance Testing and Analysis
4.3.1. Performance Testing

The experimental results of detection performance are shown in Tables 1 and 2, and the
model loss curve is shown in Figure 5.
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Figure 5. The loss curve of the TSMASAM model.

Table 1. Comparative experiment between TSMASAM and the machine learning-based anomaly
detection algorithm.

Model Precision Recall F1-Score

COPOD 0.7799 0.7057 0.7403
HBOS 0.7968 0.7630 0.7792
IForest 0.8108 0.7043 0.7491

VAE 0.7988 0.6912 0.7378
ECOD 0.8219 0.6757 0.7323
LOF 0.8002 0.5627 0.6456

TSMASAM 0.9972 0.9996 9984

Table 2. Comparative experiment between TSMASAM and the anomaly detection algorithm based
on ensemble learning.

Model Precision Recall F1-Score

XGBOD 0.9998 0.9998 0.9998
LSCP 0.7784 0.6240 0.6895
SUOD 0.7784 0.7920 0.7885
LODA 0.7656 0.6278 0.6892

TSMASAM 0.9972 0.9996 9984
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The abscissa represents the epoch number (a total of 200 epochs), and the ordinate
represents the loss value of the model. It can be seen from the figure that the loss value
of TSMASAM shows a small range of fluctuation in the early training period, and then
quickly converges and maintains a low oven for a long time.

The experimental results are shown in Tables 1 and 2. It can be seen from the table
that TSMASAM has a precision of 99.72%, a recall of 99.96%, and an F1-score of 99.84%.
(1) Comparing machine learning methods (COPOD, HBOS, IForest, VAE, ECOD, and LOF):
on the [31] dataset, the machine learning method can achieve the highest accuracy of
82.19%; the machine learning algorithm can achieve the highest recall rate of 76.30%; the
machine learning algorithm can achieve the highest F1 score of 77.92%. (2) Comparing
the ensemble learning methods (XGBOD, LSCP, SUOD, and LODA): on the [31] dataset,
the highest performance can reach 99.98%. The detection performance of the method
proposed in this paper is better than most of the comparison algorithms but weaker than
the XGBOD method.

The experimental results of detection performance are analyzed as follows: the tradi-
tional machine learning algorithm has limited ability and poor generalization ability, which
makes the model’s learning of traffic characteristics too limited. The learning of datasets
with long-term associations is not sufficient, so the performance is lower.

Due to the large randomness of traffic, it is difficult to learn suitable feature information.
The detection method based on ensemble learning ensures the diversity of weak classifiers
and fully considers each base model in decision making so that the results obtained are
better than traditional ones. The machine learning method works well.

The method proposed in this paper learns the long-term dependencies between data
samples through the self-attention mechanism and convolutional network and transfers
them to the ensemble learning model in the form of sample embedding so that the ensemble
learning model can more accurately model the process. Therefore, the detection mechanism
proposed in this paper is more stable, and the detection effect is not weaker than other
integrated learning methods.

4.3.2. Control Group Experiment

Table 3 shows the performance impact of the sample associative learning on TS-
MASAM. The precision, recall and F1-score of stacking are 0.8059, 0.8893, and 0.8390.
The sample associative learning improves TSMASAM by an average of 15.37% on each
index.

Table 3. The impact of the Sample Associative Learning on the model.

Model Precision Recall F1-Score

Stacking 0.8059 0.8893 0.8390
TSMASAM 0.9972 0.9996 9984

Table 4 shows the performance of the selected base learners (CNN, LSTM, and LENET)
in the ensemble learning model on the [14] dataset. It can be seen from the table that LSTM
and LENET have better performance in terms of recall rate, while CNN achieves 99.73% in
precision, but the recall rate is 0.34% lower than that of LSTM and LENET. On the other
hand, our method achieves an average improvement of 7.28% in F1-score over base learners
(CNN, LSTM, and LENET).
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Table 4. The performance of the base learner on the dataset.

Model Precision Recall F1-Score

CNN 0.9973 0.9966 0.9970
LSTM 0.8017 1.0000 0.8899
LENET 0.8018 1.0000 0.8900

Table 5 shows the performance of the proposed method on different datasets. Un-
der the KDD99 dataset, our method achieves 99.78% precision, 99.81% recall, and 99.78%
F1-score. On the UNSW-NB15 dataset, our method achieves 80.51% precision, 92.93% recall
and 86.27% F1-score.

Table 5. TSMASAM performance on other datasets.

Model Precision Recall F1-Score

KDD99 0.9978 0.9981 0.9978
UNSW-NB15 0.8051 0.9293 0.8627

InSDN 0.9972 0.9996 0.9984

Table 6 shows the impact of different base learners on the detection results of our
method. In addition, we also show the average computation time of TSMASAM for each
traffic datum in the table. From it, we can see that our method achieves the best performance
when the Kernel_size of CNN is 5, the number of hidden layers of LSTM is 3, and the
number of hidden layers is 128.

Table 6. Ablation experiment.

Base Leaner Precision Recall F1-Score Time

CNN(kernel_size = 5), Lenet, Lstm(hidden_size = 128, hidden_layer = 3) 0.9978 0.9981 0.9978 1.3970-10
CNN(kernel_size = 3), Lenet, Lstm(hidden_size = 128, hidden_layer = 3) 0.9967 0.9971 0.9969 8.2888-10
CNN(kernel_size = 5), Lenet, Lstm(hidden_size = 128, hidden_layer = 10) 0.8016 1.0000 0.8899 8.9873-10
CNN(kernel_size = 5), Lenet, Lstm(hidden_size = 64, hidden_layer = 3) 0.9942 0.9899 0.9920 8.3121-10
CNN(kernel_size = 3), Lenet, Lstm(hidden_size = 64, hidden_layer = 3) 0.9899 0.9994 0.9946 8.8011-10
CNN(kernel_size = 5), Lenet, Lstm(hidden_size = 64, hidden_layer = 10) 0.8016 1.0000 0.8899 8.8915-10

The analysis of the control group experiment is as follows: introducing a self-attention
mechanism in ensemble learning to capture long-term dependencies between data samples
can improve the model’s detection performance. After adding the self-attention mechanism,
the method in this paper improves the original detection index by 15.37% on average. In the
experiments of base learners, our method integrates the detection capabilities of each base
learner well. In experiments on different datasets, our method shows good generalization
ability and performs well on KDD99 and UNSW-NB15. Since the method in this paper seeks
to improve the detection performance, such as introducing a self-attention mechanism,
the computational complexity is increased. Therefore, it is not suitable for application
scenarios with high response speeds.

5. Conclusions

While SDN technology brings a certain degree of convenience to people, it also
brings security risks due to its own design. In order to protect the security of supporting
SDN technology, this paper proposes an intrusion detection algorithm, TSMASAM, based
on ensemble learning. TSMASAM introduces a self-attention mechanism to capture the
correlation between data features to improve the integration effect of the model; TSMASAM
achieves the detection and identification of abnormal network traffic by integrating the
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sample embedding obtained above and the inspection results of the heterogeneous base
learner. The purpose is to effectively improve the effect of an integrated detection of
abnormal traffic in industrial scenarios using SDN technology.

The dataset used in this paper is generated by simulating the SDN network built in the
virtual machine environment, and the traffic data of the controller is collected. Therefore,
the model in this paper is mainly oriented to the abnormal traffic detection of the controller
in the SDN network. The model proposed in this paper increases the training time and
running time to a certain extent in order to consider the influence of the base learner on the
model. In the real environment, the intrusion detection algorithm also pays attention to
timeliness, so the next step is to study how to maintain the algorithm’s performance while
shortening the running time.
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