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Abstract: Aphanomyces root rot (ARR) is a devastating disease that affects the production of pea.
The plants are prone to infection at any growth stage, and there are no chemical or cultural controls.
Thus, the development of resistant pea cultivars is important. Phenomics technologies to support
the selection of resistant cultivars through phenotyping can be valuable. One such approach is to
couple imaging technologies with deep learning algorithms that are considered efficient for the
assessment of disease resistance across a large number of plant genotypes. In this study, the resistance
to ARR was evaluated through a CNN-based assessment of pea root images. The proposed model,
DeepARRNet, was designed to classify the pea root images into three classes based on ARR severity
scores, namely, resistant, intermediate, and susceptible classes. The dataset consisted of 1581 pea
root images with a skewed distribution. Hence, three effective data-balancing techniques were
identified to solve the prevalent problem of unbalanced datasets. Random oversampling with image
transformations, generative adversarial network (GAN)-based image synthesis, and loss function
with class-weighted ratio were implemented during the training process. The result indicated that
the classification F1-score was 0.92 ± 0.03 when GAN-synthesized images were added, 0.91 ± 0.04
for random resampling, and 0.88 ± 0.05 when class-weighted loss function was implemented, which
was higher than when an unbalanced dataset without these techniques were used (0.83 ± 0.03). The
systematic approaches evaluated in this study can be applied to other image-based phenotyping
datasets, which can aid the development of deep-learning models with improved performance.

Keywords: plant breeding; disease identification; deep learning; generative adversarial networks

1. Introduction

Aphanomyces root rot (ARR), caused by the oomycete Aphanomyces euteiches Drechs.
in pea (Pisum sativum L.), results in severe root damage, thus reducing pulse quality
and yield [1]. Plants are susceptible to this disease during any stage of their growth
and development. Seed treatments and fungicides are not completely effective, and the
pathogen can survive in the soil for many years without a host. Once the pathogen builds
up in the soil due to favorable conditions, it can cause damage to successive susceptible
crops as well [2]. Initially, the lateral roots are prone to the infection, and eventually spread
to the epicotyl. The pathogen can spread up to a distance of 18 cm from the infected plant
and affect nearby healthy plants [3]. The disease may cause loss of crop up to 86% [4]. Thus,
the development of resistant cultivars is crucial to limit yield losses.

Breeding and phenotyping have assisted in developing cultivars with better resistance
to diseases [5–8]. Often, the assessment of disease resistance traits (phenotypes) for a broad
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set of genotypes is performed by observing their visual features [9,10]. However, since
large numbers of plant materials are evaluated during cultivar development, standard
phenotyping methods can be tedious and sometimes subjective. As an alternative approach,
these visual characteristics can be processed for quantitative selection of disease resistance
through deep learning-based image processing techniques such as convolutional neural
networks (CNNs) [11,12]. Phenotypic features such as the disease status, morphology, and
growth dynamics can be extracted automatically by assimilating prior knowledge and
expertise [13].

Deep learning has demonstrated its potential in numerous applications of machine
vision—classification, object detection, semantic segmentation, and regression tasks [14,15].
Numerous CNN-based deep learning models have been developed for classification pur-
poses. A typical CNN is designed usually using the following: a convolution layer, which
extracts features from the input or previous layers; a pooling layer, which generalizes the
features and minimizes the size for computational performance; and a fully connected layer,
which classifies an image. The convolutional layers [16] are defined by the convolution
filters, which help in transforming and highlighting the patterns in the input image. The
pooling layers reduce the dimensions of the data by linking a cluster of neurons from the
previous layer to a single neuron. The image classification then takes place in the fully
connected layers, where the activations are processed in the form of flattened matrices.

Deep learning models have gained popularity in dealing with agricultural problems
such as crop and weed species identification [17], plant disease detection [18], fruit count-
ing and grading [19], food and grain quality monitoring [20], yield prediction [21], and
crop stress phenotyping [22,23]. Phenomics techniques integrated with deep learning
approaches can increase the throughput of plant phenotyping. Transforming the acquired
images into authentic, reliable, and wide range of phenotypic features is a key factor for
the successful application of image-based tools. Numerous approaches based on CNNs
have been proposed by researchers for performing image-based plant phenotyping. An
open-source tool called the Deep Plant Phenomics was introduced to implement CNNs for
performing several common phenotyping tasks [24]. An accuracy of 96.88% was obtained
for classification of five different mutants of Arabidopsis, and a mean absolute difference of
20.8 h was observed for age regression task (prediction of crop age, measured in hours after
germination to relate it to plant maturity). A deep learning technique was used to identify
the plant stress level due to nitrogen deficiency, in which the CNN outperformed machine
learning algorithms and had an accuracy of approximately 75% [25]. A digital plant phe-
notyping platform for early-stage drought detection and quantification in Arabidopsis
was designed using deep learning and chemometrics [26]. The researchers processed close
range spectral images with deep learning techniques and validated its feasibility based on
an experiment for drought stress quantification in semi-controlled environments.

In this study, a CNN based classification model, DeepARRNet, was implemented to
facilitate the evaluation of resistance to ARR in pea cultivars. Visible symptoms of ARR
include honey-brown discoloration of pea roots, poor lateral root growth with minimal
root hairs, and wilting of lower leaves [1]. The reliability of identification of diseases
in crops and severity prediction have improved with the application of deep learning
algorithms. However, acquisition of massive amounts of data is a laborious and skill-
demanding task [27]. In addition, in many situations, image data for phenotyping are often
not balanced between classes, where fewer images may be available in some classes. This
situation is sometimes referred to as imbalanced or unbalanced data in data analytics. In
existing plant phenotyping studies that are based on deep learning approach, the model
does not reflect the features of the minority class owing to an under-sampling problem.
Therefore, a proper data balancing technique should be utilized to develop a robust model
that can replicate the original form of the unbalanced image data.

The random resampling method has been extensively applied in other fields such
as toxicology [28], biotechnology [29], and drug discovery [30] to deal with unbalanced
data. In a study on tomato disease detection [31], a deep learning model was used in
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conjunction with generative adversarial networks (GANs) [32] for generating synthetic
images of tomato plants to increase the amount of image data. The model was able
to achieve a 10-class classification accuracy of 97.1% and concluded that augmentation
through GANs increases the generalizability of the model and prevents it from over-fitting
problem. On a similar note, Giuffrida et al. [33] and Espejo-Garcia et al. [34] proposed
GAN models to synthesize artificial images of Arabidopsis plants and tomato plants for
augmentation purposes. In the former study, the GAN was conditioned by leaf count,
generating a plant image with the specified number of leaves. The feasibility and benefits of
GAN-based image augmentation for multiple-disease identification were also assessed [35].
The deep learning model achieved an accuracy of 93.7% when trained with both real and
GAN-synthesized images. Madsen et al. [36] also applied GAN to generate images of
multiple plant species seedlings using a single network for improving the performance of
plant species classification models and found better results with an average recognition
accuracy of 58.9% for the generated images. Nevertheless, the benefit of the GAN approach
over other resampling approaches needs to be further evaluated prior to its application.
Therefore, in this study, three class-balancing techniques were enforced to identify the
effective technique for improving the DeepARRNet model performance to evaluate ARR
disease severity in peas. The three techniques used to address class asymmetry were:
(i) random oversampling with image geometry and intensity-based transformations, (ii)
synthesizing artificial images for class with low sample size using GAN, and (iii) loss
function with class weighted ratio.

The main contributions of the presented work are listed as follows: (i) agriculture
data is often limited by small and unbalanced sample size, and the validation of different
approaches and its effect on the results is critical information that may be useful to those
in the agricultural domain; (ii) the applications of machine learning and/or deep leaning
approaches in root sample analysis are highly sparse, though several can be found for
crop and leaf samples; and (iii) disease resistance is an important trait that plant breeders
need to measure, given that root phenotyping for disease resistance is still based on visual
estimation, image-based approaches such as one developed in this project (RGB imaging
with CNN-based approach) can be useful.

2. Materials and Methods
2.1. Sample Preparation and Data Collection

In greenhouse conditions, 50 advanced breeding lines, two cultivars and two John
Innes accessions of peas (Pisum sativum L.) were evaluated for reaction to a pure culture
isolate of Aphanomyces euteiches, Dresch. acquired from the USDA-ARS Grain Legume
Genetics and Physiology Research Unit, Pullman, WA, United States. The greenhouse was
maintained at 25 ◦C (day) and 18 ◦C (night) with a 16-h day. Two treatments, control and
inoculated, were used and the experiment was planted in a split-plot design (treatment
was the whole plot) with three replicates. Zoospores preparation procedure is reported
in Wicker et al. [37]. The inoculum concertation was 1 × 104 spores per mL. The major
steps involved: (i) disinfection of seeds and planting in containers with perlite as the
growing media; (ii) inoculation (2 mL of inoculum to produce infection and 2 mL sterile
distilled water for non-inoculated control) performed in fourteen-day-old seedlings; and
(iii) evaluation of disease symptoms on cleaned roots by scoring on a 0–5 disease scale,
a standard phenotyping procedure reported in McGee et al. [6]. Table 1 describes the
symptoms for the visual scores. More details can be found in Marzougui et al. [38].

A digital camera with 16-MB (Canon® PowerShot SX530 HS, Irving, TX, United States)
was used to collect image data of 4608 × 3456 pixels at 50 cm above the samples. A
fluorescent light source was used to illuminate the object of interest (400–700 nm), and the
set-up was similar to those described in Marzougui et al. [38,39]. The original data captured
images of six plants together in a single shot with an image resolution of 0.17 mm/pixel.
Image acquisition of roots and visual scoring were performed immediately after plants
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were removed from the pots and roots were cleaned. The images were cropped such that
each image comprised of one root sample.

Table 1. Aphanomyces root rot visual disease scoring criteria.

Visual Disease
Score Symptoms Class Number of Image

Samples

0.0 No discolored lesions on the entire root Healthy/Resistant 784

0.5 Up to 5% of discolored lesions on the entire root
Resistant 41.0 5–15% of discolored lesions on the entire root

1.5 15–25% of discolored lesions on the entire root

2.0 25–50% minor discoloration on the entire root
Intermediate 7272.5 50–75% major discoloration on the entire root

3.0 More than 75% of brown discoloration on the entire root

3.5 More than 75% of brown discoloration on entire root system
with some symptoms on hypocotyl

Susceptible 70
4.0 Brown discoloration on entire root system with shriveled and

brown hypocotyl

4.5 Brown discoloration on entire root system with a shriveled,
brown, and soft hypocotyl

5.0 Dead plant

The disease symptoms were rated on a scale from 0.0 to 5.0 through visual inspection
of root discoloration and hypocotyl softness. Most of the healthy roots were scored as 0.0,
however, the class contained a few root images with a score of 0.5. The disease samples
were separated into three classes based on the visual scores: resistant (term generally refers
to high levels of partial resistance), intermediate (term generally refers to low levels of
partial resistance), and susceptible classes. Since the resistant class had only 4 samples,
the final data (1581 non-inoculated and inoculated root images) considered for this study
were categorized as resistant (784 images, since the symptoms would be similar to those of
non-inoculated root images), intermediate (727 images), and susceptible (70 images) classes.
Sample pea root images from the three classes are presented in Figure 1.

2.2. Dataset Pre-Processing and Class Balancing

All image processing and analysis were performed in MATLAB® (2021a, The Math-
Works, Natick, MA, USA). The program was operated on an Acer Nitro 5 Intel Core i5 9th
Generation Laptop (Santa Clara, CA, USA; 32 GB/1 TB HDD/Windows 10 Home/GTX
1650 Graphics). The images were resized to 224 pixels × 224 pixels × 3 bands to fit the
input size of the DeepARRNet classification model. The number of images in the resistant
and intermediate classes was greater than the susceptible class. Such unbalanced classes
may create issues since the model might not learn sufficient features of the specific class
of interest (i.e., susceptible). This potential issue, the ‘accuracy paradox’, leads to a better
overall performance, even if the result for the susceptible class is poor. Additionally, after
the separation of test data, the amount of training data left in these classes is reduced,
making it extremely difficult to build a robust model. Therefore, to address this problem,
three different class-balancing methods were adopted in this study: (i) increasing the num-
ber of images in the underlying class (susceptible) through random oversampling with
conventional intensity- and geometry-based image augmentations; (ii) artificially creating
additional training images for the susceptible class through GANs; and (iii) modifying the
standard loss function of CNN with the introduction of class-weight ratio. The original
dataset and datasets created by corresponding methods described above are denoted as S1,
S2, S3, and S4 hereafter. Each dataset was separately used to train and test the classification
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models: without class-balancing (using S1), and with the above three balancing techniques
(using S2, S3, and S4, respectively). Twenty percent of the images in each of these datasets
(Si; i = 1 to 4) were reserved for testing (Ti; i = 1 to 4) and the remaining were used for
training and developing the model (Ri; i = 1 to 4).
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Figure 1. Sample pea root images from the three classes: healthy/resistant (first row), intermediate
(second row), and susceptible (third row).

2.2.1. Random Oversampling

In random oversampling, the images in the underlying class are randomly selected,
duplicated, and added to the class’s training data. Since the dataset in this study is highly
unbalanced, images of the susceptible class were chosen randomly with replacement,
i.e., the same image can be chosen more than once for duplication. However, seeking a
balanced distribution by such a resampling operation for highly skewed distribution can
result in overfitting problems and reduced generalizability [28]. Hence, instead of adding
the duplicated images directly into the training data, image intensity- or geometry-based
transformations were additionally performed on these images. These transformations
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included mirroring along y-axis (vertical flipping), translation (left and right) along x-axis
by a specified number of pixels, Gaussian blurring with a standard deviation of 1.5, and
brightness variation with propositional coefficients of 0.85, 0.95, and 1.15. Therefore, for
each image from the training set S2 considered for oversampling, seven augmented images
were additionally derived. Finally, to reduce the class imbalance in the dataset, 600 images
for the susceptible class were derived by this resampling method and added to the training
set of S2 (R2) to support the model in training process.

2.2.2. GAN-Based Image Augmentation

The GAN architecture consists of a generator for synthesizing new images, and a
discriminator that differentiates these synthetic images from the real ones [32]. The features
of the output image are conditioned by the real images used for training the model. The
generator and the discriminator undergo simultaneous training in an adversarial process,
where the generator tries to deceive the discriminator through its artificial images, while
the discriminator diagnoses these artificial images.

The main goal of developing a GAN was to generate artificial pea root images similar
to the real images with ARR infection based on the specific class. The resulting images were
used to augment the S3 training set (R3). Thus, the role of the artificially generated images
was to increase the number of training samples in the underlying class, i.e., susceptible
class, which was expected to improve the classification accuracy of the model.

The proposed generator network accepts random 100-dimensional vector z and upscale
into an array with the size of 24 × 24 × 512 using a fully connected operation in the first
step. This array is passed through a set of four transposed convolutional (t-Conv) layers,
with each of the first three followed by a batch-normalization layer and a ReLU layer. The
t-Conv layers use 5 × 5 filters and 2 × 2 strides to perform transposed convolutions. For
the last t-Conv layer, three 5 × 5 filters were specified, which corresponds to the three
channels in the RGB images. The network outputs pseudo root images G(z) the size of
224 × 224 × 3, with similar visual features to that of the original images. The input to
the discriminator network is the generated G(z) and the original images x. This network
optimizes its parameters and weights to improve its ability to correctly identify the input
image as real or artificial. The ultimate goal of the generator is to produce a data distribution
G(z) very close to x, expressed mathematically by the logarithmic function log(1 − D(G(z))),
where D(G(z)) is the discriminator’s output. Thus, a smaller value of this function denotes
better performance of the generator. On the other hand, the optimization goal of the
discriminator is to precisely determine if its input is from G(z) or x, given by log(D(x)).

The discriminator returns a prediction score (whether the image is recognized as real
or synthetic) using a series of convolution, batch normalization, and leaky ReLU layers.
Convolution parameters specified for the discriminator were similar to the generator’s
t-Conv layers: 5 × 5 filters and 2 × 2 strides. In addition, the discriminator was fitted with
leaky ReLU (with a scale of 0.15) in place of ReLU, and a dropout layer (probability of 0.3) to
add noise to the input image. The use of batch-normalization layers stabilizes the network,
preventing it from crashing during the training process. The tanh function was used at the
last layer of the generator and discriminator networks. The detailed architectures have been
illustrated in Figures 2 and 3, respectively (Tables S1 and S2 in Supplementary Materials
provide the summary of the networks). After some iterations, the loss function scores of
the generator and discriminator will reach an equilibrium, after which the generator can be
expected to synthesize plausible images from random vectors.

The equations defining the objective function of GAN, where the discriminator tries to
maximize this function against the adversarial generator that tries to minimize it, can be
found in Madsen et al. [36]. The Adam optimizer with a learn rate of 0.001 and gradient
decay factor of 0.5 was set as the optimization algorithm to update the weights of the
GAN. The training was manually stopped after 800 iterations. The original images of
the susceptible class were fed to the GAN model and a total of 600 artificial images were
generated, which combined, made the training set (R3).
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2.2.3. Loss Function with Weighted Ratio

The loss function is a primary key for training any deep learning model with high
performance and robustness. In this study, we implemented a commonly used loss function
for classification problems—the multi-class cross entropy loss function which combines
the multi-class cross entropy loss with the sigmoid activation layer. Since the frequency of
appearance for susceptible class during training was much less compared to the other two
classes (resistant and intermediate), using the standard loss function makes the classification
model tend to learn the features only from the dominant classes, ignoring the underlying
susceptible class. As a modification, the loss computed for the samples was weighted based
on the number of samples in each class. Intuitively, higher weight was assigned to the
loss experienced due to the misclassification of samples in the minor class. For a given
batch size N, number of samples n in a batch, and class number c (c = 1, 2 or 3), the weight
assigned for the class, w(n,c) is given by equation described in [22]. Two weighing schemes
were used to compute the sample weights: (i) inverse of number of samples (INS); and (ii)
inverse of square root of number of samples (ISRNS), described in Equations (1) and (2),
respectively.

wn,cINS =
1

Number o f samples in class c
(1)

wn,cISRNS =
1√

Number o f samples in class c
(2)

The dataset S4 was used to evaluate the classification performance with these weights
incorporated in the neural network’s loss function.

2.3. DeepARRNet Architecture

During our preliminary evaluation, various state-of-the-art CNNs such as VGG16,
Resnet51, Inceptionv3, Xception, and EffiencientNet-B0 were evaluated, where EffiencientNet-
B0 outperformed other models. Therefore, in this study, the proposed DeepARRNet net-
work was developed based on EfficientNet-B0 [40] classification model. The researchers
observed that better accuracy can be achieved by stabilizing the network’s depth, width,
and resolution. Increasing the depth can help the network learn complex features and
increase generalization ability; wider networks can learn finer details in the image; and in a
high-resolution image, the minute details are plausible. Hence, harmonizing the scaling
of these three dimensions of a CNN is important to achieve improved accuracy. Based
on this observation, the EfficientNet family of networks has been developed to improve
the performance by adopting a fixed set of scaling coefficients for scaling in all three
dimensions—depth α (number of channels), width β (number of layers), and resolution γ
(number of pixels in the image). A compound coefficient φ was defined that denotes the
quantity of resources available to determine the scaling of α, β, and γ. The restraint (α ×
β2 × γ2) ≈ 2 is enforced to make sure that the total floating-point operations per second
(FLOPS) does not exceed 2φ. In the DeepARRNet model, the parameter values are α =
1.1; β = 1.2; and γ = 1.15. The accuracy and FLOPS are together optimized through this
multi-objective based neural architectural search.

The network comprises ‘inverted’ residual blocks, sometimes called MBConv (Mobile
Inverted Bottleneck Convolution), which was introduced in the MobileNetv2 CNN architec-
ture. The residual block concatenates the activations in the start and end of a convolutional
block through a skip connection. The initial layer with more channels is compressed using
1 × 1 convolution operation, and then expanded at the end to match with the number
of channels in the initial layer (for concatenation), whereas in inverted residual blocks,
the network is widened in the first step by 1 × 1 convolutions, followed by a depth-wise
convolution, and in the final step, another 1 × 1 convolution reduces the network to fit the
original number of channels. As mentioned earlier, all images were resized to a dimension
of 224 × 224 pixels to fit the input size of the network. The overall structure of the proposed
model, which classifies pea root images into either ‘intermediate’, ‘susceptible’ to ARR
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infection, or ‘resistant’, is presented in Figure 4. The Softmax function was used as the
activation function at the last layer of the model. For the DeepARRNet model trained with
different methods of balancing the data, the stochastic gradient descent with momentum
(sgdm) was adopted as the optimizer for training the networks, with a mini-batch size
of 16 images and maximum number of epochs set to 30 (with early stopping). Other
hyperparameters were optimized separately with each of the four datasets (R1—without
class balancing and standard loss function; R2—classes balanced through oversampling;
R3—classes balanced through GAN-synthesized images, and R4—unbalanced classes with
weighted loss function) using the trial-and-error method on the following set of values—
learn rate: (0.001, 0.005, 0.01, 0.05, 0.1, 0.5); momentum: (0.9, 0.99, 0.999); and learn rate
drop factor for a period of 20 iterations: (0.001, 0.005, 0.01, 0.05).
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The DeepARRNet model was evaluated under four conditions based on different class-
balancing techniques. After tuning the hyperparameters for each of the four conditions
independently, the network was trained and tested for three independent runs (to avoid
the effect of single random sampling on the model performance) on the corresponding
dataset (with different seeds). The procedure is summarized in Table 2. The precision,
recall, accuracy, and F1-score evaluation metrics were used to statistically analyze the
performances. Precision is the ratio of true positives and total number of classified objects,
while recall is the ratio of true positives and the actual number of samples in the evaluated
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data set. The F1-score is defined as the harmonic mean of precision and recall. Accuracy is
the percentage of samples correctly classified by the model. The testing results are reported
in the paper, whereas the training results are summarized in the Supplementary Materials
(Tables S3–S6).

Table 2. Dataset manipulation and evaluation procedure for assessing the DeepARRNet model and
different class-balancing methods.

Dataset and Class-Balancing
Technique Implemented 1st Seed (Sia) 2nd Seed (Sib) 3rd Seed (Sic)

S1—Without class balancing
(original dataset)

Evaluate on S1a (training with
R1a and test on T1a)

Evaluate on S1b (training with
R1b and test on T1b)

Evaluate on S1c (training with
R1c and test on T1c)

S2—Random oversampling Evaluate on S2a (training with
R2a and test on T2a)

Evaluate on S2b (training with
R2b and test on T2b)

Evaluate on S2c (training with
R2c and test on T2c)

S3—GAN-based image
synthesis

Evaluate on S3a (training with
R3a and test on T3a)

Evaluate on S3b (training with
R3b and test on T3b)

Evaluate on S3c (training with
R3c and test on T3c)

S4—Loss function with
weighted ratio

Evaluate on S4a (training with
R4a and test on T4a)

Evaluate on S4b (training with
R4b and test on T4b)

Evaluate on S4c (training with
R4c and test on T4c)

3. Results
3.1. Performance of the Model Using Original Images

The DeepARRNet was initially evaluated with the original dataset to determine
the potential of the model for classifying disease resistance to ARR. After tuning the
hyperparameters, this model was trained and tested independently on S1 with three seeds.
The class-wise and overall classification results (Mean ± SD) on the test data are presented
in Table 3. It was observed that the model that was trained and validated with the original
data had an overall F1-score of 0.83 and an average accuracy of 84.4%. For this model, the
class-wise F1-score was 0.95 for classifying resistant root images and 0.88 for intermediate.
The precision values ranged from 0.80 to 0.99, whereas recall ranged from 0.06 to 0.99. As
expected, though good results were obtained for the resistant and intermediate classes, the
performance for classifying images in the underlying susceptible class was low, with an
F1-score of only 0.09. This potential problem (accuracy paradox) resulted in a good overall
performance but poor results over the classes with a smaller number of samples. Balancing
the classes with an efficient method could accord a robust classification model, hence, can
improve the performance of the DeepARRNet model during classification.

Table 3. Performance (Mean ± SD) during testing using DeepARRNet model trained with the original
pea root images.

Class Precision Recall F1-Score

Resistant 0.99 ± 0.02 0.92 ± 0.03 0.95 ± 0.03
Intermediate 0.80 ± 0.03 0.99 ± 0.03 0.88 ± 0.03
Susceptible 0.97 ± 0.05 0.06 ± 0.05 0.09 ± 0.05
Overall 0.93 ± 0.03 0.72 ± 0.03 0.83 ± 0.03

The activation maps derived from the intermediate layers of the network are illustrated
in Figure 5. The maps present the first 36 features from the first, the penultimate, and the
last convolution layer of DeepARRNet (from left to right in Figure 5). It can be observed
that the model tends to learn finer and minute details present in the images as the layers get
deeper. The activations just present the outlines of the roots in the initial layers, whereas, in
deeper layers, the feature maps seem to be more abstract and have no sharp edges. The
activations gradually fade, which means that the disease portions of the root get more
attention rather than just the edges.
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Skewed distribution of images over the classes (such as the dataset used in this study)
are very commonly encountered in plant phenotyping studies. These results imply that
models trained with unbalanced datasets are not suitable for screening plant cultivars
based on the severity of disease. Since the performance of the model was not satisfying
over a particular class when trained with such a dataset, this study also investigated the
impact of three data-balancing methods on the model’s performance.

3.2. Impact of Random Oversampling Method on Model Performance

The disproportionateness in the pea root dataset was reduced by oversampling the
images in the susceptible class randomly with additional image augmentations, thereby
creating 600 new images for the class to support the training. The model performance on
the test sets is reported in Table 4. It can be observed that the recall value for susceptible
class has improved to 0.68 from just 0.06 (without balancing), thus improving the F1-score
of the class. For the model, the F1-score was 0.78–0.96, precision was 0.86–0.99, and recall
rate was 0.68–0.98. The overall F1-score and average classification accuracy were 0.91 and
91.9%, respectively. The results showed that random resampling (oversampling) method
with added image geometry and intensity-based augmentations significantly improved the
overall results of the model.

Table 4. Performance (Mean ± SD) during testing using DeepARRNet model trained with the original
pea root and augmented data with random oversampling method.

Class Precision Recall F1-Score

Resistant 0.99 ± 0.02 0.92 ± 0.03 0.96 ± 0.03
Intermediate 0.86 ± 0.04 0.98 ± 0.04 0.91 ± 0.04
Susceptible 0.91 ± 0.06 0.68 ± 0.06 0.78 ± 0.06
Overall 0.93 ± 0.03 0.85 ± 0.04 0.91 ± 0.04

3.3. Impact of Addition of GAN-Generated Images on Model Performance

The GAN model proposed was also implemented for generating artificial images of
the susceptible class using the available original images in the training set (R3). The fidelity
of the generated images was assessed through visual analysis before adding them to train
the DeepARRNet model. Figure 6 presents the artificial images produced at different
epochs of GAN’s training process. The training was manually stopped after 800 epochs
(~5500 iterations). From the training plot (associated with the generator and discriminator
scores), it was observed that an equilibrium was reached soon after 3000 iterations. This
shows that feasible numbers of features have been learnt by the network and can now
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generate plausible images of pea roots affected by ARR. After completion of the training
phase, the generator component of the GAN was used to create new artificial images of the
susceptible class by passing random vectors. The qualitative results of the generator can be
visually examined in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 17 
 

 

the susceptible class by passing random vectors. The qualitative results of the generator 

can be visually examined in Figure 7. 

 

Figure 6. Synthetic ARR-affected pea root images generated by GAN model during the training 

process. 

 

Figure 7. Sample artificial images synthesized by the GAN-generator model. 

The classification performance of DeepARRNet after training with the unified origi-

nal and GAN-generated images are presented in Table 5. It is evident from the table that 

data augmentation through GANs to balance the dataset can cause a performance boost 

for the underlying class as well as the overall results. After training on the combined da-

taset, the F1-score and accuracy of the model improved progressively to 0.92 and 93.3%, 

respectively. Moreover, the recall rate and F1-score of the susceptible class was observed 

to be 0.75 and 0.81, respectively. This demonstrates that the GAN-generated images create 

emphasis and provide more information on the features of this class, making the model 

more robust. 

Table 5. Performance (Mean ± SD) during testing using DeepARRNet model trained with the orig-

inal pea root and GAN-augmented data. 

Class Precision Recall F1-Score 

Resistant 0.99 ± 0.01 0.93± 0.01 0.96 ± 0.01 

Intermediate 0.90 ± 0.05 0.99 ± 0.05 0.91 ± 0.05 

Susceptible 0.91 ± 0.07 0.75 ± 0.04 0.81 ± 0.06 

Overall 0.96 ± 0.03 0.87 ± 0.04 0.92 ± 0.033 

In this study, the GAN was able to generate representative images for susceptible 

class after training it with 70 original images (Figures 6 and 7). This could be because of 

the dataset being collected in a controlled environment, where imaging conditions were 

optimized and stable. Therefore, there were lower variations in image characteristics due 

to illumination, background, the orientation of the root (aligned along y-axis), etc. Hence, 

the features representing the class were learnable during GAN application with a lower 

number of images. Nevertheless, more training data might improve the quality of the gen-

erated images, associated features, and results. 

3.4. Impact of Introducing Class-Weighted Ratio in Loss Function 

Figure 6. Synthetic ARR-affected pea root images generated by GAN model during the training process.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 17 
 

 

the susceptible class by passing random vectors. The qualitative results of the generator 

can be visually examined in Figure 7. 

 

Figure 6. Synthetic ARR-affected pea root images generated by GAN model during the training 

process. 

 

Figure 7. Sample artificial images synthesized by the GAN-generator model. 

The classification performance of DeepARRNet after training with the unified origi-

nal and GAN-generated images are presented in Table 5. It is evident from the table that 

data augmentation through GANs to balance the dataset can cause a performance boost 

for the underlying class as well as the overall results. After training on the combined da-

taset, the F1-score and accuracy of the model improved progressively to 0.92 and 93.3%, 

respectively. Moreover, the recall rate and F1-score of the susceptible class was observed 

to be 0.75 and 0.81, respectively. This demonstrates that the GAN-generated images create 

emphasis and provide more information on the features of this class, making the model 

more robust. 

Table 5. Performance (Mean ± SD) during testing using DeepARRNet model trained with the orig-

inal pea root and GAN-augmented data. 

Class Precision Recall F1-Score 

Resistant 0.99 ± 0.01 0.93± 0.01 0.96 ± 0.01 

Intermediate 0.90 ± 0.05 0.99 ± 0.05 0.91 ± 0.05 

Susceptible 0.91 ± 0.07 0.75 ± 0.04 0.81 ± 0.06 

Overall 0.96 ± 0.03 0.87 ± 0.04 0.92 ± 0.033 

In this study, the GAN was able to generate representative images for susceptible 

class after training it with 70 original images (Figures 6 and 7). This could be because of 

the dataset being collected in a controlled environment, where imaging conditions were 

optimized and stable. Therefore, there were lower variations in image characteristics due 

to illumination, background, the orientation of the root (aligned along y-axis), etc. Hence, 

the features representing the class were learnable during GAN application with a lower 

number of images. Nevertheless, more training data might improve the quality of the gen-

erated images, associated features, and results. 

3.4. Impact of Introducing Class-Weighted Ratio in Loss Function 

Figure 7. Sample artificial images synthesized by the GAN-generator model.

The classification performance of DeepARRNet after training with the unified original
and GAN-generated images are presented in Table 5. It is evident from the table that data
augmentation through GANs to balance the dataset can cause a performance boost for the
underlying class as well as the overall results. After training on the combined dataset, the
F1-score and accuracy of the model improved progressively to 0.92 and 93.3%, respectively.
Moreover, the recall rate and F1-score of the susceptible class was observed to be 0.75 and
0.81, respectively. This demonstrates that the GAN-generated images create emphasis and
provide more information on the features of this class, making the model more robust.

Table 5. Performance (Mean ± SD) during testing using DeepARRNet model trained with the original
pea root and GAN-augmented data.

Class Precision Recall F1-Score

Resistant 0.99 ± 0.01 0.93± 0.01 0.96 ± 0.01
Intermediate 0.90 ± 0.05 0.99 ± 0.05 0.91 ± 0.05
Susceptible 0.91 ± 0.07 0.75 ± 0.04 0.81 ± 0.06
Overall 0.96 ± 0.03 0.87 ± 0.04 0.92 ± 0.033

In this study, the GAN was able to generate representative images for susceptible
class after training it with 70 original images (Figures 6 and 7). This could be because of
the dataset being collected in a controlled environment, where imaging conditions were
optimized and stable. Therefore, there were lower variations in image characteristics due
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to illumination, background, the orientation of the root (aligned along y-axis), etc. Hence,
the features representing the class were learnable during GAN application with a lower
number of images. Nevertheless, more training data might improve the quality of the
generated images, associated features, and results.

3.4. Impact of Introducing Class-Weighted Ratio in Loss Function

In this section, two class weight ratio schemes namely, INS and ISRNS, were inves-
tigated on the loss function to determine the best approach for dealing with unbalanced
classes. The metrics in the test datasets are shown in Table 6. The overall F1-scores in
both cases exceeded 0.87. It shows that class weights can increase the performance of the
model as the recall rates were observed to be around 0.60, compared to the 0.06 when
no class balancing technique was adopted. Furthermore, weighing the loss function as
an INS method gave a slightly better result as compared to ISRNS. For the DeepARRNet
model implemented using INS weighing scheme, the F1-score was 0.78–0.96, precision was
0.88–0.99, and recall rate was 0.64–0.98. Interestingly, the precision value of classifying
susceptible pea root images (0.89) was similar to the intermediate class (0.88). This shows
that the class weighting method influences the model such that the model learns from the
features of all classes with equal priority.

Table 6. Performance (Mean ± SD) during testing using DeepARRNet model trained with the original
pea root applying class weighing methods, INS and ISRNS.

Weight Ratio Class Precision Recall F1-Score

INS

Resistant 0.99 ± 0.01 0.93 ± 0.02 0.96 ± 0.02
Intermediate 0.88 ± 0.05 0.98 ± 0.07 0.94 ± 0.06
Susceptible 0.90 ± 0.08 0.64 ± 0.06 0.78 ± 0.07
Overall 0.94 ± 0.04 0.85 ± 0.05 0.88 ± 0.05

ISRNS

Resistant 0.99 ± 0.03 0.93 ± 0.03 0.96 ± 0.03
Intermediate 0.87 ± 0.06 0.98 ± 0.06 0.92 ± 0.06
Susceptible 0.85 ± 0.07 0.60 ± 0.08 0.79 ± 0.07
Overall 0.92 ± 0.05 0.83 ± 0.04 0.87 ± 0.05

4. Discussion

Deep learning algorithms can facilitate quantifying disease resistance in crops, as in
this study, where DeepARRNet was used to evaluate the ARR resistance in pea cultivars.
The model was developed to provide an end-to-end assistance to classify pea roots among
three ARR severity classes: resistant, intermediate, and susceptible. An overall F1-score
of 0.83 was observed, although the susceptible class accuracies were low. This can be
anticipated due to the unbalanced distribution of image data, especially in the underlying
class, though the overall performance was acceptable.

Unbalanced classes are a common issue for the application of deep learning algorithms,
especially in the agricultural domain [41–43]. One of the major objectives in this research
was to evaluate multiple class balancing approaches to mitigate the problem with unbal-
anced class sizes, especially since there may be some overlap between the intermediate and
susceptible classes on visual characteristics. All the three approaches utilized in this study
(random oversampling-based image augmentation, GAN based image augmentation, and
inclusion of weighing functions during classification) improved the overall performance
of DeepARRNet. Amongst these results, the GAN-based image synthesis of a susceptible
class showcased a highest overall F1-score of 0.92. The GAN-based approach may be com-
putationally intensive, depending on data size, image resolution, and GAN network. The
benefits of GAN-based image synthesis in improving model performance should surpass
its limitations for successful implementation. Thus, it should be noted that the significance
of selecting the effective class balancing technique would depend on the characteristics of
the dataset, deep learning model, and the optimization techniques adopted. Previously,
Marzougui et al. [39] adopted a CNN-based model and machine learning algorithms of
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selected image features to evaluate the severity of ARR infection in lentils. The generalized
linear regression model resulted in an accuracy of up to 91% for classification of three
disease severity classes. Many studies in the literature have dealt with similar problems
using hyperspectral imagery. For instance, Nagasubramanian et al. [44] deployed a novel
CNN model that had a classification accuracy of 95.7% to identify the soil borne fungal
disease charcoal rot in soybean crops using hyperspectral images.

Rebalancing the dataset can change the decision boundaries of the classification model,
thus improving the classification accuracies. This increases the chances of resulting in a
better performance by converting the false negatives into appropriate predictions [29]. This
will improve the recall rate of the underlying class, as observed in this study (comparing
the results in Table 3 with the performances when class-balancing was implemented, i.e.,
in Tables 4–6). Zhou et al. [45] reported that combining GAN with classification network
improved the average recall rate by 19% for identifying five stored-grain insect species.
Similarly, there was a significant improvement in accuracy (+5.2%) when GAN-generated
images were used to support the training of tomato disease identification model [46].
However, there is a risk of decrease in precision value due to misclassification of negative
samples as false positives. This theoretical intuition was in par with the results of this
experiment, as the precision value of susceptible class decreased when the dataset balancing
was attempted. Thus, class balancing improves the decision boundary, associating positive
and negative samples into positive note. This slightly reduces the precision but can boost
the recall rate, hence improving the F1 score.

5. Conclusions

Deep learning-based techniques show encouraging results in the agricultural domain.
This study proposed a CNN-based deep learning model—DeepARRNet—for qualitative
analysis of resistance to ARR in pea cultivars. The pea root image dataset comprising
three classes (“resistant”, “intermediate”, and “susceptible”) corresponding to the severity
of infection was prepared to train the proposed model. Since the dataset was highly
unbalanced, three class balancing techniques were compared based on the classification
performance of the model. The F1-scores obtained with the original unbalanced dataset,
through random oversampling, GAN-based image synthesis, and with class-weight ratio
implemented in the loss function were 0.83, 0.91, 0.92, and 0.88 respectively. All three
approaches were successful in improving the F1 score of the weakest class (susceptible class
had least samples) from 0.09 in unbalanced dataset to about 0.78–0.81. Therefore, the study
highlights the need for a suitable data-balancing techniques to develop a robust prediction
deep learning model for agricultural and phenomic applications. In future, diverse datasets
(different growing conditions, multiple image resolutions, and other imaging conditions)
may need to be utilized to further validate the applicability of the evaluated approaches.
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S4: Performance (Mean ± SD) during training with the original pea root images and random
oversampling augmented data using DeepARRNet model; Table S5: Performance (Mean ± SD)
during training with the original pea root and GAN-augmented data using DeepARRNet model;
Table S6: Performance (Mean ± SD) during training with the original pea root applying class weighing
methods, INS and ISRNS, using DeepARRNet model.
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