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Abstract: This work studies the feasibility of using a battery-less Near-Field Communication (NFC)
potentiostat for the next generation of electrochemical point-of-care sensors. A design based on an
NFC microchip, a microcontroller, and a custom potentiostat based on an operational amplifier is
presented. A proof-of-concept prototype has been designed and used to quantify glucose concen-
tration using commercial glucose test strips from chronoamperometry measurements. The device
is harvested and the sensor is read using a mobile phone. The prototype uses an antenna loop
covered with ferrite sheets to ensure stable operation of the electronics when the mobile phone is
used as reader. The use of ferrite reduces the detuning caused by the proximity of the metal parts
of the mobile phone. A comparison with a commercial glucometer device is provided. Results
obtained using a commercial glucometer and those provided by the proposed potentiostat show an
excellent agreement.

Keywords: near-field communication; battery-less; potentiostat; electrochemical sensor; point-of-care;
glucometer

1. Introduction

In modern societies, there is a progressive aging of the population and an increase
in people with chronic diseases that require follow-up care (e.g., diabetes) [1]. In this
context, home health care gains increased relevance year after year, underpinned by the
growing number of dependent people and mobility restrictions, as well as by the longer life
expectancy associated with certain chronic processes. In addition, the Corona Virus Disease
(COVID-2019) pandemic has accelerated the need to implement telemedicine services due
to the saturation of primary care centers and hospitals [2]. Here, the concept of Point-of-
Care Testing (PoCT) arises, defined as the medical diagnostic testing at or near the point of
care, in contrast to the historical pattern in which testing was limited entirely or primarily
to medical settings [3–5]. These testing devices are essential in developing countries to
guarantee adequate medical diagnosis in remote areas. The development of this concept
in the frame of remote monitoring at home of specific biomarkers by using sensors and
communication technologies opens new opportunities and a new paradigm in the digital
transition in the field of health. To this end, low-cost wearable devices pave the way for the
new generation of PoCT devices [6]. These devices should be easy to use for seniors.

Electrochemical biosensors, especially those based on electrochemical transduction,
can meet most of those requirements. Electrochemical biosensors are characterized by
the high sensitivity and selectivity that they can achieve by using a small sample volume.
The electrochemical transduction relies on a potentiostat, which is an electronic instru-
ment capable of measuring the current flowing through a chemical cell, which depends
on the voltage applied between its electrodes. In order to replace commercial expensive
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potentiostats, low-cost and open-source potentiostats have been recently presented in the
literature [7–10]. However, to control, process, and monitor the results of these instruments,
a computer is necessary. These portable devices are preferably intended to be used by sci-
entists replacing expensive laboratory instruments rather than as PoCT devices, where the
computer and screen can be replaced by a smartphone. Recently, potentiostats connected to
a smartphone via Bluetooth [11], or Wi-Fi. Additionally, USB or audio port interfaces [11]
have been used to power the device from the smartphone. However, these devices require
either cables or batteries to power the wireless transceiver, increasing the cost of the final
device and the difficulty to integrate them into cheap wearable devices. In addition to
clinical diagnosis, electrochemical sensing has been widely applied to other fields such as
food safety or environmental monitoring [12].

From a connectivity point of view, Radio Identification (RFID) is one of the most
important key enabling technologies for massive deployment of Internet of Things (IoT).
RFID is a system made up of tags whose electromagnetic response can be received by
specialized readers. Although the technology has been available for more than two decades,
it has not been oriented to the retail sector until recent years. A RFID subset such as
Near Field Communication (NFC) has recently been massively incorporated for payment
(especially due to the COVID pandemic) and consequently, most smartphones incorporate
NFC readers. In addition, the potential of this technology is growing in other fields such as
in the development of wireless sensors. NFC sensors that can be read from smartphones
have great potential in the IoT thanks to the ease of accessing the data cloud, identifying an
object, obtaining its location or sensing some parameters. Such approach has an enormous
potential in a wide range of applications [13,14].

While the use of Bluetooth is a moderate/high-cost solution, it needs batteries and
allows a working range of up to a few meters, body-worn wearable sensors based on
passive UHF-RFID technology is limited to distances of approximately one meter [15]
due to the losses on the antenna caused by the proximity of the body. In addition, UHF
RFID Integrated Circuits (IC) with sensing capabilities have higher sensitivity than that
of integrated circuits designed for inlay applications [14]. Passive UHF-RFID tags do not
need batteries, but the main drawback is that the smartphone cannot work as a reader unit.
The use of smartphones as readers creates a fast and ubiquitous interface with the data
cloud that enables simple and low-cost applications within the context of IoT. On the other
hand, ad hoc readers are too expensive for a number of applications that are expected to be
widely used in the future. NFC technology can solve these problems. NFC-based battery-
free electrochemical sensors can harvest radio frequency energy to acquire and transmit
data to a smartphone over a short distance, making them suitable as an enabling technology
for PoCT. As a result, various battery-less NFC-based sensors have been proposed in the
literature for several applications [16,17] including biomedical ones [14,18,19].

Potentiometric [6,20] as well as colorimetric-based NFC sensors have already been pro-
posed [21,22]. Advanced sensors based on smartphone have been recently reported [23–25].
Recently, a NFC Integrated Circuit (IC) including an integrated potentiostat has been
proposed in [26,27], highlighting the interest in this technology.

In this work, the feasibility of designing a pontentiostat using NFC technology is
demonstrated. The design consisting of commercial components enables fast chronoam-
perometric measurements. The use of a custom pontentiostat allows to extend the bias
ranges of the circuits compared to other integrated IC implementations [26]. The integrated
microcontroller allows for the implementation of advanced bias sequencies required for
some sensors such as commercial glucose test strips. A ferrite-based antenna has been
designed to achieve stable power supply of the sensor components, thus being able to
perform the measurements correctly, in addition to achieving greater robustness against
the effects of detuning caused by the proximity of the metal parts of the mobile.

The paper is organized as follows. Section 2 introduces electrochemical sensors and
the fundamentals of chronoamperometry. Section 3 describes the proposed NFC system
focusing on the antenna coil and the pontentiostat designs enabling current measurements.
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A glucose sensor based on commercial test strips is implemented with the designed NFC
pontentiostat as a proof of concept of low-cost PoCT NFC-based system and it is presented
in Section 4. Experimental results are shown in Section 5. Finally, conclusions are provided
in Section 6.

2. Electrochemical Sensors

Electrochemical sensors are usually based on a two- or three-electrode electrochem-
ical cell. For amperometric measurements, added to the working or active electrode,
the electrodic system also includes a reference electrode and a counter electrode. Most
electrochemical-based PoCT devices rely on amperometric measurements to quantify the
concentration of a target analyte in a sample. Amperometric sensors provide an electrical
current which is proportional to the concentration of the analyte. Amperometry can be
easily implemented using a low-cost meter and the analysis of the obtained data is sim-
pler and faster than other electrochemical techniques such as Electrochemical Impedance
Spectroscopy (EIS). Amperometric techniques consist of measuring the current flowing
through the cell by exciting it with a voltage step at its input. The applied voltage is often
determined from voltammetry sweep.

The current measurements in sensors based on three-electrodes are carried out by
means of a potentiostat. Figure 1 shows a simplified schema. The cell consists of a working
(WE), counter (CE) and reference (RE) electrodes. When an electric potential is applied
between the WE and CE, a redox reaction takes place in the electrolyte and the resulting
current is measured on the working electrode. The potentiostat is an electronic circuit
whose function is to maintain the potential of the working electrode at a constant value
with respect to the reference electrode by adjusting the voltage at the counter or auxiliary
electrode using a control amplifier while measuring the current flow.

Figure 1. Schematic of a potentiostat, with the electrochemical cell modeled by two equivalent circuits
with their respective impedances.

In order to understand the potentiostat operation and to verify its operation a simpli-
fied equivalent circuit of the electrochemical cell [28,29] is considered in Figure 2. The equiv-
alent electrical circuit of the RE-CE branch (ZRC) is a resistor (RRC) that models the resis-
tance of the electrolyte between the reference and counter electrodes. A typical Randles
equivalent model [30,31] for the electrode-electrolyte interface and the relation between
the components and the processes are schematically described in Figure 2. In the model
of Figure 2, Rs is a parasitic resistance associated with the electrolyte layer between the
diffusion layer and the reference electrode. An electrical double layer exists on the inter-
face between the working electrode and its surrounding electrolyte. This double layer is
formed when ions from the solution are adsorbed onto the electrode surface. The charged
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electrode is separated from the charged ions by an insulating space, often on the order of
angstroms [29]. These charges separated by an insulator form a capacitor. The interface be-
tween the working electrode and the electrolyte is modeled by the double-layer capacitance
Cp, in parallel with the faradaic impedance ZF. The faradaic impedance has two terms: Rp
is the polarization resistance or charge-transfer resistance, which is series-connected with
the Warburg impedance Zw. Warburg impedance models the diffusion (that arises from the
mass transfer) process. Zw is given by [31]:

Zw =
(1− j)σ

ω1/2 (1)

where σ is the Warburg diffusion coefficient of the ions in the electrolyte. At high frequencies
the Warburg impedance can be neglected (Zw → 0 when ω → ∞), resulting in the simplified
Randles model of Figure 2c. Usually, the equivalent circuit of an electrochemical cell
is more complicated and is determined by adjusting the impedance measured with an
electrochemical impedance spectroscopy (EIS) measurement. However, the simplified
Randles equivalent circuit is a good starting point for understanding the cell operation and
to design dummy cell for testing the potentiostat.

Figure 2. Modeling of the electrochemical cell. (a) Diagram of the processes at the electrode-electrolyte
interface.The oxidants (red) with a positive charge diffuse toward the negatively charged electrode,
accept electrons from the electrode at the interface, become the reductants (blue), and diffuse to
the bulk of the solution. The dashed lines are the inner and outer Helmholtz planes, respectively.
Equivalent circuit model (Randles equivalent circuit): (b) including the Warburg element that takes
into account the controlled diffusion process in the low frequency region, and (c) without the
Warburg element.
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Assuming the Randles equivalent circuit (Figure 2c), the current response, Is(t), to a
voltage step excitation between the working and reference electrodes, ∆V can be analyzed
(Figure 3):

Is(t) = Is(0) + (Is(∞)− Is(0))(1− exp(−t/τ)) (2)

where Is(0) is the initial current at t = 0, which depends on the electrolyte resistance
and is independent from the concentration because at the initial instant the capacitor is
short-circuited:

Is(0) =
∆V
Rs

(3)

The steady-state value of the current when t→ ∞ (final value when the capacitor is
an open circuit) is given by:

Is(∞) =
∆V

Rs + Rp
(4)

The time constant is:

τ = Cp
RsRp

Rs + Rp
(5)

Note that the final value and the time-constant depend on the charge-transfer resis-
tance Rp and therefore on the concentration. In amperometry, the measurement of the final
value of the current (when it is considered that current is stabilized) is used to determine the
analyte concentration after a calibration procedure where an equation of a dose–response
curve is often used. The dose–response curve is obtained experimentally by measuring
the final value of the current for solutions with different concentrations. Due to nonlinear
behavior of the electrochemical sensors, the equivalent circuit components are a function of
the bias voltage and the step voltage. In this work, the Randles equivalent circuit is used to
develop a dummy cell for testing the potentiostat by comparing the theoretical current (2)
to an input step voltage with a known equivalent circuit. The current range is controlled
with the resistance Rs and Rp, and the time response with the capacitance Cp. Results will
be presented in Section 5.

Figure 3. Current response to a voltage step applied at the input bias between the working and
reference electrodes.
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3. System Overview and Theoretical Background
3.1. System Overview

The proposed system is composed of an NFC IC with energy harvesting capability
(ST25DV04K from STMicroelectronics), the NFC antenna, a microcontroller (ATTiny1614,
from Microchip), a custom pontentiostat, and the electrochemical sensor. A scheme of the
system is shown in Figure 4. The ST25DV04K complies with the ISO/IEC 15693 standard
or NFC forum type 5, which defines the modulation parameters, and has energy harvesting
capability. Authors have already demonstrated that this device allows to harvest more than
unregulated 3 V and 3 mA, using a square-shaped printed loop with dimensions of up to
3 cm on each side [32]. The NFC IC has two purposes: to collect the energy coming from
the reader to power up the sensor and to establish data communication between the sensor
and the reader. Communication between the reader and the tag is based on electromagnetic
induction between two loop antennas and works in the 13.56 MHz ISM band. Therefore,
external circuits can be powered using the energy harvesting output without the need for
a battery. The low-power microcontroller ATTiny1614 is used to read the voltage output
of the readout sensor circuit (pontentiostat), by means of its internal 10-bit analogue-to-
digital converter (ADC). The ATtiny1614 is an 8-bit AVR microcontroller with 16 kB Flash
memory that incorporates an 8 bit digital-to-analogue converter (DAC). This memory is
enough to develop custom firmware required for PoCT applications. Current consumption
is about 600 µA at 1 MHz, 2.5 V, assuming that the ADC is active. The bias voltage
applied on the electrochemical sensor is configured from the DAC. The data read by the
microcontroller is sent to the EEPROM memory of the NFC IC through a two-wire I2C
serial interface. The data is encoded in a standard NFC data exchange format (NDEF) that
is readable using NFC protocol. A mobile phone with NFC capability (e.g., Xiaomi Readmi
Note 9 Pro) is used to read the NDEF message stored in the NFC IC memory, perform
the calculations and upload the data to the cloud. The PCB prototype that includes the
electronics is manufactured on a 0.8 mm thick FR4 substrate, with relative permittivity of 4.7
and loss tangent (tanδ) of 0.02. The cooper metallization layer is 35 µm thick (conductivity
σ = 4.7× 106 S/m).

Figure 4. Scheme of the system.
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The sensor tag is read with an NFC smartphone. Therefore, the energy harvesting
should be optimized for low intensity electromagnetic fields. Under these conditions
and depending on the chosen NFC antenna, the NFC IC can deliver an output power of
20 mW [32]. The energy is harvested from the reader, therefore the read range of these tags
is reduced compared to those without energy harvesting. To optimize energy harvesting,
two main guidelines shall be considered: minimize the load current needed to be harvested
and improve the power conversion efficiency between the reader and the tag. The element
of the tag with the highest energy consumption is the microcontroller. To reduce the total
consumption, a microcontroller frequency of 1 MHz and a supply voltage of 2.5 V are
chosen, enough for the CMOS amplifiers used (OpAmp) to work, allowing to achieve
an adequate dynamic range to polarize the sensors. The OpAmp current consumption
depends on the required gain bandwidth product. Low-current range measurements
require high gains and therefore OpAmp with better performance in terms of gain are
needed. Calculations are performed using a smartphone that is also used to display the
results. Therefore, the tag is mainly responsible for performing the measurements and only
basic operations. In addition, this fact allows to reduce the number of components, size
and cost of the tag.

The NFC energy harvesting output (VEH) also powers the I2C bus, which requires
pull-up resistors on both the clock (SCL) and data (SDA) lines. These pull-up resistors must
be designed to limit the sink current when any of the lines are pulled down. To reduce
current consumption 20 kΩ are used in the prototype.

The reader (smartphone) starts interrogating the tag cyclically using different protocols
waiting for the response of the tag, because its standard is not known a priori. Therefore,
the communication between reader and tag employs ASK modulation.The reader deter-
mines which modulation index is used and the commands must be decoded independently
from the value used by the tag. The value of the capacitor CEH connected to the energy
harvesting NFC output must be chosen to avoid voltage drops during the modulation
pauses of the reader (pulse modulation type) whose duration is Tp. The worst case occurs
when the mobile is in the interrogation state when searching for tags and a 100% ASK
modulation is used, because the reader does not transmit the carrier during the pause
period, and therefore the rectified voltage and the energy harvesting output decrease.
Commercially-available NFC ICs with energy harvesting are based on ISO14443-A and
mainly on ISO 15693. Other standards such as ISO/IEC 18092 (e.g., FeliCa) recognized by
NFC forum are mainly used in RFID contactless payment systems (which is very popular
in Japan). In both standards, ISO 14443-3 and ISO 15693, Tp is approximately 10 µs. There-
fore, a low-drop regulator reduces the voltage fluctuations in reader interrogation periods.
The voltage drop can be estimated from the discharge in the storage capacitor:

Vdrop =
IL · Tp

CEH
(6)

where IL is the load current obtained from the energy harvesting output. When a value
of CEH = 1 µF is chosen, a voltage drop of 20 mV is generated at the regulator input,
which is acceptable for low-drop regulators as long as the load currents are less than 2 mA.
Note that this dropout is like a small burst that can propagate to the Analogue Front-End
(AFE) introducing noise that is amplified in the potentiostat’s high-gain Transimpedance
Amplifier (TIA). To filter the signal at the output, a capacitor is added between the inverting
input and the output of the TIA amplifier. In this work, the LMS5214IMG-2.5 regulator
from Texas Instruments was used. This regulator has a maximum current consumption of
10 µA and has a voltage dropout of 0.2 V. In general, the voltage output of the NFC IC used
provides an unregulated 3 V that is compatible with the voltage dropout of the regulator,
which leaves a certain safety range in case of misalignment between the coils of the reader
and the tag or in case of detune effects.
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3.2. Antenna Design and Tag Tuning

To achieve high energy transfer, the resonant frequency of the tag must be adjusted
to the operating frequency of the NFC (13.56 MHz). To this end the simplified equivalent
circuit of Figure 5 can be used. In this equivalent circuit the impedance of IC chip is
modeled as a parallel RC circuit, where RIC is the nonlinear IC resistance and CIC is the
chip capacitance. The equivalent electric circuit of the antenna in the tag consists of an
inductance La with a series resistance Ra that models the antenna losses (DC plus AC due to
skin effect). The parallel capacitance Cp is associated with parasitic capacitance of antenna
and layout interconnections. The tag’s resonance frequency is given by:

fr =
1

2π

√
RIC + Ra

LaRIC(CIC + Cp + Ctuning)
≈ 1

2π
√

La(CIC + Cp + Ctuning)
(7)

where Ctuning is an external capacitor connected between the antenna pins of the NFC IC,
whose function is to adjust the resonance frequency. The chip capacitance is nonlinear but
it is nearly constant for typical input power ranges. For the ST25DV04 its value is 28.5 pF.
The parasitic Cp is of the order of few pF. RIC is high nonlinear and it is of the order of
several hundred Ω to kΩ [33,34].

Figure 5. Equivalent circuit of the tag antenna and NFC IC.

In order to increase the read range or the load current that the energy harvesting
output can supply, the average magnetic field in the tag antenna should be higher than the
minimum value known as Hmin. This value corresponds to the minimum voltage required
to wake-up the tag for the desired load conditions ensuring the correct working of the RF
rectifier. The average field can be obtained from the Faraday law, the AC variation of the
magnetic flux induces a voltage at the antenna coil terminals, and analyzing the circuit of
Figure 5 [14]:

Hmin ≈

√
(1− ( f / fr)2)2 + 1/Q2

T

2π f µe f A · N ·Vmin (8)

where A is the loop antenna area, N is the number of loops, µe f is the effective magnetic
permeability (equal to the vacuum µ0 for antennas in the air without ferrites), Vmin is the
minimum voltage required for the NFC IC and QT is the total quality factor of the tag at
the resonance frequency given by:

QT =
1

Ra
2π fr La

+ 2π fr La
RIC

≈ RIC
2π frLa

(9)

which is the combination of the quality factors of the antenna coil and of the IC. By
analyzing (8), some guidelines to optimize the tag can be considered. Larger antenna size
allows to reduce the minimum magnetic field. It is essential to reduce the detuning of the
tag caused by the presence of metal parts such as the mobile phone case, which reduces the
inductance of the tag due to the image currents induced in the metal [14,35]. Increasing
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the number of turns can be counterproductive, since the losses of the tag antenna increase
and, consequently, the quality factor worsens. However, the total quality factor is mainly
determined by the input resistance of the IC.

When the number of turns is increased, the antenna inductance increases as N2 (see
for example the Wheeler’s formula for inductance [36]):

L = K1µ0N2 Dav

1 + K2ρ
(10)

where µ0 is the vacuum magnetic permeability constant (4π · 10−7 H/m) and Dav is the
average diameter between the outer diameter and inner diameter:

Dav = (Dout + Din)/2 (11)

and ρ is the fill factor represents how hollow the inductor is, and it is defined as:

ρ =
Dout − Din
Dout + Din

(12)

The coefficients K1 and K2 are shape dependent and for a square-shaped inductor are
2.34 and 2.75, respectively.

Losses in a coil are fundamentally caused by the series resistance, which at high-
frequency increases due to the skin depth [37]. The antenna resistance increases approxi-
mately proportional to the length and therefore with the number of turns. In consequence,
the quality factor of the antenna increases with N. However, the antenna quality factor
for typically printed antennas (using conductors with a thickness higher than the skin
depth) is higher than the load quality factor, which basically depends on RIC. Thus, in this
case, the total quality factor QT (9) is inversely proportional to the inductance La and is
proportional to N2. If the tag is tuned at the resonance frequency, the value of Hmin will
be proportional to the antenna inductance La divided by N, and therefore proportional
to the number of turns. A minimum value of inductance must be considered because the
total quality factor is limited by the bandwidth (two times the subcarrier frequency used in
the communication between the tag and the reader) [14]. The antenna together with the
parasitic elements and the input impedance of the chip works as a bandpass filter. If the
total quality factor of the tag was too high, the sidebands would be attenuated and the
communication between tag and reader would be degraded. The maximum value of the
quality factor can be estimated from the bandwidth using the following relationship:

QTmax =
f0

BW
≈ f0

2 fsideband
(13)

where f0 = 13.56 MHz is the tag frequency operation, and fsideband is the frequency of
the modulating subcarrier, that is a function of the standard. For tags under ISO 14443
( fsideband = f0/16) and ISO 15963 ( fsideband = f0/28), the maximum total quality factor is 8
and 14, respectively.

To understand the influence of the antenna size and the number of turns, simulations
using the analytical inductance expression (from modified Wheeler’s formula) for a square-
shaped antenna [36], with strips width w and separation between them s 0.5 mm, have
been performed. In these simulations, the antenna quality factor can be evaluated from
the equivalent series resistance that can be computed from the wire resistance taking into
account the skin depth [37]:

Ra =
Lc

σ · w · δ(1− exp(−t/δ))
(14)
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where t is the conductor thickness (34 µm in the simulations), σ the conductor conductance
(4.7× 107 S/m for Cooper) and Lc is the total length of the conductor. For a square-shaped
loop antenna the total length of conductor is

Lc = 4NDout − 4Nw− (2N + 1)2(s + w) (15)

The skin depth is given by [37]:

δ =
1√

σµπ f
(16)

Figures 6–9 show the inductance, the antenna quality factor (Qa) and the total quality
factor (QT) computed from (9) and the minimum magnetic field (8) considering RIC = 525 Ω,
as a function of the outer diameter of the coil for a different number of turns. Figure 8
includes the maximum total quality factor based on the standard ISO 14443 or ISO 15693.
Figure 9 shows that increasing the number of turns can penalize the reading range of the
tag and the energy harvesting for coils with diameters higher than 22 mm, considering
the simulated conditions. The total quality factor also controls the detuning sensitivity (8).
Figure 10 shows the Hmin as a function of the frequency for a 30 mm outer diameter coil
(Dout) and different numbers of turns. The minimum magnetic field should be higher
when the tag is detuned due to the tolerance of component values or the presence of
metal nearby. The resonance frequency will be different from the operating frequency
(13.56 MHz). Finally, a small inductance value generates higher currents that circulate
through the tag, and therefore, can produce loading effects on the reader, worsening its
impedance matching for short distances where the coupling coefficient between reader and
tag is larger [38]. Therefore, if the number of turns is increased, although the value of Hmin
is penalized a little, the influence of the non-linear IC resistance variations is reduced in
case of modifying the reader-tag distance.

To increase the energy transfer, the coupling coefficient between the tag and reader
antenna should be as high as possible. To this end, the size of the tag antenna should be
close to that of the reader antenna, but not the same size to avoid detuning effect at short
distances [39]. Modern mobiles integrate the NFC antenna around the camera aperture or
over the battery case with typical sizes being about 2–2.5 cm2 [40–43].

Figure 6. Simulated inductance as a function of the outer diameter for a square antenna with a
different number of turns.
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Figure 7. Simulated antenna quality factor as a function of the outer diameter for a square antenna
with a different number of turns.

Figure 8. Simulated total tag quality factor as a function of the outer diameter for a square antenna
with a different number of turns.



Sensors 2022, 22, 7213 12 of 24

Figure 9. Simulated minimum magnetic field as a function of the outer diameter for a square antenna
with a different number of turns.

Figure 10. Simulated minimum magnetic field as a function of the frequency for a square antenna
with outer diameter of 30 mm and a different number of turns.

Taking into account the last considerations, the quality factor is limited by the IC load.
From (8) the minimum inductance for ISO 15693 is about 440 nH considering a typical
RIC of 525 Ω and assuming the NFC IC has the energy harvesting activated, which will
allow it to power the electronics of the tag [32]. However, this small inductance value
generates high currents through the tag that loads the transmitter causing mismatches
when the tag is close to the mobile and therefore the coupling coefficient is high as expected
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in this application. Therefore, a higher inductance avoids this drawback and gives more
robustness to the system under nonlinear variations of the NFC IC resistance. In this work,
a square loop of side 3 cm is used as the antenna for the prototype. The number of loop
turns is five, with a width of the printed conductors and a separation between them of
0.5 mm in both cases. The substrate used is FR4 (thickness 0.5 mm, dielectric constant 4.7,
dissipation losses of 0.02 and copper metallization). In fact, the substrate has a relative
influence, thus, if the application requires it, other substrates including flexible ones could
be used. Since the substrate is a non-magnetic material, its permittivity affects the value of
the parasitic capacitance of the antenna. The thickness of the metallization and the width
and length of the printed conductors determine the antenna resistance. The final size is
similar to that of an epidermal patch or that of a smartwatch, and it is close to that of a
mobile NFC antenna. In addition, it includes the electronics for the sensor. Due to the
presence of metal parts such as the PCB ground plane or the own electronic part, different
configurations are considered. The antenna can be printed together the electronic circuits
on the same substrate, although this means a increase in the size of the tag. To reduce the
size of the tag, the antenna must be separated from the electronics. Various configurations
can be considered. The first one consists of an antenna slightly separated from the ground
plane of the PCB to avoid the undesired effect of the metal on the inductance. The second
configuration adds sintered ferrite foil (MULL12060-200 model from Laird Technologies)
below the antenna to improve tag performance in the presence of the smartphone and a
ground plane. The flexible ferrite sheet is 0.1 mm thick with complex relative magnetic
permeability of 150-j5 at 13.56 MHz.

A loop antenna prototype has been manufactured and connected to SubMiniature
version A (SMA) connector to be characterized with the Vector Network Analyzer (VNA).
Once the reflection coefficient has been measured, the impedance is obtained, from whose
imaginary part the inductance is determined. The quality factor is computed from the ratio
between the imaginary and the real part of the measured impedance.

Figures 11 and 12 show the measured inductance and quality factor as a function of
the frequency. Table 1 summarizes some parameters for the three cases that are exper-
imentally studied: the antenna in the air, the antenna close to the ground plane of the
PCB and the antenna near the PCB itself covered with sintered ferrite foil on both sides.
A significant reduction in inductance can be observed when the metallic plane is closer.
Therefore, the proximity of the metal case of the mobile phone can detune the antenna.
On the other hand, the antenna including ferrite has a higher inductance than in air (ap-
proximately double). The quality factor values for frequencies below 10 MHz are similar
to those achieved by the antenna in free space. However, the quality factor decreases as
the frequency increases. Finally, a quality factor of about 35 is obtained in the presence of
metal, provided that the prototype is coated with ferrite. Although this value may seem
low, it must be remembered that the total quality factor is determined by the external
quality factor of the IC, leading to similar values for the three configurations (see (9)). This
consideration is important, so it is possible to use antennas with low quality factors since
the IC mainly determines the total quality factor. However, the antenna with ferrite is more
robust against detuning caused by the proximity of the cell phone. This point is crucial
because the mobile phone will be over the tag for a few seconds during the measurement,
and the power supply must be enough to keep the electronics of the tag active during the
measurement. To avoid the detuning of the antenna, the distance from the mobile must be
of the order of one cm, reducing the wireless power efficiency due to the small value of the
coupling coefficient between the antennas, which decreases with the distance. In addition,
the variation of the distance during the measurement can produce an undesired drop of
voltage that can affect the sensor measurement. Therefore, in this application, the mobile is
expected to be on top of the tag for the duration of the measurement. The use of a ferrite
sheet prevents the effect of the detuning. The resonance frequency decreases when the
inductance increases but remains above the operating frequency (13.56 MHz). For the
different configurations, a surface mount device (SMD) tuning capacitor can be used to
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adjust the resonance frequency of the tag according to (7). In order to take into account
all the parasitic capacitances, the value can be fine adjusted with a test loop connected to
the VNA. To do this, the reflection coefficient is measured by checking the value of the
resonance frequency.

Figure 11. Measurement of the inductance of a loop antenna for different cases: in the air, separated
from a metal by 0.5 mm and covered with a ferrite foil on a ground plane.

Figure 12. Measurement of the quality factor of a loop antenna for different cases: in the air, separated
from a metal by 0.5 mm and covered with a ferrite foil on a ground plane .
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Table 1. Measured antenna parameters at 13.56 MHz at different conditions.

Parameter Free Space at 0.5 mm Metal with Ferrite Sheet and Metal

Number of turns N 5 5 5
Dimmensions 30 mm × 30 mm 30 mm × 30 mm 30 mm × 30 mm

Width 0.5 mm 0.5 mm 0.5 mm
Gap 0.5 mm 0.5 mm 0.5 mm

Inductance La 1.26 µH 0.55 µH 2.47 µH
Quality factor Qa 90.7 33.6 35.7

Resonance frequency fr 85 MHz 121 MHz 48 MHz

3.3. Potentiostat

The Analog Front-End (AFE) that interfaces directly with the electrochemical cell is a
potentiostat [7–10]. In order to reduce the power consumption of the potentiostat, a circuit
based on two single-biased Operational Amplifiers (OpAmp) is used (see Figure 13).
The reference electrode is set to a voltage VRE obtained from a resistive divider connected to
one of the microcontroller’s Digital-to-Analog Converter (DAC) outputs (VDAC). Therefore,
it can be adjusted. In turn, the working electrode is set to a VREF that is obtained from
a resistive voltage divider connected to a digital output of the microcontroller (VEN).
The second OpAmp is configured as a Transimpedance Amplifier (TIA). The objectives are
to amplify the current flowing between CE and WE through the feedback resistance R f and
to convert it to an output voltage Vout. This design based on OpAmps takes advantage of
some its characteristics such as the negligible input current, the high input impedance and
the low input offset voltage. In this work, the low-noise Rail-to-Rail CMOS dual OpAmp TI
OP2314 has been chosen. It is characterized for a 3 MHz Gain Bandwidth product, slew-rate
of 1.5 V/us, 130 µA per channel and can work from 1.8 V. The DAC output (VDAC), and the
digital output (VEN) are triggered by the microcontroller at same time to generate a voltage
step. Bypass capacitors C1 and C2 have been included to filter noise from the supply. C f is
a feedback capacitor whose function is to low-pass filter the signal to reduce noise at the
output. The cut-off frequency of the filter is calculated using the following expression:

fc =
1

2πR f · C f
(17)

Its value is selected to let the frequency components of interest to pass (typically few
Hz) while reducing high frequency noise. Neglecting the effect of input current and voltage
offset in the TIA, the measured current through the working electrode I is obtained from
the measured output voltage:

I =
(Vout −VREF)

R f
(18)

where VREF is the voltage at the positive input of the TIA which is equal to the WE potential
since the OpAmp works in linear mode. The output voltage is discretized with a 10-bit
analog-to-digital converter. The total current consumption of the tag is approximately
1300 µA. The potentiostat allows to perform various amperometric techniques, such as
cronoamperometry and cyclic voltammetry. In the latter, the variable bias between the
electrodes is obtained programming the DAC output VDAC:

VBIAS = VWE −VRE =
R3

R3 + R4
VDAC −

R1

R1 + R2
VEN (19)

where VEN is the voltage at a digital output of the microntroller that is used to activate
the bias in the pontentiostat. Cyclic voltammetry is a powerful characterization technique
able to provide valuable information of an electrochemical system, such as for example
the potential required to either oxidize or reduce a target electroactive species. Cyclic
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voltammetry requires sweeping the applied potential what reduces its interest for PoCT
devices and is mainly used to characterize the sensor in various sensor development stages.

Figure 13. Electrical scheme of the potentiostat.

4. Glucose Sensor

In this work, commercial low-cost glucose test strips from Sinocare are used as the
electrodic system, including an enzymatic sensor as working electrode. The enzyme glucose
oxidase catalyzes the chemical reaction of glucose in the presence of oxygen, increasing
the pH, decreasing the partial pressure of oxygen, and producing hydrogen peroxide and
gluconic acid. The test strips are designed to work at an applied bias of 0.4 V, set by the
redox mediator used to reduce the required oxidation potential, and with small sample
volumes (typically 0.6 µL). The test strips draw the solution placed in one of their ends
by capillarity. The reaction begins when the drop reaches the active enzymatic region,
and stabilizes after 5 s. The amperometric measurement at that moment corresponds to the
final reading that has to be compared with the values in a look-up table to obtain the glucose
concentration in mg/dL [44,45]. The applied potential is key to determine the sensitivity
and selectivity of the biosensor and therefore must be carefully selected. A glucose stock
solution (0.2 M) was prepared with distilled water and kept at room temperature for 24 h
prior to use to ensure the presence of β-D-glucose form. After that, various concentrations
within the measurement range were prepared by dissolving of the stock solution in distilled
water to be analyzed by the sensor. The steps shown in the flowchart of Figure 14 have
been implemented in the firmware of the microcrontroller according to the time sequence
of the test strip schematically described in Figure 15. The main steps are:

1. Insert strip into the potentiostat without the sample.
2. Approach the smartphone (NFC enabled) close to the NFC sensor. When the smart-

phone is placed over the sensor the electronics is turned on.
3. The microcontroller biases the potentiostat and measures the current, waiting for a

change that indicates the presence of a drop.
4. The user introduces the sample by depositing a drop on the opening of the strip.
5. The sample fills the chamber by capillary action.
6. When the presence of the drop is detected, the microcontroller turns off the cell,

and starts the incubation time (52 ms). The incubation time allows the chemicals to
dissolve, the enzymatic reaction to occur and the solution to become homogeneous.

7. When incubation time is completed, the potential required to electrochemically oxidize
the mediator that chemically reacts with the active site of the enzyme, bringing it back
to its original oxidation state, is applied The current is monitored and its final value is
interpolated in a previously obtained calibration curve. Then the concentration value
is reported, saving the data in the NFC IC EPPROM via I2C.
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8. The smartphone reads the concentration value stored in the memory and displays
the result in the user’s screen, uploading the measurement into a database for later
consultation.

Figure 14. Firmware flowchart.

Figure 15. Test strip timing sequence.
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5. Results

This section presents the results measured with the proposed platform. To this end a
prototype has been manufactured. Figure 16 shows a photograph of the prototype designed.
A polylactic acid (PLA) 3D casing was printed to protect the electronics, including a custom
connector for the test strip. The cost of the prototype is about EUR 4. In a first step,
measurements with a dummy cell have been performed, in order to check the accuracy of
the potentiostat. The dummy cell is based on a passive electronic network that corresponds
to the Randles equivalent circuit of Figure 2, with Rs = 200 kΩ, Rp = 1000 kΩ and Cp = 10 µF.
As the current is controlled by the step voltage and the impedance between the working and
reference electrode, a simplified equivalent circuit can be considered for the branch between
the reference and the counter electrodes (ZRC) to reduce the number of components. In the
dummy cell, ZRC is modelled with a resistor of value RRC = 100 kΩ. Typically, the nominal
tolerance of the components is 10%. A step voltage is applied and the current is measured
with the potentiostat. For each point 16 ADC measurements have been averaged in order
to reduce noise. Figure 17 compares the step response obtained in the measurements to the
theoretical model given by (2) for a voltage step of 1 V and the gain set to 240 kΩ. Good
agreement is found verifying the accuracy of the measurements within the range of typical
currents of electrochemical sensors.

Once the system is verified with the dummy device, glucose concentration measure-
ments are performed with the NFC potentiostat used as battery-less glucometer with the
commercial test strips from Sinocare. The parameters of the potentiostat have been adjusted
for this specific sensor. The gain of the potentiostat is set to 100 kΩ to avoid the saturation
of the amplifier, and the bias is set to 0.4 V adjusting the DAC output. The resistance used
in the voltage dividers of the potentiostat (Figure 13) were R1 = 22 kΩ, and R2 = R3 = R4 =
100 kΩ. Glucose concentration (C) is determined from the measured current (I) and the
calibration data using a regression equation:

C(mg/dL) = 37.68 · I(µA)− 22.30 (20)

Calibration data was obtained by measuring solutions with different concentrations of
glucose between 60 mg/dL and 425 mg/dL. Typical time response is shown in Figure 18.
These measurements demonstrate the clear dependence between current and glucose
concentration. The test strips have been designed in such a way that after 5 s the sample
reaches the active zone of the sensor, and the enzymatic reaction is at its maximal reaction
rate. Therefore, the measurement of the concentration is performed at that precise moment.
Note that for very high concentrations, amplifier saturation could occur during the first
part of the measurement. However, this phenomenon has no impact since the value of
interest is the one measured after 5 s, in which the amplifier is not saturated. To avoid
saturation, the gain could be decreased at the cost of losing sensitivity when testing low
concentrations. A program in the microcontroller that implements the flowchart described
in the last section has been developed.

An application under the Android operating system has been developed to read the
NFC tag, including some tools such as the ability to upload the measured data to a database
(see Figure 19). Here the Thingspeak platform from Mathworks is used to save the historical
data using REST API protocol. The application provides voice and text messages to guide
the user, including calendar reminders. Note that the reading is stored in standard text NFC
Data Exchange Format (NDEF), therefore it can be read using standard NFC applications.

A sample of the output current is taken for each solution at 5 s and compared with the
reading obtained by the Sinocare commercial glucometer. Linear regression is performed
to fit the data. The results are shown in Figure 20. The firmware contains the linear
equation that allows calculating the glucose concentration from the current obtained from
the average reading of the ADC at the potentiostat output using (18). Measurements were
made both with the potentiostat externally powered and through the harvesting of energy
from a mobile, obtaining results with a high degree of agreement. It must be considered
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that since the test strip is for a single use, different test strips are used for each measured
concentration. A correlation coefficient (R2) of 99% was found between the commercial
glucometer and the proposed potentiostat. Since a blood sugar level below 140 mg/dL
(7.8 mmol/L) is considered normal and a level above 200 mg/dL (11.1 mmol/L) taken two
hours after a meal is an indicator of diabetes [46], the proposed prototype covers the range
of interest.

Figure 16. NFC glucometer prototype. (a) Prototype including protection case, (b) top view, and
(c) bottom view

Figure 17. Measured current as a function of time for the dummy cell when a step voltage is applied.
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Figure 18. Measured current as a function of time for different glucose concentrations.

Figure 19. Smartphomneapp screen used to record glucometer data.
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Figure 20. Measured current after 5 s as a function of glucose concentration.

6. Conclusions and Future Work

Most current smartphones include an NFC reader, mainly for making payments,
but they can also be used as readers for several sensor applications. To this end, low-cost
NFC IC with energy harvesting capabilities from different NFC manufacturers are available
on the market. The combination of these NFC ICs and low-power microcontrollers allows
the development of green Internet of Things (IoT) applications based on battery-less NFC
sensors. The standardization of data interface exchange based on NDEF format allows the
development of simple but powerful mobile-based applications. In this work, the design
of a battery-less NFC potentiostat for amperometric measurements using electrochemical
sensors has been presented. It consists of measuring the current at the output of a high-
gain transimpedance amplifier when a step bias is applied to the potentiostat. Due to its
simplicity, it is a very good candidate method to be used in PoCT devices. The concentration
of a target analyte is measured at a specific time and compared to a previously obtained
calibration curve. Since electrochemical sensors have slow dynamics, long time intervals
(typically several seconds) are needed to perform amperometric measurements. Measuring
low currents through electrochemical sensors requires a stable power supply; this is a
challenge when integrated in NFC-powered devices which has been addressed in this
work. To perform the measurements, the user usually places the mobile on top of the
tag, therefore the tag must be designed to be robust against variations in the inductance
value caused by the metal parts of the mobile. To ensure stable bias, the solution proposed
is an antenna loop covered with ferrite sheets. As a proof of concept, a prototype has
been integrated into a housing to measure glucose concentration using commercial test
strips. The measurements obtained are compared to those provided by a commercial
glucometer, showing excellent correlation. On the one hand, the number of components of
the prototype is reduced as no battery is needed. On the other hand, the reading eludes
the use of screens. As a result, the cost of future PoCT devices is reduced, and the ease of
use improved, the latter being an important requirement for both the elderly and future
remote monitoring applications such as non-invasive glucose level measurement from
interstitial fluid [47]. Potentiostat parameters can be configured to measure voltages up to
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1 V and currents below µA depending on the sensor. The design can be extended to other
applications harnessing a broad range of electrochemical sensors, including flexible ones.
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