
Citation: Ramani, S.; Jhaveri, R.H.

ML-Based Delay Attack Detection

and Isolation for Fault-Tolerant

Software-Defined Industrial

Networks. Sensors 2022, 22, 6958.

https://doi.org/10.3390/s22186958

Academic Editors: Jehad Ali and

Hsiao-Chun Wu

Received: 6 August 2022

Accepted: 9 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ML-Based Delay Attack Detection and Isolation for
Fault-Tolerant Software-Defined Industrial Networks
Sagar Ramani 1 and Rutvij H. Jhaveri 2,*

1 Department of Computer Engineering, Gujarat Technological University, Ahmedabad 382424, India
2 Department of Computer Science & Engineering, Pandit Deendayal Energy University,

Gandhinagar 382007, India
* Correspondence: rutvij.jhaveri@sot.pdpu.ac.in

Abstract: Traditional security mechanisms find difficulties in dealing with intelligent assaults in cyber-
physical systems (CPSs) despite modern information and communication technologies. Furthermore,
resource consumption in software-defined networks (SDNs) in industrial organizations is usually
on a larger scale, and the present routing algorithms fail to address this issue. In this paper, we
present a real-time delay attack detection and isolation scheme for fault-tolerant software-defined
industrial networks. The primary goal of the delay attack is to lower the resilience of our previously
proposed scheme, SDN-resilience manager (SDN-RM). The attacker compromises the OpenFlow
switch and launches an attack by delaying the link layer discovery protocol (LLDP) packets. As a
result, the performance of SDN-RM is degraded and the success rate decreases significantly. In this
work, we developed a machine learning (ML)-based attack detection and isolation mechanism, which
extends our previous work, SDN-RM. Predicting and labeling malicious switches in an SDN-enabled
network is a challenge that can be successfully addressed by integrating ML with network resilience
solutions. Therefore, we propose a delay-based attack detection and isolation scheme (DA-DIS),
which avoids malicious switches from entering the routes by combining an ML mechanism along
with a route-handoff mechanism. DA-DIS increases network resilience by increasing success rate and
network throughput.

Keywords: SDN; delay attack; security; machine learning; industrial networks; CPS

1. Introduction

Distinct types of Internet of Things (IoT) devices have been deployed in recent years,
and the linked interactions between them have become more diverse and intricate, posing
new challenges in IoT device communication and device management. In addition to this
industrial cyber-physical system (ICPS) is an intelligent pneumatic environment, formed by
an amalgamation of computing networking, and physical dimensions. ICPS demands that
new standards are linked to flexibility, self-optimization, self-recoverability, and heterogene-
ity without sacrificing the quality of service (QoS) [1]. Software-defined networks (SDNs)
can be a great asset in managing the communication between IoT and ICPS devices and
addressing the challenges [2,3]. By exploiting software or hardware flaws, an attacker can
compromise a network forwarding device and affect the network resilience [4]. An attacker
with access to compromised forwarding devices may be able to take complete control of
an SDN-enabled network [5]. Network resilience is vital for time-critical applications to
provide fault tolerance [6], especially at the control plane, during real-time communication
in the network [7]. As malicious switches may alter the packets, the data plane invasion
operates as a threat causing the control plane’s misbehavior [8].

Scientists from Threatcare and IBM found security loopholes in smart city gadgets, which
are used everywhere from traffic analysis to radiation detection [9]. Additionally, these attacks
can easily proliferate over IoT networks. Therefore, isolating various types of communication
or segmenting networks is a useful approach to limiting the lateral transmission or expansion

Sensors 2022, 22, 6958. https://doi.org/10.3390/s22186958 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4833-825X
https://orcid.org/0000-0002-3285-7346
https://doi.org/10.3390/s22186958
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186958?type=check_update&version=1

Sensors 2022, 22, 6958 2 of 25

of attacks [10,11]. In SDN networks, it is critical to isolate malicious switches in real time
since the entire SDN network is highly vulnerable due to the centralized control plane [12].
In addition to this, meeting the delay requirements of network flows while effectively offering
fault resilience against smart intrusion is a major challenge in time-critical applications [13].
Thus, there is a need to maintain network resilience and security by not only identifying the
threats but also isolating these threats by applying a reactive strategy in real time. Therefore,
in this paper, we consider an attack in which the adversary compromises an OpenFlow switch
to maliciously delay the LLDP packets [8]. Industrial networks demand high resilience to
achieve a high quality of service (QoS). Therefore, there is a need to detect any unusual
activity in real-time which may degrade the overall network performance and can cause
disaster. OpenFlow has added a statistic checking tool that may be used to spot unusual
activity and pinpoint a rogue switch on the SDN data layer to solve this problem [14].
It is challenging to synchronize independent OpenFlow counters from various switches
because the OpenFlow specification does not support a specific upper limit inside which a
switch must execute the stat-req intimations from the control plane [15]. Therefore, it is
difficult to isolate any OpenFlow switch from the network in real time. In the context of this
problem, we devised a scheme for detecting malicious switches at the control plane using
ML classifiers which can aid the SDN controller in making reactive decisions. The ML-
based scheme not only detects but also isolates the malicious switches in the route which
intentionally delay LLDP packets.

Several studies [16–19] propose exploring the configurability of SDN switches in real-
time to enhance the overall QoS of SDN. Maintaining network resilience in the face of
unintentional failures and malicious attacks is a significant factor for critical infrastructures
such as power grids and industrial CPS [20]. To address resilience in the industrial CPS,
we previously presented delay [4] and bandwidth-based [21] resilience mechanisms for
enhancing the fault-tolerance capabilities which use contract-based mechanisms to address
demands of critical applications and to provide zero downtime. However, these approaches
do not consider the all-important security aspect. Numerous methods have been proposed
to secure the data plane, which include (1) acknowledgment-based mechanisms, (2) packet
probing, (3) flow statistics, and (4) cryptographic mechanisms [22]. However, SPHINX [23]
and WedgeTail [24] are some examples of frameworks for identifying and hunting forward-
ing devices that fail to process packets as expected in the data plane. The majority of these
solutions cause significant communication overhead because they are primarily concerned
with anomaly detection at the first and last hops of a network. As security is one of the key
aspects of resilience, in this work, we consider addressing delay-based attacks, which may
cause disaster in time-critical industrial and healthcare applications [25]. Therefore, we
extend our work proposed in [4,8] to isolate malicious switches, which are compromised
with the delay-based attack. However, we confront the following research challenges from
the literature:

• Challenge 1: How will the QoS parameters (success rate and average network through-
put) behave under the existing approach in the presence of network fault events (link
break event and dynamic changes in delay requirements of the contract event) in the
presence of intrusion and congestion?

• Challenge 2: Eventually, if the scale of the attack increases, which type of impact will it
have on the QoS parameters (success rate and average network throughput) in the
presence of network fault events (link break event and dynamic changes in delay
requirements of the contract event)?

The existing works do not address delay-based attacks for time-critical applications. There-
fore, we address these security and fault-resilience challenges with the following contributions:

• We represent a KNN-based detection and isolation mechanism to counter the delay-
based attack on an OpenFlow switch.

• The route-handoff mechanism is employed to isolate the malicious switches, which
are part of the current transmission route.

Sensors 2022, 22, 6958 3 of 25

• We compare and analyze the performance of the proposed scheme with our previous
approach, SDN-RM, under normal and attack conditions.

• The experiment result shows that delay attack could not influence the average network
throughput and success rate with compromised switches. Moreover, the existing
approach provides an efficient solution under specified conditions.

The remainder of the paper is structured as follows. Section 2 examines relevant
recent works. The delay-based attack detection and isolation system (DA-DIS) framework
is presented in Section 3. Comparative results analysis of the DA-DIS and SDN-RM
approaches is presented in Section 4. The entire study is concluded in Section 5.

2. Related Work

In recent years, SDN security literature has mostly focused on the positioning of the SDN
controllers and security applications along with real-time verification of network limitations.
However, none of them address security issues for compromised forwarding devices.

2.1. Review of SDN Attack Defence Mechanisms

In [26], the authors present an approach where an SDN controller detects corrupted
switches using real-time information analysis. Packet switching and packet dropping are two
types of harmful behaviors investigated in the study. However, the consequences of malicious
switches, which lead to false information in the statistics reports, are not presented. SPHINX is
one of the options for protecting the SDN data plane that does not rely on the trustworthiness
of switches. SPHINX’s key drawback is that it is unable to determine whether packet delays
are caused by malicious switches. Additionally, to identify attacks, the detection process
mostly relies on policies defined by an administrator. Another security method is active
probing, which employs extra test flows to identify or locate a malicious switch. With the
expansion of the network, more test flows and rules are put into each switch’s ternary content-
addressable memory (TCAM). The greater the number of test flows, the greater the overhead
and the greater the quantity of TCAM, which is undesirable because TCAM is expensive
and power-demanding [27]. The capture of malicious switches that do not adhere to the
OpenFlow protocol or malicious hosts that do not adhere to the ARP protocol are presented in
the BEADS framework [28]. BEADS does not identify the full stealthy attacks that are ready to
attack a target. Instead, it discovers tactics that have a substantial influence on the network as
a result of one or more problems, similar to stack-overflow vulnerabilities. However, writing
an exploit that leverages the fault in a focused manner still requires manual effort. In [29],
the authors represented a novel approach to detecting the warm-whole attack in wireless
sensor networking. The main purpose of the attack is to convince the controller that two
vulnerable non-neighboring switches are physically coupled. This allows the controller to
manage various traffic flows, which initially should not travel through the compromised
switches as the forged link leads to shorter ideal paths. The attacker might use this exploit as
a springboard to conduct other DoS attacks or steal sensitive information. To detect the attack
the approach uses the delay time between two switches. This connection is regarded as a false
link if the proportion of timeout flows is higher than the predetermined threshold, it isolates
the false links from the network.

Some techniques for detecting and mitigating harmful devices within a network ei-
ther presume a basic threat model [30] or incur significant expenses even during normal
operations [31]. When faced with advanced threats, the ATPG network diagnostic tool [30]
may incorrectly attribute harmless entities since it usually assumes a superficial situation in
which errors appear regularly. On the other hand, while cryptographic-based verification
protocols, such as OPT [31], can guarantee route approval in the face of powerful attackers,
their high overhead may make them unsuitable for widespread implementation. Machine
learning-based detection strategies for malicious switches are few and most are detection
techniques for malicious switches. Zhou et al. present CRAD (crowd-aware approach) [32],
for detecting rogue access points in disguise without requiring additional hardware. CRAD
employs RSS spatial correlation to identify the probable masquerader who should be in a

Sensors 2022, 22, 6958 4 of 25

distinct position from the real ones. RSS measurements gathered from the general public
aid in the construction of a strong profile and the reduction of the inaccurate influence of
individual RSS results. The findings reveal that CRAD can dynamically match the contour
lines to filter out the identified aberrant samples in real-time. To identify the malicious
switches, Kuo et al. [33] presented a better and more practical method for detecting mali-
cious switches. The model’s applicability is demonstrated in the client, making deployment
easier, with higher security, and a higher detection rate. Huang et al. [34] provide an
extreme learning machine-based classifier along with a computationally effective method
for identifying traffic signs. Zhong et al. [35] proposed a rapid Gaussian kernel learning
approach that can converge a universal result for any classification job. Gore et al. [36] sug-
gested a strategy that involves applying the Markov Chain method to obtain descriptions
of detected cyber threats to make intelligent defensive actions that maximize the utilization
of scarce resources. The key finding of this approach is to discover previously undiscovered
themes of widespread vulnerability.

These existing works on SDN security do not focus on securing the network from a
delay-based attack launched by compromising switches [37–40].

2.2. Review of SDN-Based Fault-Tolerance Mechanisms

Babiceanu et al. [41] suggested a holistic modeling environment, which addresses
the assurance of virtual industrial systems via resilience methods and security. The study
looks at the ability to scale ontology to categorize and detect system risks, vulnerabilities,
and threats. Resilience is inextricably linked to ideas such as danger, risk, and vulnerability.
As a result, current research intends to provide a foundation for developing methods for
IIoT systems to attain equilibrium resilience in the context of cyber security assaults. The
design of FT-SDN [42] comprises a straightforward and efficient decentralized control
plane with many controllers. The internal states of the controller are regularly updated by
FT-SDN via a coordinated process. In the event of a breakdown, FT-SDN can choose an
alternative operational controller depending on the latency and distance between various
network elements. In [43], the authors explored the distributed control architecture of the
SDN’s fault-tolerant arbitration challenge. This guarantees the accuracy of the computation
outcomes regardless of whether any controller is faulty or attacked. In addition, several
attack vectors that might allow the exploitation of SDN vulnerabilities are described in [44]
to support the argument that safe and reliable SDNs should be built by design.

3. Delay Attack Detection and Isolation System (DA-DIS)

In this section, we propose a delay attack detection and isolation scheme (DA-DIS).

3.1. Overview of SDN-RM

As mentioned previously, our existing work is an extension of our previous work,
which is SDN-RM [4]. SDN-RM is a contract-based technique that intends to fulfill the end-
to-end timing constraints of all the communications flow in SDN systems. The architectural
design of SDN-RM comprises four components that aid to create resilience in the SDN.

3.1.1. Contracts and Observers

In this paradigm, a contract explicitly describes (1) hypotheses on the inputs and
environment, (2) inputs and outputs of an element, (3) assurances on the outputs of an
element, and (4) factors that might be used for run-time modifications in contracts. We
consider two types of contracts: strong contracts and weak contracts. A strong contract
ensures the end-to-end delay guarantee from a source si to a destination sj by considering
the strong parameter values, while a weak contract is defined in a similar way with a
weaker set of parameter values.

The observer is responsible for a certain contract to confirm that the component
produces the desired behavior. A fault is notified in the event that a contract failure is

Sensors 2022, 22, 6958 5 of 25

discovered by the corresponding observer. An observer is unaffected by the behavior of
the component.

3.1.2. Monitors

Monitors are responsible for the inspection of two events: (1) the link break event (E1)
and (2) dynamic changes in delay requirements of the contract event (E2). Using the switch
port data that were obtained, a link break monitor in the SDN controller may identify
a link break event (E1). By tracking contract changes, the monitor identifies a contract
modification (E2) in the run-time delay needs.

3.1.3. Resilience Manager

The resilience manager’s (RM) goal is to make the network more fault-tolerant. It has
control logic that processes the desired reaction plan after receiving the reported fault event.
We consider three types of reaction plans when the fault is reported in the network.

• RP1—path reassignment and path recalculation: In order to redirect the network
flows, the path-finding algorithm is used to recalculate the path between the required
source–destination pair. The SDN controller applies the updated forwarding rules for
the alternate pathways to the appropriate switches.

• RP2—transition to a weak contract: If the delay criteria of the strong contract cannot be
guaranteed after route recalculation; the RM can choose a transition to a weak contract.

• RP3—sending out a warning: In the worst-case scenario, a warning is sent when the
weak contract’s delay conditions cannot be met (weak contract failure).

3.1.4. Path-Finding Algorithm

The route finding algorithm is in charge of determining the path having the least
amount of end-to-end delay. It is triggered (1) whenever a new flow enters the system,
(2) regularly to propose a new route depending on the condition of the network, and (3) if
an observer reports a failure. The newly proposed route is subsequently used by the SDN
controller for the current flows. To determine the route with the smallest delay between the
origin and the endpoint, the path-finding method uses Dijkstra’s shortest path algorithm.

3.2. Operations of DA-DIS

Our framework is built on the CPS communication network, comprising SDN network
architecture that programs OpenFlow switches using open flow protocols. States and flows
can change at any moment in CPS networks, and requirements may also change depending
on the network state. As a result, with this sort of system, where the system’s environment
changes on a regular basis, security is a vital issue. Furthermore, in real-time, it is difficult to
discover and remediate systems that are under threat. Such threats have a direct impact on
the QoS parameter, resulting in a decrease in system performance and robustness. On the
controller’s side, the controller has a complete topology view and may obtain any statistics.
The suggested method aims to identify the malicious network switches that intentionally
delay LLDP packets. If a switch is discovered to be malicious, the suggested technique
will isolate it from the routing path and find an alternate route with the route-handoff
mechanism. As shown in Algorithm 1, Contract_Observer is responsible to notify the fault
to the monitor from the topology. While Check_Status_Change is responsible to notify the
status of the switch from the topology. In addition to this, it is responsible for detecting
the Delay_attack. By doing so, it can obtain the model decision based on whether to isolate
the switch or not from the routing path by calling k_shortest_path. However, while calling
k_shortest_path it makes sure that a malicious switch is not a part of the routing path.

Sensors 2022, 22, 6958 6 of 25

Algorithm 1 DA-DIS detection and isolation algorithm
Input: Current Topology G = (Sw,E)
Output: Path/Backup path (Pi) between source-destination node pair
Contract_Observer(Swi, Port Pi)
Status Swm = Check_Status_Change();
for all Swi ∈ G do

if Check_Status_Change() == Swj do
List Pi = all_k_shortest_path(Swi, Swj);
if Swm ∈ Pi then

graph_list Gl = graph.monitor.path - Swm;
Identify_attack(Swm,Port Pi);
call k_shortest_path(Swi, Swj) ;

else
return Pi;

end if
end if

end for

To provide security and retain the resilience in the network, we propose DA-DIS as
shown in Figure 1, which detects and isolates malicious switches. DA-DIS consists of
two key modules named (1) detection system module (2) topology view of the update-
module. The detection module mainly consists of two components named (1) ML classifier,
and (2) decision module. It is possible that OpenFlow switches, which may causes delay,
may not be malicious; therefore, it is necessary to consider all four scenarios which are
mentioned in [8]. Therefore, the detection system module is responsible to detect the
OpenFlow switch which delays LLDP packets maliciously. In the detection system, the ML
classifier is responsible for making the decision based on the feature sets mentioned in
the Figure 2. Statistical data for the classifier are provided by the monitor module from
the switches of the data plane. Based on the provided statistics, the classifier makes its
decision about the switches, whether it is malicious or normal. The topology view update
module is responsible for updating the network topology as per the decision made by the
detection system. If the decision system decides that the OpenFlow switch is malicious,
then the topology view update-module will remove that particular switch from the path.
Furthermore, it will notify this decision to the monitor module, which is responsible for
notifying the resilience manager. The RM conducts the route-handoff in accordance with
this decision and the malicious switch is isolated from the routing path. In this way,
the DA-DIS system also achieves high resilience by isolating the malicious switch from the
routing path.

Sensors 2022, 22, 6958 7 of 25

Figure 1. SDN framework for delay attack detection and isolation system (DA-DIS).

Figure 2. Mininet 10 switches emulation topology.

Sensors 2022, 22, 6958 8 of 25

4. Results and Analysis

To assess the effectiveness of the proposed mechanism, we evaluated two performance
metrics: average network throughput and success rate (determined by the number of times
the delay requirements of flows were satisfied).

4.1. Variable Number of Fault Events (20% Malicious Switches)
4.1.1. Case 1: Link Break Event (E1)

In the process of the experiment, the connection (E1) between distinct switches in the
network was disrupted one to five times. As shown in Figure 3, 20% of the network switches
were under intrusion and normal settings. Under such circumstances, we compared the
results of the success rate of the DA-DIS approach with SDN-RM under the delay attack.
As the results depict, DA-DIS has a higher success rate. As DA-DIS can segregate malicious
switches, it delivered a better success probability under the attack circumstances. If we
compare DA-DIS with SDN-RM under attack, as well as in normal conditions, both give
almost similar success rates, which means that DA-DIS can isolate the malicious switches.
As the number of link failure events increased, there was a drop in the success rate in
all three scenarios. As the frequency of connection failures rose, the success rates of all
mechanisms reduced owing to the increasing number of faults. As a result, the success
rate of DA-DIS declined when the network generated increased fault events. The average
success rate was observed at 81.29% for DA-DIS in the case of the 20% (2 malicious
switches out of 10) attack conditions in the 10-switch Mininet topology. On the other hand,
the average success rates observed in SDN-RM under attack and conditions were 72.13%
and 83.10%, respectively.

Figure 3. Success rate considering a different number of events (E1) and 20% malicious switches.

As shown in Figure 4, DA-DIS under the attack condition provided a higher network
throughput as compared to SDN-RM under attack. It is evident that the network through-

Sensors 2022, 22, 6958 9 of 25

put dropped, as the magnitude of the connection failure rate. In the 20% attack scenario,
the average throughput measured for DA-DIS was 954.2 Mbps while that of SDN-RM was
881.8 Mbps for one to five link failure events, while without an attack, SDN-RM provided a
throughput of 971.4 Mbps.

Figure 4. Throughput considering a different number of events (E1) and 20% malicious switches.

4.1.2. Case 2: Link Break Event and Dynamic Changes in Delay Requirements of Contract
Events (E1 and E2)

Throughout the experiment, both fault events (E1 and E2) occurred one to five times at
distinct time instances. As illustrated in Figure 5, DA-DIS under attack provided a higher
success rate as compared to SDN-RM, while the success rate observed was almost similar
for SDN-RM in a normal situation and DA-DIS in an attack situation. According to Figure 5,
the success rate dropped as the number of events increased, with an average success rate
of 80.75% for DA-DIS under the attack with 20 malicious switches. The success rate of
SDN-RM under attack was 72.67%, which was lower compared to the DA-DIS. The average
success rate for SDN-RM under normal circumstances was 80.95%.

As demonstrated in Figure 6, the network throughput deteriorated with an increase in the
number of events (E1 and E2). DA-DIS provided higher throughput as compared to SDN-RM
under attack. DA-DIS provided average network throughput of 967 Mbps for the E1 and E2
events under 20% malicious switches, while SDN-RM provided 883.4 Mbps throughput.

Sensors 2022, 22, 6958 10 of 25

Figure 5. Success Rate considering a different number of events (E1 and E2) and 20% malicious switches.

Figure 6. Throughput considering a different number of events (E1 and E2) and 20% malicious switches.

Sensors 2022, 22, 6958 11 of 25

4.1.3. Case 3: Dynamic Changes in Delay Requirements of Contract Event (E2)

In this experiment, the delay constraints (E2) were altered between one and five
times at discrete intervals in the emulation, as depicted in Figure 7, e.g., the success
rate and throughput, as well as Figure 8, decreasing with the number of events (E2)
increasing. The success rates of DA-DIS and SDN-RM under attack were 80.27% and
69.33%, respectively. While DA-DIS and SDN-RM provided average throughput of 961.8
and 877.4 Mbps, respectively, under attack.

Figure 7. Success Rate considering a different number of events (E2) and 20% malicious switches.

Figure 8. Throughput considering a different number of events (E2) and 20% malicious switches.

Sensors 2022, 22, 6958 12 of 25

4.2. Variable Number of Malicious Switches

We increased the number of malicious switches in the 10 switches Mininet topology.
We compared the success rate and throughput of DA-DIS with SDN-RM under attack.
The number of malicious switches varied from 10% to 40% in the 10-switches network. Five
fault events (E1 and E2) were investigated for the outcomes during the emulation. Other
parameters remained the same as aforementioned.

4.2.1. Case 4: Link Break Event (E1)

In this experiment, we progressively increased the total number of malicious switches
in the network to compare the outcomes of DA-DIS and SDN-RM. In this experiment,
the number of link failure events was induced twice at discrete time instances. Along with
the link failure events, the percentage of malicious switches increased from 10% to 40% in
the network. As shown in Figure 9, when the number of malicious switches increased in
the network from 10% to 40%, the success rate decreased for SDN-RM. In contrast, DA-DIS
provided a notable success rate as compared to SDN-RM with an increase in the percentage
of malicious switches. The findings of Figure 10 demonstrate that the throughput of SDN-
RM declined as the number of malicious switches rose, which resulted in a direct impact on
the network’s QoS characteristics. While DA-DIS provided a notable throughput due to its
capability to isolate malicious switches. Table 1 summarizes the results of Figures 9 and 10.

Figure 9. Success rate considering different numbers of malicious switches with E1 category faults.

Sensors 2022, 22, 6958 13 of 25

Figure 10. Throughput considering different numbers of malicious switches with E1 category faults.

Table 1. Result overview of Case 4.

% of Malicious
Switches in the

Network

SDN-RM DA-DIS

Success Rate Throughput Success Rate Throughput

0% 80.67% 917 Mbps 81.33% 921 Mbps
10% 74.67% 887 Mbps 84.00% 919 Mbps
20% 68.00% 870 Mbps 80.00% 924 Mbps
30% 60.00% 856 Mbps 86.00% 934 Mbps
40% 49.33% 829 Mbps 84.67% 928 Mbps

4.2.2. Case 5: Link Break Event and Dynamic Changes in Delay Requirements of Contract
Event (E1 and E2)

Both events (E1 and E2) occurred five times throughout the execution of the emulation,
each time at a distinct time instance. The results of Figures 11 and 12 are presented in
Table 2 where the number of malicious switches increased from 10% to 40%.

Sensors 2022, 22, 6958 14 of 25

Figure 11. Success rate considering different numbers of malicious switches with E1 and E2 cate-
gory faults.

Figure 12. Throughput considering different numbers of malicious switches with E1 and E2 faults.

Sensors 2022, 22, 6958 15 of 25

Table 2. Results overview of Case 5.

% of Malicious
Switches in the

Network

SDN-RM DA-DIS

Success Rate Throughput Success Rate Throughput

0% 79.33% 902 Mbps 81.33% 956 Mbps
10% 73.33% 883 Mbps 84.00% 952 Mbps
20% 66.67% 867 Mbps 80.00% 962 Mbps
30% 58.00% 846 Mbps 86.00% 958 Mbps
40% 50.67% 833 Mbps 84.67% 948 Mbps

4.2.3. Case 6: Dynamic Changes in Delay Requirements of Contract Event (E2)

Throughout the emulation, dynamic changes in delay requirements (E2) occurred five
times at distinct time instances. The findings of Figures 13 and 14 for this run are collected
in Table 3.

Figure 13. Success rate considering different numbers of malicious switches with E2 category faults.

Sensors 2022, 22, 6958 16 of 25

Figure 14. Throughput considering different numbers of malicious switches with E2 category faults.

Table 3. Results overview of Case 6.

% of Malicious
Switches in the

Network

SDN-RM DA-DIS

Success Rate Throughput Success Rate Throughput

0% 77.33% 919 Mbps 91.33% 948 Mbps
10% 69.33% 883 Mbps 87.33% 941 Mbps
20% 64.67% 869 Mbps 89.33% 951 Mbps
30% 57.59% 836 Mbps 86.67% 949 Mbps
40% 48.00% 811 Mbps 90.00% 942 Mbps

4.3. Variable Number of Fault Events with Varying Number of Flows with Real-World Test Bed

To evaluate DA-DIS, we carried out experiments in a real-world setup as shown
in Figure 15, where three Zodiac Fx switches were connected with Port 4 to the system
with the use of a TP-Link switch TL-SF1005D. The system ran the Ryu SDN controller on
an Ubuntu virtual machine installed on a Windows 10 Enterprise (64-bit) host operating
system. All three switches were connected with native ports forming a mesh topology. We
took two computing systems as hosts, which were connected to Zodiac Fx switch-1 and
Zodiac Fx switch-3, respectively. To access the terminals of both the hosts with Putty utility,
USB to TTL serial cables were connected from the system to serial ports of both Raspberry
Pis. To send TCP traffic from one host to the other, we used the iPerf tool. We considered
sending each flow of 20 Mb with a time interval of 1 second. Table 4 summarizes the
experimental parameters.

Sensors 2022, 22, 6958 17 of 25

Figure 15. Real-world test bed.

Table 4. Experimental parameters.

Parameters Value

Number of Zodiac Fx switches 3
Number of hosts 2

Number of flows (Varying) 1 to 5
Link capacity 100 Mbps

Time 300 s
Number of Events E1 1

Number of Events E2 (Varying) 1 to 3
Traffic type TCP

Traffic generation iPerf

We varied the number of parallel flows (utilizing a higher percentage of bandwidth)
from one to five for the source–destination pair (Host 1 to Host 2) during this experiment.
Moreover, we considered one malicious switch present in the SDN network.

4.3.1. Case 7: Link Break Event (E1)

In this case, an event (E1) was triggered in order to generate a fault during the
experiment. During the experiment, the link from switch 1 to switch 3 was broken once.
As demonstrated in Figure 16, with the rising number of flows, the success rates of both
approaches decreased due to increased network congestion [21]. As SDN-RM could not
isolate the malicious switches from the routing path, it is evident that the average success
rate of SDN-RM was 42.53% in the existence of a single malicious switch, while DA-DIS
provided a higher success rate at 87.87%.

It is observed from Figure 17 that the average network throughput of SDN-RM was
39.22 Mbps, while that of DA-DIS was 53.59 Mbps in the presence of one malicious switch
in the network.

Sensors 2022, 22, 6958 18 of 25

Figure 16. Success rate considering different numbers of parallel flows with one malicious switch
along with E1 category faults.

Figure 17. Throughput considering different numbers of parallel flows with one malicious switch
along with E1 category faults.

Sensors 2022, 22, 6958 19 of 25

4.3.2. Case 8: Link Break Event and Dynamic Changes in Delay Requirements of Contract
Event (E1 and E2)

During the case, event E1 was triggered once and event E2 was triggered twice at
distinct time instances. As shown in Figure 18, the success rate of DA-DIS was 76.27%,
while for SDN-RM, it was 48.67%. It can be noted that, with the rising number of flows, the
success rates of both approaches declined due to an increase in network congestion. It has
been observed that from the linear fitting curves, DA-DIS had a higher success rate, which
recites its ability to isolate the malicious switches from the routing path.

As demonstrated in Figure 19, DA-DIS and SDN-RM achieved average network
throughput of 54.46 and 32.12 Mbps, respectively. Additionally, the linear fit curve demon-
strates that DA-DIS offered greater throughput than SDN-RM.

4.3.3. Case 9: Dynamic Changes in Delay Requirements of Contract Event (E2)

In this series of cases, we adjusted the number of parallel flows (using a larger per-
centage of bandwidth) for a source–destination pair from one to five by inducing various
numbers of event E2s to produce a number of faults. In this case, we triggered the contract
change event three times at separate time occurrences. As shown in Figure 20, the success
rates of DA-DIS and SDN-RM were 80.53% and 48.53%, respectively. This was due to the
aforementioned reasons.

As shown in Figure 21, DA-DIS provided average network throughput of 52.84 Mbps
whereas SDN-RM provided 35.24 Mbps. As per the linear fitting of the curve, it is evident
that the DA-DIS mechanism delivered superior throughput compared to SDN-RM even
with a rising number of parallel flows. Thus, we can infer that DA-DIS has a strong capacity
to achieve QoS parameters, which indicates a higher potential to achieve resilience in the
presence of malicious switches in the network.

Figure 18. Success rate considering different numbers of parallel flows with one malicious switch
along with E1 and E2 category faults.

Sensors 2022, 22, 6958 20 of 25

Figure 19. Throughput considering different numbers of parallel flows with one malicious switch
along with E1 and E2 category faults.

Figure 20. Success rate considering different numbers of parallel flows with one malicious switch
along with E2 category faults.

Sensors 2022, 22, 6958 21 of 25

Figure 21. Throughput considering different numbers of parallel flows with one malicious switch
along with E2 category faults.

4.3.4. Case 10: Effect on QoS Parameters of Malicious Switch during Emulation

In this case, we evaluated the proposed approach with an emulation time of 300 s
in the presence of a malicious switch in the network. For this experiment, we utilized
60% of the bandwidth by generating 3 parallel numbers of flows. As shown in Figure 22,
during the whole interval of emulation, the polynomial fit of the DA-DIS was higher than
SDN-RM, which proves that DA-DIS has a higher success rate compared to SDN-RM.
During this interval, none of them intersected with each other, meaning that DA-DIS has
the capability of detecting and isolating the malicious switch in the network.

If we refer to Figure 23, the polynomial fit of the DA-DIS is higher than SDN-RM,
which means DA-DIS provides high QoS performance in the presence of a malicious switch
compared to SDN-RM.

Observation: It has been observed (from the above cases of experiments) that while
the scaling of the attack increased, QoS parameters (success rate and average network
throughput) were not affected. This exhibits the high resilience of the DA-DIS approach
against the delay-based attack. However, an increasing parallel number of flow QoS
parameters become affected due to the congestion.

Sensors 2022, 22, 6958 22 of 25

Figure 22. Effect of a malicious switch on the success rate during emulation.

Figure 23. Effect of a malicious switch on throughput during emulation.

Sensors 2022, 22, 6958 23 of 25

5. Future Enhancement

In the future, we will aim to improve the resilience of the proposed scheme by mitigat-
ing distributed DoS (DDoS), warm-wholes, and deception attacks. Meanwhile, the current
approach can be improved by considering communication with another device using an
unknown protocol. Additionally, there is a scope for improving resilience by using multiple
controllers in the case of a controller breakdown.

6. Conclusions

This work is an extension of the SDN-RM scheme, in which we intended to improve the
resilience of SDN-RM under a delay-based attack. In this paper, we have presented a scheme
for delay-based attack detection and isolation for time-critical applications. The approach
detects the malicious OpenFlow switches in the SDN network that delays LLDP packets.
An ML classifier detects the malicious switches in the network and the route-handoff
mechanism isolates these switches from the routing path. As depicted by the emulation
and real-world testbed results, the proposed scheme, DA-DIS, provides improved resilience
with an increased average network throughput and success rate. DA-DIS shows higher
resilience even with a higher percentage of attacker switches as compared to SDN-RM.
Moreover, DA-DIS decreases the number of faults in the network, which is imperative for
achieving zero-downtime in industrial networks.

Author Contributions: Investigation, S.R. and R.H.J.; Methodology, S.R. and R.H.J.; Resources, R.H.J.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kathiravelu, P.; Van Roy, P.; Veiga, L. SD-CPS: Software-defined cyber-physical systems. Taming the challenges of CPS with

workflows at the edge. Clust. Comput. 2019, 22, 661–677. [CrossRef]
2. Yan, S.; Gu, Z.; Park, J.H.; Xie, X.; Dou, C. Probability-density-dependent load frequency control of power systems with random

delays and cyber-attacks via circuital implementation. IEEE Trans. Smart Grid 2022. [CrossRef]
3. Caraguay, V.; Leonardo, A.; Peral, A.B.; Lopez, L.I.B.; Villalba, L.J.G. SDN: Evolution and opportunities in the development IoT

applications. Int. J. Distrib. Netw. 2014, 10, 735142. [CrossRef]
4. Jhaveri, R.H.; Tan, R.; Easwaran, A.; Ramani, S.V. Managing industrial communications delays with software-defined networking.

In Proceedings of the 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Hangzhou, China, 18–21 August 2019; pp. 1–11.

5. Maleh, Y.; Qasmaoui, Y.; El Gholami, K.; Sadqi, Y.; Mounir, S. A comprehensive survey on SDN security: Threats, mitigations, and
future directions. J. Reliab. Intell. Environ. 2022, 1–39. [CrossRef]

6. Bharany, S.; Badotra, S.; Sharma, S.; Rani, S.; Alazab, M.; Jhaveri, R.H.; Gadekallu, T.R. Energy Efficient Fault Tolerance Techniques
in Green Cloud Computing: A Systematic Survey and Taxonomy. Sustain. Energy Technol. Assess. 2022, 53, 102613. [CrossRef]

7. Da Silva, A.S.; Smith, P.; Mauthe, A.; Schaeffer-Filho, A. Resilience support in software-defined networking: A survey. Comput.
Netw. 2015, 92, 189–207. [CrossRef]

8. Ramani, S.V.; Jhaveri, R.H. SDN Framework for Mitigating Time-based Delay Attack. J. Circuits Syst. Comput. 2022, 2250264.
[CrossRef]

9. Yu, Z.; Zhu, H.; Xiao, R.; Song, C.; Dong, J.; Li, H. Detection and defense against network isolation attacks in software defined
networks. Trans. Emerg. Telecommun. 2021, 32, e3895. [CrossRef]

10. Zhao, T.F.; Chen, W.N.; Kwong, S.; Gu, T.L.; Yuan, H.Q.; Zhang, J.; Zhang, J. Evolutionary divide-and-conquer algorithm for virus
spreading control over networks. IEEE Trans. Cybern. 2020, 51, 3752–3766. [CrossRef]

11. Sarker, I.H.; Abushark, Y.B.; Alsolami, F.; Khan, A.I. Intrudtree: A machine learning based cyber security intrusion detection
model. Symmetry 2020, 12, 754. [CrossRef]

12. Ali, J.; Roh, B.H. An Effective Approach for Controller Placement in Software-Defined Internet-of-Things (SD-IoT). Sensors 2022,
22, 2992. [CrossRef]

http://doi.org/10.1007/s10586-018-2874-8
http://dx.doi.org/10.1109/TSG.2022.3178976
http://dx.doi.org/10.1155/2014/735142
http://dx.doi.org/10.1007/s40860-022-00171-8
http://dx.doi.org/10.1016/j.seta.2022.102613
http://dx.doi.org/10.1016/j.comnet.2015.09.012
http://dx.doi.org/10.1142/S0218126622502644
http://dx.doi.org/10.1002/ett.3895
http://dx.doi.org/10.1109/TCYB.2020.2975530
http://dx.doi.org/10.3390/sym12050754
http://dx.doi.org/10.3390/s22082992

Sensors 2022, 22, 6958 24 of 25

13. Li, Y.; Cai, Z.P.; Xu, H. LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks. J. Comput.
Sci. Technol. 2018, 33, 277–285. [CrossRef]

14. Open Networking Foundation. OpenFlow Switch Specification; Open Networking Foundation: Menlo Park, CA, USA, 2015.
15. Azodolmolky, S.; Wieder, P.; Yahyapour, R. Performance Evaluation of a Scalable Software-Defined Networking Deployment. In

Proceedings of the 2nd European Workshop on Software Defined Networks, Berlin, Germany, 10–11 October 2013; pp. 68–74.
16. Kim, Y.-J.; He, K.; Thottan, M.; Deshpande, J.G. Virtualized and self-configurable utility communications enabled by software-

defined networks. In Proceedings of 5th IEEE International Conference on Smart Grid Communications (SmartGridComm),
Venice, Italy, 3–6 November 2014.

17. Goodney, A.; Kumar, S.; Ravi, A.; Cho, Y.H. Efficient PMU networking with software defined networks. In Proceedings of the 4th
IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013.

18. Zhang, J.; Seet, B.-C.; Lie, T.-T.; Foh, C.H. Opportunities for software-defined networking in smart grid. In Proceedings of the
International Conference on Information, Communications and Signal Processing (ICICS), Tainan, Taiwan, 10–13 December 2013.

19. Ali, J.; Roh, B.-H. Quality of service improvement with optimal software-defined networking controller and control plane clustering.
Comput. Mater. Contin 2021, 67, 849–875. [CrossRef]

20. Ali, J.; Roh, B.-H. An effective hierarchical control plane for software-defined networks leveraging TOPSIS for end-to-end QoS
class-mapping. IEEE Access 2020, 8, 88990–89006. [CrossRef]

21. Jhaveri, R.; Ramani, S.; Srivastava, G.; Gadekallu, T.R.; Aggarwal, V. Fault-Resilience for Bandwidth Management in Industrial
Software-Defined Networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 3129–3139. [CrossRef]

22. Shaghaghi, A.; Kaafar, M.A.; Buyya, R.; Jha, S. Software-defined network (SDN) data plane security: Issues, solutions, and future
directions. In Handbook of Computer Networks and Cyber Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 341–387.

23. Dhawan, M.; Poddar, R.; Mahajan, K.; Mann, V. Sphinx: Detecting security attacks in software-defined networks. Ndss 2015, 15,
8–11.

24. Shaghaghi, A.; Kaafar, M.A.; Jha, S. Wedgetail: An intrusion prevention system for the data plane of software defined networks. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates,
2–6 April 2017; pp. 849–861.

25. Savaliya, A.; Jhaveri, R.H.; Xin, Q.; Alqithami, S.; Ramani, S.; Ahanger, T.A. Securing industrial communication with software-
defined networking. Math. Biosci. Eng. 2021, 18, 8298–8314. [CrossRef]

26. Kamisiński, A.; Fung, C. Flowmon: Detecting malicious switches in software-defined networks. In Proceedings of the 2015
Workshop on Automated Decision Making for Active Cyber Defense, Denver, CO, USA, 12 October 2015; pp. 39–45.

27. Mohan, P.M.; Truong-Huu, T.; Gurusamy, M. Fault tolerance in TCAM-limited software defined networks. Comput. Netw. 2017,
116 (Suppl. C), 47–62. [CrossRef]

28. Jero, S.; Bu, X.; Nita-Rotaru, C.; Okhravi, H.; Skowyra, R.; Fahmy, S. Beads: Automated attack discovery in openflow-based sdn
systems. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Atlanta, GA, USA,
18–20 September 2017; pp. 311–333.

29. Hua, J.; Zhou, Z.; Zhong, S. Flow misleading: Worm-hole attack in software-defined networking via building in-band covert
channel. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1029–1043. [CrossRef]

30. Zeng, H.; Kazemian, P.; Varghese, G.; McKeown, N. Automatic Test Packet Generation. IEEE/ACM Trans. Netw. 2014, 22, 554–566.
[CrossRef]

31. Kim, T.; Basescu, C.; Jia, L.; Lee, S.B.; Hu, Y.-C.; Perrig, A. Lightweight Source Authentication and Path Validation. In Proceedings
of the ACM SIGCOMM, Chicago, IL, USA, 17–22 August 2014.

32. Zhou, T.; Cai, Z.; Xiao, B.; Chen, Y.; Xu, M. Detecting rogue AP with the crowd wisdom. In Proceedings of the 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2327–2332.

33. Kuo, E.C.; Chang, M.S.; Kao, D.Y. User-side evil twin attack detection using time-delay statistics of TCP connection termination. In
Proceedings of the 2018 20th International Conference onAdvanced Communication Technology (ICACT), Chuncheon-si, Korea,
11–14 February 2018; pp. 211–216.

34. Huang, Z.; Yu, Y.; Gu, J.; Liu, H. An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans
Cybern. 2016, 47, 920–933. [CrossRef] [PubMed]

35. Zhong, S.; Chen, T.; He, F.; Niu, Y. Fast Gaussian kernel learning for classification tasks based on specially structured global
optimization. Neural Netw. 2014, 57, 51–62. [CrossRef]

36. Gore, R.; Padilla, J.; Diallo, S. Markov Chain Modeling of Cyber Threats. J. Def. Model. Simul. 2017, 14, 233–244. [CrossRef]
37. Ali, S.T.; Sivaraman, V.; Radford, A.; Jha, S. A survey of securing networks using software defined networking. IEEE Trans. Reliab.

2015, 64, 1086–1097. [CrossRef]
38. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A comprehen-

sive survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]
39. Scott-Hayward, S.; Natarajan, S.; Sezer, S. A survey of security in software defined networks. IEEE Commun. Tutor. 2015, 18,

623–654. [CrossRef]
40. Ghannam, R.; Chung, A. Handling malicious switches in software defined networks. In Proceedings of the NOMS 2016-2016

IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 1245–1248.

http://dx.doi.org/10.1007/s11390-018-1819-2
http://dx.doi.org/10.32604/cmc.2021.014576
http://dx.doi.org/10.1109/ACCESS.2020.2993556
http://dx.doi.org/10.1109/TNSE.2021.3104499
http://dx.doi.org/10.3934/mbe.2021411
http://dx.doi.org/10.1016/j.comnet.2017.02.009
http://dx.doi.org/10.1109/TIFS.2020.3013093
http://dx.doi.org/10.1109/TNET.2013.2253121
http://dx.doi.org/10.1109/TCYB.2016.2533424
http://www.ncbi.nlm.nih.gov/pubmed/26992185
http://dx.doi.org/10.1016/j.neunet.2014.05.014
http://dx.doi.org/10.1177/1548512916683451
http://dx.doi.org/10.1109/TR.2015.2421391
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/COMST.2015.2453114

Sensors 2022, 22, 6958 25 of 25

41. Babiceanu, R.F.; Seker, R. Cyber resilience protection for industrial internet of things: A software-defined networking approach.
Comput. Ind. 2019, 104, 47–58. [CrossRef]

42. Das, R.K.; Pohrmen, F.H.; Maji, A.K.; Saha, G. Ft-sdn: A fault-tolerant distributed architecture for software defined network. Wirel.
Pers. Commun. 2020, 114, 1045–1066. [CrossRef]

43. Cheng, C.F.; Lin, J.C.W.; Srivastava, G.; Hsu, C.C. Reaching Consensus with Byzantine Faulty Controllers in Software-Defined
Networks. Wirel. Commun. Mob. Comput. 2021, 2021, 1530–8669. [CrossRef]

44. Kreutz, D.; Ramos, F.M.; Verissimo, P. Towards secure and dependable software-defined networks. In Proceedings of the Second
ACM SIGCOMM workshop on Hot topics in Software Defined Networking, Hong Kong, China, 16 August 2013; pp. 55–60.

http://dx.doi.org/10.1016/j.compind.2018.10.004
http://dx.doi.org/10.1007/s11277-020-07407-x
http://dx.doi.org/10.1155/2021/6662175

	Introduction
	Related Work
	Review of SDN Attack Defence Mechanisms
	Review of SDN-Based Fault-Tolerance Mechanisms

	Delay Attack Detection and Isolation System (DA-DIS)
	Overview of SDN-RM
	Contracts and Observers
	Monitors
	Resilience Manager
	Path-Finding Algorithm

	Operations of DA-DIS

	Results and Analysis
	Variable Number of Fault Events (20% Malicious Switches)
	Case 1: Link Break Event (E1)
	Case 2: Link Break Event and Dynamic Changes in Delay Requirements of Contract Events (E1 and E2)
	Case 3: Dynamic Changes in Delay Requirements of Contract Event (E2)

	Variable Number of Malicious Switches
	Case 4: Link Break Event (E1)
	Case 5: Link Break Event and Dynamic Changes in Delay Requirements of Contract Event (E1 and E2)
	Case 6: Dynamic Changes in Delay Requirements of Contract Event (E2)

	Variable Number of Fault Events with Varying Number of Flows with Real-World Test Bed
	Case 7: Link Break Event (E1)
	Case 8: Link Break Event and Dynamic Changes in Delay Requirements of Contract Event (E1 and E2)
	Case 9: Dynamic Changes in Delay Requirements of Contract Event (E2)
	Case 10: Effect on QoS Parameters of Malicious Switch during Emulation

	Future Enhancement
	Conclusions
	References

