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Abstract: In the satellite multigroup multicast communication systems based on the DVB-S2X
standard, due to the limitation of the DVB-S2X frame structure, user scheduling and beamforming
design have become the focus of academic research. In this work, we take the massive multi-input
multi-output (MIMO) low earth orbit (LEO) satellite communication system adopting the DVB-S2X
standard as the research scenario, and the LEO satellite adopts a uniform planar array (UPA) based
on the fully connected hybrid structure. We focus on the coupling design of user scheduling and
beamforming; meanwhile, the scheme design takes the influence of residual Doppler shift and phase
disturbance on channel errors into account. Under the constraints of total transmission power and
quality of service (QoS), we study the robust joint user scheduling and hybrid beamforming design
aimed at maximizing the energy efficiency (EE). For this problem, we first adopt the hierarchical
clustering algorithm to group users. Then, the semidefinite programming (SDP) algorithm and the
concave convex process (CCCP) framework are applied to tackle the optimization of user scheduling
and hybrid beamforming design. To handle the rank-one matrix constraint, the penalty iteration
algorithm is proposed. To balance the performance and complexity of the algorithm, the user
preselected step is added before joint design. Finally, to obtain the digital beamforming matrix and
the analog beamforming matrix in a hybrid beamformer, the alternative optimization algorithm
based on the majorization-minimization framework (MM-AltOpt) is proposed. Numerical simulation
results show that the EE of the proposed joint user scheduling and beamforming design algorithm is
higher than that of the traditional decoupling design algorithms.

Keywords: LEO satellite communications; massive MIMO; multigroup multicast; user scheduling;
hybrid beamforming; robust; joint design; energy efficiency

1. Introduction

In recent years, LEO satellite communication systems have played an increasingly im-
portant role in wireless communication networks [1]. However, facing the high-performance
requirements of future wireless communication systems, such as higher spectrum efficiency
(SE) and increased EE, the performance of LEO satellite communication systems needs
to be improved [2]. Applying the massive MIMO technology to LEO satellites is a good
choice, and with the advantage of 5G technology [3] and the spatial multiplexing principle
of MIMO technology [4], the performance of LEO satellite communication systems can be
further improved. Meanwhile, by using the high-precision multiple beams generated by
the massive MIMO technology and aggressive full frequency reuse scheme among beams,
the performance of the communication system can be greatly improved. However, the
full frequency reuse scheme will cause severe inter-beam interference [5], and adopting
the beamforming design at the LEO transmitter side can efficiently manage it. In addition,
the super-frame structure of multibeam satellite communications standards such as DVB-
S2X [6] needs to apply the same beamformer to multiple users that share the same frame.
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Therefore, the multigroup multicasting principle can be used in the beamformer design.
In this paper, we concentrate on the massive MIMO LEO satellite communication system
forward link multigroup multicasting beamforming scheme [7].

In the beamforming design of the massive MIMO LEO satellite multigroup multicast
communication system, the following issues need to be considered:

• User scheduling: Due to that only a few users can be bound into a DVB-S2X frame,
and there are a large number of active users in each multicast group, it is necessary
to design the user scheduling algorithm. Meanwhile, it should be noted that the
interference between scheduled users depends on the beamforming design, which in
turn depends on the scheduled users in other beams. Therefore, user scheduling and
beamforming design are coupled, and the joint design scheme of user scheduling and
beamforming needs to be considered.

• Channel errors: The LEO satellite has high orbital speed, which will produce a large
Doppler shift and result in the channel phase deviation [8]. Meanwhile, the factors such
as distortion of high-frequency devices, expiration of the CSI and large propagation
delay also can cause the channel phase disturbance. Therefore, it is difficult to obtain
accurate channel state information (CSI) at the LEO satellite transmitter. Due to the
existence of CSI errors, the designed beamforming vector does not match the actual
CSI, resulting in the reduction in the receiving gain and signal to interference plus noise
ratio (SINR) of the user terminal. Then, the QoS will not be guaranteed. Thus, it is of
practical significance to study the robust user scheduling and beamforming design.

• EE optimization: Due to the limited energy load of LEO satellites, to prolong the service
life of the LEO satellite and improve the stability of the LEO satellite communications
system, under the consideration of green communications and economic benefits, we
need to pay attention to the EE optimization [9].

• Beamforming scheme: In the beamforming architectures of the massive MIMO tech-
nology, although the digital beamforming design can significantly improve the SE,
it would bring high hardware complexity and high power consumption. Although
the hardware overhead of hybrid beamforming architecture based on full connection
is slightly higher than that of the partial connection architecture, it can balance the
hardware complexity and system performance, and has higher cost performance.
Therefore, in this paper, we selected the hybrid beamforming technology based on the
full connection structure [10].

2. Related Works and Main Contributions
2.1. Related Works

There is extensive literature regarding user scheduling and beamforming design in the
wireless multigroup multicast communication system. In Ref. [11], based on the perfect CSI,
taking the throughput maximization as the optimization objective the authors studied the
precoding design of the multibeam satellite communication system, and proposed a decou-
pling scheme of the user scheduling and beamforming design. In Ref. [12], considering the
influence of CSI errors and taking the minimizing transmission power as the optimization
objective, the robust multigroup multicast transmission scheme of the multibeam satellite
communication system was investigated, and the low complexity beamforming algorithm
and the user grouping algorithm were proposed, but the length limit of the DVB-S2X frame
was not considered. In Ref. [13], based on the perfect CSI and taking the maximizing SE as
the optimization objective, the multigroup multicast transmission design scheme of the
frame-based multibeam satellite communication system was investigated, and the authors
proposed a joint design scheme of the user scheduling and beamforming. However, the
influence of CSI errors was not considered, and the user grouping algorithm was simple. In
Ref. [14], based on the perfect CSI, the authors studied the user scheduling problem of the
multicast transmission in the high-throughput satellite communication system. The user
scheduling was decoupled into intra-beam scheduling and inter-beam scheduling, and the
correlation degree was calculated by using the equivalent CSI; therefore, the interaction of
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intra-beam and inter-beam scheduling cannot be fully considered. In Ref. [15], the authors
studied the user scheduling problem of the multibeam satellite communication system but
did not consider the inter-beam interference caused by scheduling. In Ref. [16], based on the
perfect CSI, the authors studied the joint scheduling and beamforming design problem for
multiuser MISO downlink, and the message-based user grouping and scheduling algorithm
was mainly proposed, but the impact of user grouping on system performance was not
fully considered. In Ref. [17], the user scheduling and hybrid beamforming design of the
massive MIMO orthogonal frequency division multiple access (OFDMA) communication
system was studied, in scheme design. First, a joint design algorithm of user scheduling and
analog beamforming was proposed; then, the digital beamforming matrix was solved by
the weighted minimum mean-square error (WMMSE) algorithm. In Ref. [18], the authors
studied the design of user scheduling and subcarrier allocation in the downlink of a massive
MIMO OFDMA communication system and proposed a hybrid beamforming scheme. First,
based on the optimal solution of digital beamforming, the analog beamforming matrix was
obtained by a singular value decomposition algorithm. Then, the authors proposed an
algorithm to solve the digital beamforming matrix and its corresponding scheduling users.

Most of the above research took the geosynchronous earth orbit (GEO) satellite or
the terrestrial cellular network as the research object, and less used the LEO satellite. In
addition, the optimization objectives mainly focused on maximizing SE and minimizing
transmission power, and less on the EE optimization. Meanwhile, the analysis of CSI errors
was insufficient, as some research considered the CSI errors, but did not analyze the influ-
ence of the Doppler shift. In terms of the user scheduling, the common idea was to adopt the
decoupling scheme of user scheduling and beamforming design, without fully considering
the coupling relationship between the user scheduling and the beamforming design.

2.2. Main Contributions

Inspired by the above research, we focus on the downlink transmission design of the
massive MIMO LEO satellite multigroup multicast communication system. In scheme
design, comprehensively considering the influence of CSI errors caused by the residual
Doppler shift and the phase disturbance, we mainly investigate the robust joint user
scheduling and hybrid beamforming design to maximize the system EE. Meanwhile, we
take the constraints of the transmission power and QoS into account. The main works are
summarized as follows:

• We establish the downlink transmission system model and channel model of the
massive MIMO LEO satellite multigroup multicast communication system and analyze
the CSI errors.

• Based on the CSI, we adopt a low complexity hierarchical clustering algorithm based
on the Ward connection method to group users, which can lay a foundation for the
joint user scheduling and beamforming design.

• We establish the joint user scheduling and hybrid beamforming design problem model
based on EE maximization, and binary variables are defined to represent whether the
user is scheduled or not. Then, we transform the optimization problem into a Boolean
fractional programming (BFP) problem, which is also a quadratic constraint quadratic
programming (QCQP) form problem.

• For the BFP problem in QCQP form, we invoke the quadratic transformation algorithm
to handle the fractional programming form problem in the objective function. Mean-
while, the SDP algorithm is invoked to convert the objective function in QCQP form
into a concave function, and some nonconvex constraints can be converted into linear
constraints. In addition, we adopt the relaxation and penalty algorithm to deal with
the Boolean constraint. Then, the optimization problem is equivalently transformed
into a difference of convex (DC) programming problem.

• For the DC programming problem, an iterative optimization algorithm based on the
CCCP framework is proposed. For the rank-one matrix constraint introduced by the
SDP algorithm, a penalty iterative algorithm is adopted.
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• For the solution of the digital beamforming matrix and the analog beamforming matrix
in the hybrid beamformer, the MM-AltOpt algorithm is proposed.

3. System Model and Problem Formulation
3.1. System Model

As shown in Figure 1, we focus on the downlink of the massive MIMO LEO satellite
multigroup multicast communication system, and the LEO satellite uses a UPA, which is
composed of N = Nx × Ny antennas and L(L ≤ N) RF links and covers L multicast groups
and K active users, where K ≥ L, K ≥ N. Let the multicast group covered by the lth beam
be Ul and the number of users in this multicast group be |Ul |, assuming that the number of
users that can be accommodated in each DVB-S2X frame is Us. It should be noted that each
user terminal belongs to only one multicast group, i.e., Ui ∩Uj = ∅, ∀i, j ∈ {1, . . . , L}, i 6= j.
Meanwhile, we assume that the user terminal is equipped with a single antenna capable
of data stream demodulation. According to the DVB-S2X standard, in a transmission slot,
multiple users’ data in a multicast group are multiplexed into a specific forward error
correction (FEC) codeword to provide services for more users. The service process is shown
in Figure 2.
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based on the DVB-S2X.

The received signal yk,l of the kth user in the lth multicast group can be expressed as:

yk,l = hH
k,lFRFFBB[:, l]sl +

L

∑
j=1,j 6=l

hH
k,jFRFFBB[:, j]sl + nk,l , k ∈ {1, . . . , |Ul |}, l ∈ {1, . . . , L}, (1)

where the first term in (1) represents the expected received signal of the kth user in the lth
multicast group, the second term represents the interference of other multicast groups and
the third term represents the additive Gaussian white noise; hk,l ∈ CN×1 represents the
channel vector of the kth user in the lth multicast group, FBB ∈ CL×L represents the digital
beamforming matrix, FBB[:, l] ∈ CL×1 represents the digital beamforming vector of the lth
multicast group, and FRF ∈ CN×L represents the analog beamforming matrix, where each
element of FRF should meet the unit modulus element [19], i.e.,

∣∣∣(FRF)i,j

∣∣∣ = 1. In addition,
sl represents the signal of the multicast group Ul , which meets the unit power constraint,
i.e., E

{
|sl |2

}
= 1, nl ∼ CN(0, σ2) represents the additive Gaussian white noise, which is

related to the Boltzmann constant κ, system bandwidth B and the noise temperature T.
For the convenience of analysis, we set F ∈ CN×L = FRFFBB = [f1, f2, . . . , fL] as the

hybrid beamforming matrix, and fl ∈ CN×1 = FRFFBB[:, l] is the hybrid beamforming
vector of the lth multicast group. Therefore, (1) can be rewritten as:

yk,l = hH
k,lflsl +

L

∑
j=1,j 6=l

hH
k,jfjsl + nk,l , k ∈ {1, . . . , |Ul |}, l ∈ {1, . . . , L} (2)

Due to the high orbital speed of LEO satellites and the long transmission delay, it is
difficult to obtain the precise instantaneous CSI. To cope with this problem, we adopt the
statistical CSI, and the channel vector between the LEO satellite and the kth user in the lth
multicast group at instant t and frequency f can be modeled as follows [20]:

hk,l(t, f ) =
Pk,l

∑
p=1

ak,l,pej2π( fd(k,l,p)t− f τk,l,p) × Vk,l,p, (3)

where f denotes the carrier frequency, ak,l,p, fd(k,l,p),τk,l,p are the complex channel gain,
Doppler shift and propagation delay, respectively, Pk,l denotes the number of propagation
paths and Vk,l,p ∈ CN×1 is the UPA array response vector, which can be given by

Vk,l,p = V(ϕx
k,l,p, ϕ

y
k,l,p) = vNx

(
sin ϕ

y
k,l,p cos ϕx

k,l,p

)
⊗ vNy

(
cos ϕ

y
k,l,p

)
, (4)
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vNx (sin ϕ
y
k,l,p cos ϕx

k,l,p) =
1√
Nx

(
1, e−j 2πd

λ sin ϕ
y
k,l,p cos ϕx

k,l,p , . . . , e−j 2πd
λ (Nx−1) sin ϕ

y
k,l,p cos ϕx

k,l,p

)
, (5)

vNy(cos ϕ
y
k,l,p) =

1√
Ny

(
1, e−j 2πd

λ cos ϕ
y
k,l,p , . . . , e−j 2πd

λ (Ny−1) cos ϕ
y
k,l,p

)
, (6)

where ϕx
k,l,p, ϕ

y
k,l,p represent azimuth angle and pitch angle associated with the propagation

path p of the kth user in the lth multicast group, respectively, λ denotes the wavelength
and d represents the spacing of antenna elements, the value of which is usually λ/2 [5].

Note that the LEO satellite communication system is usually operated under the line of
sight (LOS) transmission, and the channel vector can be modeled using the widely accepted
Rician distribution model as follows:

hk,l = hk,l + h̃k,l , (7)

where hk,l =
√

κk,l γk,l
κk,l+1 ×Vk,l represents the LoS component, h̃k,l =

√
γk,l

κk,l+1 ×Vk,l,c×VH
k,l rep-

resents the multipath component, κk,l denotes the Rician factor, Vk,l,c ∈ CNut×1 ∼ CN(0, ∑)
represents Rician component, Tr(∑) = 1 and γk,l represents the average channel power,
which mainly includes the transmit antenna gain Gleo, receiver antenna gain Gut and link
power loss. The link power loss is mainly caused by the free space path loss LPf s and
the atmospheric absorption loss LPat. Therefore, the average channel power γk,l can be
written as

γk,l = Gleo[dB] + Gut[dB]− LPat[dB]− LPf s[dB], (8)

where LPf s can be given by LPf s = 20
(
log10(Dk,l)

)
+ log10( f ) + log10(4π/c), c is the

speed of light, Dk,l represents the transmission distance, LPat is related to the carrier
frequency, temperature T(h), pressure P(h) and humidity ρ(h), which can be given by
LPat =

∫ hat
hut

LPat( f , T(h), P(h), ρ(h))dh, LPat( f , T(h), P(h), ρ(h)) is the loss per meter, hut is
the user’s height and hat is the atmosphere thickness. The specific calculation method of
LPat can be found in the literature [21].

For the convenience of analysis, it is assumed that the parameters in the channel vector
hk,l are constant within coherence time and change over time in a certain ergodic process. In
(3), the Doppler shift fd(k,l,p) and the propagation delay τk,l,p usually cause CSI errors. Next,
we focus on analyzing the influence of propagation delay and Doppler shift on CSI errors.

Doppler shift: In the LEO satellite communication systems, the Doppler shift is usu-
ally large, which is mainly composed of the Doppler shift f leo

d(k,l,p) generated by the LEO

satellite motion and the Doppler shift f ut
d(k,l,p) generated by the users’ motion [22]. Since the

transmission between the LEO satellite and user terminals is mainly under LOS, f leo
d(k,l,p)

of different transmission paths can be considered to be the same, and we omit the path

index of f leo
d(k,l,p), i.e.,

{
f leo
d(k,l,p)

}Pk

1
= f leo

d(k,l); f leo
d(k,l) can be calculated using the LEO satellite

ephemeris information and the location information of user terminals, as shown in Figure 3.

f leo
d(k,l) = −

f
c
× ωleorer sin(φt − φt0)µ(θmax)√

r2
e + r2 − 2rer cos(φt − φt0)µ(θmax)

, (9)

where µ(θmax) = cos
[
cos−1( re

r cos θmax
)
− θmax

]
, re denotes the earth radius, r represents

the distance between the LEO satellite track point and the earth center, (φt − φt0) represents
the angular distance of the earth’s surface along the LEO satellite trajectory from instant
t to instant t0, ω represents the angular velocity of the LEO satellite and c represents the
speed of light.
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The value of f ut
d(k,l,p) in different transmission paths is different, which is mainly caused

by the movement of user terminals and surrounding scatterers. The power spectrum of
f ut
d(k,l,p) follows the Jakes power spectrum model, and the normalized power spectrum can

be expressed as:

S( f ut
d(k,l,p)) =

1

2π f ut
d(k,l,p),max

√
1− (

f ut
d(k,l,p)

f ut
d(k,l,p),max

)
2

(10)

The large Doppler shift in LEO satellite communication systems can make it difficult
to receive correctly and result in the degradation of communication performance. In appli-
cation, to mitigate the impact of Doppler shift, the solution of estimation and compensation
is usually adopted [23]. The Doppler shift estimation mainly includes two steps: coarse
estimation and fine estimation, which can refer to the literature [24]. When we obtain the
estimated value of Doppler shift, f e

d , the Doppler shift compensation of size f cps
d = f e

d can
be implemented at the receivers. It should be noted that due to that the Doppler shift
changes rapidly, in addition to the low SINR at the receivers and the limited pilot length in
the DVB-S2X frame, the Doppler shift estimation is usually inaccurate, which can result
in the incomplete compensation. Then, there would be the residual Doppler shift f rsd

d ,
which can cause the sliding of channel phase. According to the Doppler shift estimation
theory based the Cramer–Rao bound, the variance in the Doppler shift estimation can be
expressed as the Cramer–Rao lower bound (CRLB) [25], i.e.,

σ2
f e
d
= CRLB( f ) =

1
SNR

3
2π2T2N(N2 − 1)

, (11)

where N is the pilot length, T is the sampling time and SNR is the signal-to-noise ratio.
According to the properties of variance, after Doppler shift compensation of size f cps

d , the
variance of residual Doppler shift f rsd

d is equal to the variance of f e
d , i.e.,

σ2
f rsd
d

= σ2
f e
d
=

1
SNR

3
2π2T2N(N2 − 1)

, (12)

The influence of residual Doppler shift on channel phase errors can be expressed as
φ f rsd

d
= 2π f rsd

d ∆T, where ∆T represents the sum of the downlink propagation delay and
the duration of the DVB-S2X frame. Therefore, the variance of φ f rsd

d
can be expressed as

σ2
φ

f rsd
d

= 4π2σ2
f rsd
d

∆T2 = 1
SNR

6∆T2

T2 N(N2−1) , and φ f rsd
d

follows a real-valued Gaussian distribu-
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tion with mean zero and variance σ2
φ

f rsd
d

, i.e., φ f rsd
d
∼ N

(
0, σ2

φ
f rsd
d

)
. The channel error vector

caused by φ f rsd
d

can be expressed as vφ
f rsd
d

= [e
jφ

f rsd
d ,1 , e

jφ
f rsd
d ,2 , . . . , e

jφ
f rsd
d ,N ]

T
.

Propagation Delay: The orbital height of LEO satellites is about 300 km to 2000 km,
and the long transmission distance can cause the larger propagation delay. Note that the
influence of atmosphere on propagation delay mainly includes ionospheric delay and
tropospheric delay [26]. When the signal passes through the ionosphere, due to the re-
fraction effect of the electromagnetic wave, the propagation path and speed of the signal
will change. Meanwhile, the ionospheric delay is irregular, which is difficult to describe
with a physical model. When the signal passes through the troposphere, the propagation
speed, direction and path of the signal will change, which can result in propagation delay.
The tropospheric delay is related to air pressure, air humidity and satellite elevation. The
commonly used tropospheric delay correction model is given in the literature [27,28]. The
round-trip delay of the LEO satellite with an orbit altitude of 1200 km is about 20 ms.
The long propagation delay will lead to the expiration of CSI, which can result in CSI
errors, phase disturbance and other problems. To handle this problem, the delay com-
pensation of size τcps = βτmin + (1− β)τmax, (0 ≤ β ≤ 1) is usually implemented at the

receivers, and τmin
k,l = min

{
τk,l,p

}Pk,l

1
and τmax

k,l = max
{

τk,l,p

}Pk,l

1
represent the minimum

propagation delay and the maximum propagation delay of the kth user in the lth multicast
group, respectively.

However, due to that the atmospheric propagation delay is irregular, the transmis-
sion delay cannot be fully compensated. Therefore, the incomplete delay compensation,
expired CSI and distortion of high-frequency devices would cause the channel phase dis-
turbance [29]. Let the phase disturbance be φτ , which follows a real-valued Gaussian
distribution with mean zero and variance σ2

φτ
, i.e., φτ ∼ N

(
0, σ2

φτ

)
. The channel error

vector caused by φτ can be expressed as vφτ = [ejφτ,1 , ejφτ2 , . . . , ejφτ,N ]
T .

In conclusion, considering the influence of the residual Doppler shift and the phase
disturbance, the relationship between the real channel vector hk,l and the estimated channel
vector ĥk,l can be expressed as:

hk,l = ĥk,l � vφ
f rsd
d,k,l
� vφτ,k,l = diag

(
diag

(
ĥk,l
)
vφ

f rsd
d,k,l

)
vφτk,l

, (13)

where � represents the Hadamard product. Let the channel phase of the kth user in the lth
multicast group be θk,l = [θk,l,1, θk,l,2, . . . , θk,l,N ]

T , which satisfies the uniform distribution
between 0 ∼ 2π. Then, the real channel phase with phase errors at instant t1 is as follows:

θk,l(t1) = θk,l(t0) + φ f rsd
d,k,l

+ φτk,l (14)

3.2. Problem Formulation
3.2.1. User Clustering

Before the joint user scheduling and hybrid beamforming design, it is necessary to
group the active users within the coverage of the LEO satellite. Based on the CSI, the hierar-
chical clustering algorithm is adopted to group users [30]. As shown in Figures 4 and 5, the
hierarchical clustering algorithm adopts the bottom-up method, where each user initially
forms a group, and then according to the similarity measurement function, the user groups
which meet the similarity threshold constraint are combined until the desired number of
groups is formed.
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We adopt the similarity measurement function among multicast groups based on the
Ward connection method, i.e.,

d(i, j) =

√
2ninj

ni + nj
dist(heq

i , heq
j ), (15)

where ni, nj represent the number of users of the group i and the group j, respectively,
heq

i , heq
j represent the equivalent CSI of the group i and the group j, respectively, and

dist(heq
i , heq

j ) represents the Euclidean distance between the vector heq
i and the vector heq

i , i.e.,

dist(heq
i , heq

j ) =

∥∥∥∥∥∥ heq
i∥∥∥heq
i

∥∥∥ −
heq

j∥∥∥heq
j

∥∥∥
∥∥∥∥∥∥ (16)

3.2.2. System Rate

Affected by CSI errors, both the ergodic communication rate and the ergodic SINR
do not admit explicit expressions. To handle this challenge, the statistical average method
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is adopted to model the SINR and the communication rate. Therefore, the SINR and the
communication rate of the kth user in the lth multicast group can be expressed as:

E
{

SINRk,l
}
≈

E
{∣∣∣hH

k,lfl

∣∣∣2}
E

{
L
∑

j=1,j 6=l

∣∣∣hH
k,lfj

∣∣∣2}+ σ2

, (17)

Rk,l ≈ B log2

1 +
E
{∣∣∣hH

k,lfl

∣∣∣2}
E

{
L
∑

j=1,j 6=l

∣∣∣hH
k,lfj

∣∣∣2}+ σ2

, (18)

where B denotes system bandwidth. Equations (17) and (18) are approximations with
closed form, the feasibility of which have been discussed in detail in Refs. [31,32].

3.2.3. Problem Description

We take the system EE as the optimization objective, and the EE is defined as the
ratio of the system communication rate to the total power consumption, which can be
modeled as:

EE =

L
∑

l=1
min

({
Rk,l
}|Ul |

k=1

)
Ptotal

=

B
L
∑

l=1
log2

1 + min

 |hH
k,lfl |

2

L
∑

j=1,j 6=l

∣∣∣hH
k,lfj

∣∣∣2+σ2


Us

k=1


Pt + P0

, (19)

where Ptotal represents the total power consumption, Pt =
L
∑
l

∣∣ fl f H
l

∣∣ denotes the transmis-

sion power of the LEO satellite, and P0 denotes the inherent power consumption of the
communication system.

Let the Boolean variable ηk,l ∈ {0, 1} indicate whether the kth user in the lth multicast
group is served, ηk,l = 1 and ηk,l = 0 indicate that the user can be served and not served,

respectively, and η = [η1, η2, . . . , ηL], ηl =
[
η1,l , η2,l , . . . , η|Ul |,L

]T
. In conclusion, under the

constraints of the transmission power and QoS, the problem of maximizing system EE can
be modeled as:

Q1 : max
η,fl ,SINRmin

l

EE =

B
L
∑

l=1
log2

(
1 + SINRmin

l

)
L
∑
l

∣∣∣flf
H
l

∣∣∣2 + P0

, (20)

s.t. C1 : ηk,l ∈ {0, 1}, ∀k, l, (21)

C2 : SINRk,l ≥ ηk,lSINRmin
l , ∀k, l, (22)

C3 : SINRmin
l ≥ SINR0, ∀l, (23)

C4 :
(Ul)

∑
k=1

ηk,l = Us, ∀l, (24)

C5 :
L

∑
l=1

∣∣∣flf
H
l

∣∣∣2 ≤ PT , (25)

where SINRmin
l represents the minimum SINR of the lth multicast group and constraint

C3 represents that SINRmin
l should be greater than the minimum SINR constraint SINR0.

Constraint C4 limits the number of scheduled users in each multicast group to Us.
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4. Joint User Scheduling and Hybrid Beamforming Design for Maximizing EE

In this section, we focus on the robust joint user scheduling and hybrid beamforming
design strategy to maximize system EE. To handle the QCQP form problem and noncon-
vexity in optimization problem Q1, the SDP method is applied to make the optimization
problem more tractable. Then, we transform the optimization problem Q1 into a DC
programming problem. To address the DC programming problem, we adopt the CCCP
algorithm. Finally, a penalty iterative algorithm is adopted to handle the rank-one ma-
trix constraint.

4.1. SDP Algorithm

It is worth noting that the objective function and constraints C2 and C5 in the problem
Q1 involve the quadratic form of the variable fl , therefore, Q1 is the QCQP form problem.
To handle this problem, we invoke the SDP algorithm, a new variable Wl , flf

H
l is intro-

duced, and the positive semidefinite matrix Wl needs to meet the constraints of Wl�0 and
rank(Wl) = 1. Then, the problem Q1 can be equivalent to:

Q2 : max
η,Wl ,SINRmin

l

EE =

B
L
∑

l=1
log2

(
1 + SINRmin

l

)
L
∑
l

Tr(Wl) + P0

, (26)

s.t. C1, C2, C3, C4 in Q1, (27)

C5 :
L

∑
l

Tr(Wl) ≤ PT , (28)

C6 : Wl�0, ∀l, (29)

C7 : rank(Wl) = 1, ∀l, (30)

Similarly, the SINR and the communication rate of the kth user in the lth multicast
group can be equivalently converted to:

SINRk,l ≈
E
{

Tr(Hk,lWl)
}

E

{
L
∑

j=1,j 6=l
Tr
(
Hk,lWj

)}
+ σ2

, (31)

Rk,l = B log2

1 +
E{Tr(Hk,lWl)}

E

{
L
∑

j=1,j 6=l
Tr(Hk,lWj)

}
+σ2

 = B log2

1 +
Tr(E{Hk,lWl})

L
∑

j=1,j 6=l
Tr(E{Hk,lWj})+σ2


= B log2

1 +
Tr(Hk,lWl)

L
∑

j=1,j 6=l
Tr(Hk,lWj)+σ2


(32)

where Hk,l ∈ CM×M is the instantaneous channel autocorrelation matrix of the kth user in
the lth multicast group and Hk,l ∈ CM×M is the long-term channel autocorrelation matrix.
The relationship between the two can be expressed as:

Hk,l = E
{

Hk,l
}
, E

{
ĥk,lĥ

H
k,l

}
= diag

(
ĥk,l
)
P f rsd

d,k,l
Qτk,l

diag
(

ĥH
k,l

)
, (33)

where P f rsd
d,k,l

and Qτk,l
can be expressed as follows:
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Pf rsd
d,k,l

= E

{
vφ

f rsd
d,k,l

vH
φ

f rsd
d,k,l

}

= E

{[
e

jφ
f rsd
d,k,l ,1 , e

jφ
f rsd
d,k,l ,2 , . . . , e

jφ
f rsd
d,k.l ,M

]T[
e
−jφ

f rsd
d,k,l ,1 , e

−jφ
f rsd
d,k,l ,2 , . . . , e

−jφ
f rsd
d,k.l ,M

]}

= E


1 · · · e

jφ
f rsd
d,k,l ,1 e

−jφ
f rsd
d,k.l ,M

...
. . .

...

e
jφ

f rsd
d,k.l ,M e

−jφ
f rsd
d,k,l ,1 · · · 1



=


1 · · · E

{
e

jφ
f rsd
d,k,l ,1 e

−jφ
f rsd
d,k.l ,M

}
...

. . .
...

E
{

e
jφ

f rsd
d,k.l ,M e

−jφ
f rsd
d,k,l ,1

}
· · · 1



(34)

In (34), the diagonal elements of P f rsd
d,k,l

are all 1, and the elements in row i and column

j on the non-diagonal are E
{

e
jφ

f rsd
d,k.l ,i e

−jφ
f rsd
d,k,l ,j

}
= E

{
e

jφ
f rsd
d,k.l ,i

}
E
{

e
−jφ

f rsd
d,k,l ,j

}
, according to

φ f rsd
d
∼ N

(
0, σ2

φ
f rsd
d

)
,

E
{

e
jφ

f rsd
d,k.l ,i

}
=
∫ ∞
−∞ e

jφ
f rsd
d,k.l ,i 1√

2πσφ
f rsd
d,k,l

e

−
φ2

f rsd
d,k,l

2σ2
φ

f rsd
d dφ f rsd

d,k.l ,i

=e−
σ2

f rsd
d,k,l
2
∫ ∞
−∞

1√
2πσφ

f rsd
d,k,l

e

−
(φ

f rsd
d,k.l ,i

−jσφ
f rsd
d,k,l

)2

2σ2
φ

f rsd
d dφ f rsd

d,k.l ,i

(35)

Similarly, E
{

e
−jφ

f rsd
d,k,l ,j

}
= e−

σ2
φ

f rsd
d
2 . Therefore, E

{
e

jφ
f rsd
d,k.l ,i e

−jφ
f rsd
d,k,l ,j

}
= E

{
e

jφ
f rsd
d,k.l ,i

}
E
{

e
−jφ

f rsd
d,k,l ,j

}
= e
−σ2

φ
f rsd
d .

Qτk,l
= E

{
vφτk,l

vH
φtk,l

}
= E

{[
ejφτk,l ,1 , ejφτk,l 2 , . . . , ejφτk,l ,M

]T[
e−jφτk,l ,1 , e−jφτk,l 2 , . . . , e−jφτk,l ,M

]}

= E


1 · · · ejφτk,l ,1 e−jφτk,l ,M

...
. . .

...
ejφτk,l ,M e−jφτk,l ,1 · · · 1


=


1 · · · E

{
ejφτk,l ,1 e−jφτk,l ,M

}
...

. . .
...

E
{

ejφτk,l ,M e−jφτk,l ,1
}
· · · 1



(36)
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In (36), the diagonal elements of Qτk,l
are all 1, and the elements in row i and col-

umn j on the non-diagonal are E
{

ejφτk,l ,i e−jφτk,l ,j
}

= E
{

ejφτk,l ,i
}

E
{

e−jφτk,l ,j
}

, according to

φτ ∼ N
(

0, σ2
φτ

)
,

E
{

ejφτk,l ,i
}

=
∞∫
−∞

ejφτk,l ,i 1√
2πσφτk,l

e
−

φ2
τk,l ,i

2σ2
φτk,l dφτk,l ,i

= e−
σ2

φτk,l
2

∞∫
−∞

1√
2πσφτk,l

e

−
(φτk,l ,i−jσφτk,l

)2

2σ2
φτk,l dφτk,l ,i

= e−
σ2

φτk,l
2

(37)

Similarly, E
{

ejφτk,l ,i
}
= e−

σ2
φτk,l

2 . Therefore, E
{

ejφτk,l ,i e−jφτk,l ,i
}
= E

{
ejφτk,l ,i

}
E
{

e−jφτk,l ,i
}

= e
−σ2

φτk,l .

4.2. DC Programming

Since the constraint C1 is a Boolean constraint and the constraint C2 is a nonconvex con-
straint, the problem Q2 is a nonconvex and nonsmooth combinatorial optimization problem.
To handle this challenge, we can transform the problem Q2 into a DC programming prob-
lem [33]. Therefore, the relaxation variable ζk,l is introduced as the lower bound of the SINR
of the kth user in the lth multicast group, ζ = [ζ1, ζ2, . . . , ζL], ζl = [ζl,1, ζl,2, . . . , ζl,|Ul |]

T .
The problem Q2 can be equivalently converted to:

Q3 : max
η,W,SINRmin

l ,ζ
EE =

B
L
∑

l=1
log2

(
1 + SINRmin

l
)

L
∑

l=1
Tr(Wl) + P0

, (38)

s.t. C1, C3, C4, C5 ,C6 , C7 in Q1, (39)

C2 : SINRk,l ≥ ζk,l , ∀k, l, (40)

C8 : ζk,l ≥ ηk,lSINRmin
l , ∀k, l, (41)

where the constraint C2 can be equivalently converted to:

C2 ⇒ 1 + SINRk,l ≥ 1 + ζk,l , (42)

To further express (42) in the form of DC programming, we introduce new function
variables Γk,l(W) and Ik,l(W, ζk,l):

Γk,l(W) = σ2 +
L

∑
j=1.j 6=l

Tr
(
Hk,lWj

)
, (43)

Ik,l(W, ζk,l) =

σ2 +
L
∑

j=1
Tr
(
Hk,lWj

)
1 + ζk,l

, (44)

Therefore, the constraint C2 can be rewritten as:

C2 ⇒ Γ(W)− I(W, ζk,l) ≤ 0, (45)
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In (45), Γk,l(Wl) is the affine function of W, Ik,l(W, ζk,l) is the concave function of W
and ζk,l . The transformed constraint C2 is a typical DC constraint.

Similarly, the constraint C8 can be equivalently converted into the following DC form:

C8 ⇒ 4ζk,l +
(

ηk,l − SINRmin
l

)2
≥
(

ηk,l + SINRmin
l

)2
, (46)

In (38), the objective function in the problem Q3 is a fractional programming problem
with the sum-of-ratios form. To handle this problem, we invoke the quadratic transforma-
tion algorithm [34] and convert the problem Q3 into the following form:

Q4 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L

∑
l=1

Υl(SINRmin
l )

) 1
2

− q2

(
L

∑
l=1

Tr(Wl) + P0

)
, (47)

s.t. C1, C2, C3, C4, C5 ,C6 , C7, C8 in Q3, (48)

where q is the introduced auxiliary variable, and Υl(SINRmin
l ) is the introduced auxiliary

function, which can be expressed as:

Υl(SINRmin
l ) = log2

(
1 + SINRmin

l

)
, (49)

q =

√
L
∑

l=1
Υl(SINRmin

l )

L
∑

l=1
Tr(Wl) + P0

, (50)

In addition, for the nonsmooth combinatorial optimization problem caused by con-
straint C1, we invoke a relaxation and penalty algorithm. Firstly, we relax constraint C1
into C1 ⇒ 0 ≤ ηk,l ≤ 1, ∀k, l . Meanwhile, to avoid the non-duality of the solution of ηk,l
caused by the relaxation, the penalty term P(ηk,l) = ηk,l log ηk,l + (1− ηk,l) log(1− ηk,l) is
introduced into the objective function: let λ1 > 0 be the penalty factor, and the problem Q4
can be equivalently converted to:

Q5 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L

∑
l=1

Υl(SINRmin
l )

) 1
2

− q2

(
L

∑
l=1

Tr(Wl) + P0

)
+ λ1

L

∑
l=1

P(ηk,l), (51)

s.t. C2 : Γk,l(W)− Ik,l(W, ζk,l) ≤ 0, ∀k, l, (52)

C3, C4, C5 ,C6 , C7 in Q4, (53)

C8 : 4ζk,l +
(

ηk,l − SINRmin
l

)2
≥
(

ηk,l + SINRmin
l

)2
∀k, l, (54)

4.3. CCCP Algorithm

From (51), (52) and (54), it can be seen that the problem Q5 is a DC programming
problem. To handle this challenge, the CCCP framework algorithm is a common method
to solve the DC programming problem [35], which is an iterative framework including
two operations: convexification and optimization. In the convexification step, by adopting
the first-order Taylor expansion, the convex part of the objective function and the concave
part of the constraint function can be linearized; then, the DC programming problem is
transformed into a convex problem. It should be noted that the convex problem obtained
from the convexification step provides a global lower bound for the original problem, and
the optimization step is mainly to maximize the lower bound. Meanwhile, the performance
of the CCCP algorithm is closely related to the initial point of the variables, but the equality
constraint C4 of the problem Q5 limits the selection of the initial point. To find a feasible
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initial point, we substitute the constraint C4 into the objective function and set the penalty
factor λ2 > 0. Then, the problem Q5 can be equivalently converted to:

Q6 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)

+λ1
L
∑

l=1
P(ηk,l)−

L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2 (55)

s.t. C2, C3, C5 ,C6 , C7, C8 in Q5, (56)

Convexification: Let
(

ηk,l , SINRmin
l , W, ζ

)(t−1)
be the estimated value of variables(

ηk,l , SINRmin
l , W, ζ

)
in iteration t− 1 of the problem Q6. In iteration t, for the convex part

λ1
L
∑

l=1
P(ηk,l), we adopt the first-order Taylor expansion to replace it, which is reflected in

line three of Algorithm 1. The first-order Taylor expansion of P(ηk,l) can be expressed as:

P(ηk,l)
te = P

(
η
(t−1)
k,l

)
+
(

ηk,l − η
(t−1)
k,l

)
∇P
(

η
(t−1)
k,l

)
, (57)

∇P
(

η
(t−1)
k,l

)
= log

(
η
(t−1)
k,l

)
− log

(
1− η

(t−1)
k,l

)
, (58)

Similarly, in the constraint C2 : Γk,l(W) − Ik,l(W, ζk,l) ≤ 0, we replace the concave
function Ik,l(W, ζk,l) with its first-order Taylor expansion, which is reflected in line three of
Algorithm 1. The first-order Taylor expansion of Ik,l(W, ζk,l) can be expressed as:

Ik,l(W, ζk,l)
te = Ik,l

(
W(t−1), ζ

(t−1)
k,l

)
+∇TIk,l

(
W(t−1), ζ

(t−1)
k,l

){Wl −W(t−1)
l

}L

l=1
ζk,l − ζ

(t−1)
k,l

, (59)

∇Ik,l

(
W(t−1), ζ

(t−1)
k,l

)
=



(
Hk,l

)T

1 + ζ
(t−1)
k,l


L

l=1

,−
σ2 +

L
∑

l=1
Tr
(

Hk,lW
(t−1)
l

)
(

1 + ζ
(t−1)
k,l

)2


T

, (60)

In the constraint C8 : 4ζk,l +
(

ηk,l − SINRmin
l

)2
≥
(

ηk,l + SINRmin
l

)2
∀k, l, we replace

the concave function
(

ηk,l − SINRmin
l

)2
with its first-order Taylor expansion, which is

reflected in line 3 of Algorithm 1. The first-order Taylor expansion of
(

ηk,l − SINRmin
l

)2

can be expressed as:

(
ηk,l − SINRmin

l

)2,te
=
(

η
(t−1)
k,l − SINRmin,(t−1)

l

)2
+

 2
(

η
(t−1)
k,l − SINRmin,(t−1)

l

)
−2
(

η
(t−1)
k,l − SINRmin,(t−1)

l

)
T[

ηk,l − η
(t−1)
k,l

SINRmin
l − SINRmin,(t−1)

l

]
, (61)

Optimization: The optimization step is reflected in line nine of Algorithm 1. Accord-
ing to (57), (59) and (61), the problem Q6 can be equivalently converted to

Q7 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)

+λ1
L
∑

l=1
P(ηk,l)

te −
L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2 (62)
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s.t. C3, C5 ,C6 , C7 in Q6, (63)

C2 : Γk,l(W)− Ik,l(W, ζk,l)
te ≤ 0, ∀k, l, (64)

C8 : 4ζk,l +
(

ηk,l − SINRmin
l

)2,te
≥
(

ηk,l + SINRmin
l

)2
∀k, l, (65)

For the problem Q7, the variables
(

ηk,l , SINRmin
l , W, ζ

)(t+1)
can be updated by the

iterative optimization.
Feasible Initial Point: It should be noted that the CCCP algorithm needs a feasible

initial point to ensure that the algorithm converges to a stationary point, as the selection of
the initial point can affect the performance of the CCCP algorithm. To find a better initial
point, we adopt the following method, which is reflected in line one of Algorithm 1.

• Initialize η
(0)
k,l ≈ 0, SINR0 = 1;

• Find W(0), the following optimization problem are modeled:

PFES :
{

W(0)
}

: min
W

L

∑
l=1

Tr(Wl), (66)

s.t. C1 :
∥∥∥σ2 . . . Tr(Hk,lWj)j 6=l . . .

∥∥∥ ≤ Tr(Hk,lWl)

ηk,lSINR0
, ∀k, l, (67)

C2 :
L

∑
l=1

Tr(Wl) ≤ PT , (68)

• If PFES is feasible, proceed to the next step, otherwise, update η
(0)
k,l = δη

(0)
k,l , 0 < δ < 1

and repeat step 2;
• Based on the W(0) obtained in step 2, calculate the SINR of each user, i.e., SINR(0)

k,l , ∀k, l,

and update η
(0)
k,l according to η

(0)
k,l = min

{
1,

SINR(0)
k,l

SINR0

}
;

• Based on η
(0)
k,l and W(0), calculate ζ(0) and

{
SINRmin,

l
(0)
}L

l=1
.

4.4. Penalty Iteration Algorithm

It should be noted that the SDP algorithm brings the nonconvex and nonsmooth
constraint, i.e., C7 : rank(Wl) = 1. To solve the rank-one constraint, many existing re-
search directly relaxes the rank-one constraint in the optimization step [36], and then
judges whether the optimization solution {Wl}L

l=1 meets the rank-one constraint. If so,
the eigenvalue decomposition (EVD) algorithm is directly adopted to obtain the hybrid
beamforming vectors {fl}

L
l=1 according to Wl = fl f H

l , and if the optimization solution
{Wl}L

l=1 does not meet the rank-one constraint, the Gaussian randomization algorithm
(GRA) is usually adopted. The basic idea of the GRA is as follows: Firstly, a set of candi-

date Gaussian vectors
{{

wg,l

}G

g=1

}L

l=1
are generated based on the optimization solution

{Wl}L
l=1, where G represents the number of the Gaussian randomization. Secondly, from

the generated G-group candidate Gaussian vector pool, combined with the power redistri-
bution among the multicast groups, a group of Gaussian vectors is selected as the optimal
hybrid beamforming matrix to maximize the objective function in the problem Q7. It
should be noted that in the case of the high-dimensional matrix, GRA has high complexity
and large performance loss, resulting in poor availability. To this end, we adopt a feasible
algorithm with the better performance: the penalty iteration algorithm.
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According to the properties of the matrix, rank(Wl) = 1 is equivalent to Tr(Wl)−
λmax(Wl) = 0. Therefore, the nonsmooth method is adopted to transform the constraint
rank(Wl) = 1 in the problem Q7 into the following form:

C7 : Tr(Wl)− λmax(Wl) ≤ 0, (69)

where λmax(Wl) is the function of solving the maximum eigenvalue. It should be noted
that for any positive semidefinite matrix Wl�0, the inequality Tr(Wl)− λmax(Wl) ≥ 0 is
always true, which means that the transformed constraint C7 and Tr(Wl)− λmax(Wl) = 0
are equivalent. Then, we can obtain that the matrix Wl has only one non-zero eigenvalue
and can be given by

Wl = λmax(Wl)wl,maxwH
l,max, (70)

where wl,max is the corresponding unit eigenvector. Therefore, the problem Q7 can be
converted into

Q8 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)
+λ1

L
∑

l=1
P(ηk,l)

te −
L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2 (71)

s.t. C2, C3, C5 ,C6 , C8 in Q7, (72)

C7 : Tr(Wl)− λmax(Wl) ≤ 0, (73)

In the iterative calculation of the problem Q8, based on the obtained Wl , if the value of
Tr(Wl)− λmax(Wl) is small enough, the matrix Wl can be considered to meet the rank-one
constraint, which is reflected in line seven of Algorithm 1. Therefore, to make the value
of Tr(Wl)− λmax(Wl) as small as possible, we adopt the penalty iteration algorithm and
substitute the constraint C7 into the objective function in the problem Q8. Therefore, the
problem Q8 can be converted into

Q9 : max
η,W,SINRmin

l ,ζ
EE = F

(
η, W, SINRmin

l , ζ
)
− λ3

L

∑
l
(Tr(Wl)− λmax(Wl)), (74)

s.t. C2, C3, C5 ,C6 , C8 in Q8 (75)

where F
(

η, W, SINRmin
l , ζ

)
= 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)
+ λ1

L
∑

l=1
P(ηk,l)

te −
L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2

and λ3 > 0 is the penalty factor, which is gen-

erally larger enough to ensure that a smaller value of Tr(Wl)− λmax(Wl) can be obtained.
According to (74), the iterative calculation of the problem Q9 can maximize function

F
(

η, W, SINRmin
l , ζ

)
and minimize function Tr(Wl)− λmax(Wl). It should be noted that

Tr(Wl) is an affine function and λmax(Wl) is nonsmooth, which can result in the non-
smoothness of the objective function in the problem Q9. To handle the challenge, we
replace λmax(Wl) with its first-order Taylor expansion. The subgradient of λmax(Wl) is
∂λmax(Wl)

∂Wl
= wl,maxwH

l,max and its first-order Taylor expansion can be expressed as follows,
which is reflected in line eight of Algorithm 1.

λmax

(
W(t)

l

)
≥ λmax

(
W(t−1)

l

)
+
〈

wl,maxwH
l,max, W(t)

l −W(t−1)
l

〉
, (76)

where
〈

wl,maxwH
l,max, W(t)

l −W(t−1)
l

〉
= Tr

((
wl,maxwH

l,max

)H(
W(t)

l −W(t−1)
l

))
.



Sensors 2022, 22, 6858 18 of 31

We substitute (76) into the objective function in the problem Q9 to replace λmax(Wl),
and the problem Q9 can be expressed as:

Q10 : max
η,W,SINRmin

l ,ζ
EE = F

(
η, W, SINRmin

l , ζ
)
− λ3

L

∑
l

(
Tr(Wl)− λmax

(
W(t−1)

l

)
+
〈

wl,maxwH
l,max, W(t)

l −W(t−1)
l

〉)
, (77)

s.t. C2, C3, C5 ,C6 , C8 in Q9, (78)

In conclusion, the robust joint user scheduling and hybrid beamforming design algo-
rithm for the massive MIMO LEO satellite multigroup multicast communication system is
shown in Algorithm 1.

Algorithm 1: Joint user scheduling and hybrid beamforming design algorithm.

Input: CCCP algorithm iteration index k, thresholds ε1, penalty iteration algorithm iteration index
m, thresholds ε2, penalty factor λ1, λ2, λ3.

1. Initial:
(

η, W, SINRmin
l , ζ

)(k=0)
, q(k=0).

2. while
∣∣∣EE(k) − EE(k−1)

∣∣∣ ≥ ε1

3. Convexification step by (57), (59), (61).
4. Calculation q(k), substitute q(k) into (77).
5. Optimization step.

6. Let
(

η, W, SINRmin
l , ζ

)(m=0)
=
(

η, W, SINRmin
l , ζ

)(k=0)
.

7. while
∣∣∣∣{Tr

(
W(m)

l

)
− λmax

(
W(m)

l

)}L

l=1

∣∣∣∣ ≥ ε2

8. Calculate the maximum eigenvalue λmax(Wl) of W(m)
l and the corresponding eigenvector

w(m)
l,max.

9. Using CVX toolbox, calculate the variables
(

η, W, SINRmin
l , ζ

)(m)

opt
at the mth iteration

according to (77).

10. If
{

W(m+1)
l

}L

l
≈
{

W(m)
l

}L

l
, then

11. Update λ3 = 2λ3.
12. else
13. Update m = m + 1.
14. end
15. end

16. Update
(

η, W, SINRmin
l , ζ

)(k+1)
=
(

η, W, SINRmin
l , ζ

)(m)
, k = k + 1, λ1 = λ1 + 1,

λ2 = λ2 + 1.
17. end
Output:

(
η, W, SINRmin

l , ζ
)

opt.

5. Convergence and Complexity Analysis
5.1. Convergence

The effectiveness of the algorithm depends on its convergence. For the convergence of
the CCCP algorithm, the convergence has been proven by [37]. To prove the convergence of
the penalty iteration algorithm, let the variable solution and objective function value of the

optimization problem Q10 be
(

η, W, SINRmin
l , ζ

)(k+1)
and FEE

((
η, W, SINRmin

l , ζ
)(k+1)

)
at the kth iteration. Therefore, the convergence can be proved as follows:
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FEE

((
η, W, SINRmin

l , ζ
)(k+1)

)
= F

((
η, W, SINRmin

l , ζ
)(k+1)

)
− λ3

L
∑
l

(
Tr
(

W(k+1)
l

)
− λmax

(
W(k+1)

l

))
≥ F

((
η, W, SINRmin

l , ζ
)(k+1)

)
− λ3

L
∑
l

(
Tr
(

W(k+1)
l

)
− λmax

(
W(k)

l

)
−
〈

wl,maxwH
l,max, W(k+1)

l −W(k)
l

〉)
by(75)
≥ F

((
η, W, SINRmin

l , ζ
)(k))

− λ3
L
∑
l

(
Tr
(

W(k)
l

)
− λmax

(
W(k)

l

))
= FEE

((
η, W, SINRmin

l , ζ
)(k))

(79)

The convergence can be proved according to (79). Therefore, after initializing the

values of
(

η, W, SINRmin
l , ζ

)(k=0)
, λ

(k=0)
1 , λ

(k=0)
2 and λ

(k=0)
3 , the proposed algorithm can

iteratively converge to an optimal solution by setting a reasonable convergence threshold.

5.2. Complexity

The complexity of the algorithm directly affects its performance. In the algorithms
adopted, the complexity of the hierarchical clustering algorithm can be calculated according
to the connection algorithm, similarity measurement criteria and hierarchical grouping
process, and the algorithm complexity can be expressed as O

(
LK2N

)
. The complexity of

the joint user scheduling and hybrid beamforming design algorithm is closely related to the
number of multicast groups and scheduling users. In addition, the number of optimization
variables and constraints in the CCCP algorithm and the penalty iteration algorithm can
also affect the complexity [38]. In the problem Q10, the number of optimization variables

is 2
L
∑

l=1
|Ul | + 2L, the number of convex constraints is

L
∑

l=1
|Ul | and the number of linear

constraints is
L
∑

l=1
|Ul |+ 3L. Let the number of iterations in the penalty iteration algorithm

and the CCCP algorithm be Ip and Ic, respectively. In conclusion, the overall complexity of

the proposed algorithm is O
(

LK2N + Ip Ic

(
2

L
∑

l=1
|Ul |+ 2L

)(
2

L
∑

l=1
|Ul |+ 3L

))
.

According to the algorithm complexity, the proposed joint user scheduling and hybrid
beamforming design algorithm has a strong timeliness in small dimensional communication
systems. However, for large dimensional communication systems, such as the satellite
communication system, the number of active users is usually large. According to the
complexity analysis, with the increase in the total number of active users, the convergence
speed of the algorithm would gradually slow down, and the complexity would gradually
increase. Considering the characteristics of the LEO satellite communication system, the
delay caused by the high complexity is unacceptable, which would affect the overall
performance of the communication system. To handle this problem, considering the
balance of the algorithm performance and complexity, before the joint user scheduling and
hybrid beamforming design, we can appropriately reduce the system dimension by adding
the user preselection step in the algorithm process. The user preselection step can reduce
the total number of active users in each transmission, and then we carry out the joint user
scheduling and hybrid beamforming design for preselected users.

6. User Preselection Algorithm

In the user preselection step, Ul,p users in the lth multicast group are preselected as
the user representatives, where Us < Ul,p ≤ |Ul |. The user preselection process is shown in
Figure 6. The symbols (circles, squares and triangles) represent the users in different the
multicast group. The red circles represent preselected users and scheduling users.
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Figure 6. Design process of joint user scheduling and beamforming with the user preselection.

The selection of preselected users can affect the performance of the joint user schedul-
ing and hybrid beamforming design algorithm, which depends on the preselected algo-
rithm. In the beamforming design of the multigroup multicast communication system,
the beamforming vector is oriented to multiple users in the multicast group. Therefore, in
the process of user preselection, to maximize the receive gain of each user, i.e.,

∣∣∣hH
k,lfl

∣∣∣, the
beamforming vector fl of the lth multicast group should be collinear with the users’ channel
vectors in the multicast group as far as possible. Therefore, the channel vectors of the
preselected users in the same multicast group should also be strongly linearly correlated.
Meanwhile, the interference among multicast groups should also be taken into account in
the user preselection stage. To reduce the interference among multicast groups, the channel
vectors of preselected users among different multicast groups should be orthogonal. Sim-
ilarly, the beamforming vector of the multicast group should be orthogonal to the users’
channel vectors in other multicast groups.

In conclusion, we adopt a low complexity user preselection algorithm, which can
preselect orthogonal users among the different multicast groups and linearly correlated
users in the same multicast group. The proposed algorithm is divided into two steps,
as follows:

• The first step: according to the orthogonal criterion [11], a user is preselected for each
multicast group in turn, which is reflected in line three and line four of Step 1 in
Algorithm 2;

• The second step: based on the users of each multicast group selected in the first step,
linearly correlated users are selected for each multicast group, which is reflected in
line two and line three of Step 2 in Algorithm 2.

The specific preselection process of the two steps is as follows:
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Algorithm 2: User preselection algorithm.

Step 1: Orthogonal user preselection algorithm among the different multicast groups.
Input: CSI.
1. Let Id(1) = Index

{
max

(∥∥hk,l
∥∥), ∀k, l

}
, select the user with the largest channel gain, Id(1) is the

index of the user.
2. while l ≤ L, l 6= Id(1)

3. For all users in the lth multicast group, calculate Zk,l = hk,l

(
IN −∑

Id(l)

j=Id(1)

hH
(j)h(j)

‖h(j)‖2
2

)
in turn.

4. Id(l) = Index
{

max
(∥∥Zk,l

∥∥), ∀k ∈ l
}

, the user with index Id(l) is the preselected orthogonal
user of the lth multicast group.
5. end
Output: Orthogonal users among the different multicast groups.
Step 2: User preselection algorithm in each multicast group.
Input: Orthogonal users among the different multicast groups, CSI.
1. For l = 1 : L
2. For other users in the lth multicast group except the orthogonal user preselected in step 1,
calculate the linear correlation value between each user and the preselected orthogonal user of the

multicast group in turn, i.e., Ck,l = hH
k,l

hId(l)
hH

Id(l)∥∥∥hH
Id(l)

∥∥∥2

2

.

3. Based on the Ck,l of users in each multicast group, select top
(

Ul,p − 1
)

largest users, plus the
orthogonal users in step 1 as the preselected users of each multicast group.
4. end
5. end
Output: Preselected users for each multicast group.

After the user preselection, the joint user scheduling and hybrid beamforming design
is for the preselected users. Therefore, the dimension of the LEO satellite communication
system will be reduced, and the algorithm complexity will be reduced. Although the
algorithm performance has a slight loss, compared with the decoupling design of user
scheduling and beamforming, the performance is greatly improved. In conclusion, the joint
user scheduling and hybrid beamforming design with the user preselection step is a better
choice after balancing performance and complexity.

7. Solution of The Digital Beamforming Matrix and The Analog Beamforming Matrix

In this section, we aim to investigate the design of digital beamforming matrix FBB
and analog beamforming matrix FRF in a hybrid beamformer. After obtaining W, we need
to further solve FBB and FRF. The solution method of FBB and FRF can be divided into
two steps:

• The first step: we adopt the EVD algorithm to solve the hybrid beamforming matrix F
from W.

• The second step: we propose the MM-AltOpt algorithm to obtain FBB and FRF.

7.1. Solution of The Hybrid Beamforming Matrix

Before calculating FBB and FRF, it is necessary to obtain the hybrid beamforming
matrix F. For the solution of F, we can adopt the EVD algorithm based on the previously
obtained optimization variable W. According to the relationship between W and F, i.e.,
Wl , flf

H
l , the solution of F can be modeled as follows:

min
fl

∥∥∥Wl − flf
H
l

∥∥∥2

F
, (80)

where the hybrid beamforming vector fl can be given by

fl =
√

vlul , ∀l, (81)
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where vl is the maximum eigenvalue of the matrix Wl and ul is the maximum eigenvector
of the matrix Wl .

7.2. MM-AltOpt Algorithm: Solution of FBB and FRF

According to F = FRFFBB and
∣∣∣(FRF)i,j

∣∣∣ = 1, the solution of FBB and FBB can be
modeled as a joint optimization problem with the power and constant modulus constraints,
as follows:

P1 : min
FBB ,FRF

∥∥Fopt − FRFFBB
∥∥2

F, (82)

s.t. C1 : FRF ∈ F, (83)

C2 : ‖FRFFBB‖2
F = PT , (84)

where F =

{
FRF ∈ CN×L

∣∣∣∣∣∣∣FRF(i,j)

∣∣∣2 = 1, 1 ≤ i ≤ N, 1 ≤ j ≤ L
}

represents the unit mod-

ulus constraint, which is determined by the phase shifter in UPA, and the constraint C2
represents the power constraint.

It is worth noting that the problem P1 is a matrix decomposition problem with the
constant modulus constraint and the equality constraint. The objective function is a noncon-
vex function of variables FBB and FRF, and the constraints C1 and C2 are also nonconvex.
Meanwhile, it can be seen that when one of the two variables is given, the objective func-
tion is the convex function of the other variable. To solve the problem P1, we invoke the
alternating optimization algorithm. The alternating optimization algorithm can decompose
the multivariable joint optimization problem into multiple subproblems according to the
partial convexity of the problem P1, and one of the variables can be iteratively solved by
fixing the residual variables.

It should be noted that the nonconvexity of constraints is still a challenge. To this
end, we first relax the constraint C2, and then use the scale factor to adjust the digital
beamforming matrix FBB to meet the power constraint. Then, for the solution of the
analog beamforming matrix FRF with the unit modulus constraint, the MM algorithm is
adopted [33].

7.3. Solution of The Analog Beamforming Matrix Based on The MM Algorithm

According to the solution process of the alternating optimization algorithm, we first
solve the analog beamforming matrix FRF based on the digital beamforming matrix FBB.
Thus, the problem P1 can be expressed as:

P2 : min
FRF

∥∥∥F− FRFF(n)
BB

∥∥∥2

F
, (85)

s.t. C1 : FRF ∈ F, (86)

where F(n)
BB represents the estimated value of the digital beamforming matrix FBB at the

nth iteration. Due to the unit module constraint of elements in FRF, the problem P2 is a
nonconvex optimization problem.

According to the MM framework theory, the key step is constructing a surrogate
function of the objective function in the optimization problem [39]. To construct the
surrogate function, we decompose the matrix F by rows. According to the equivalence of
the F-norm and L2-norm of the vector, the problem P2 can be rewritten as:

P3 : min
FRF

N

∑
i=1

FH
i Fi − 2<

(
FH

i F(n)
BB FRF,i

)
+ FH

RF,iF
(n)
BB F(n)

BB
HFRF,i, (87)

s.t. C1 : FRF ∈ F, (88)

where FH
i represents the ith row vector of the matrix F, and FH

RF,i represents the ith row
vector of the matrix FRF.
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It should be noted that the third term FH
RF,iF

(n)
BB F(n)

BB
HFRF,i in (86) is a convex function

term, which needs further conversion. According to the first-order Taylor expansion,
FH

RF,iF
(n)
BB F(n)

BB
HFRF,i can be converted into:

FH
RF,iF

(n)
BB F(n)

BB
HFRF,i = F(q)H

RF,i F(n)
BB F(n)

BB
HF(q)

RF,i + 2<
(

F(q)H
RF,i F(n)

BB F(n)
BB

H
(

FRF,i − F(q)
RF,i

))
+
(

FRF,i − F(q)
RF,i

)H
F(n)

BB F(n)
BB

H
(

FRF,i − F(q)
RF,i

) (89)

where F(q)
RF,i represents the estimated value of FRF,i at the qth iteration. According to the

MM algorithm, the surrogate of FH
RF,iF

(n)
BB F(n)

BB
HFRF,i can be expressed as follows:

FH
RF,iF

(n)
BB F(n)

BB
HFRF,i ≤ F(q)H

RF,i F(n)
BB F(n)

BB
HF(q)

RF,i + 2<
(

F(q)H
RF,i F(n)

BB F(n)
BB

H
(

FRF,i − F(q)
RF,i

))
+
(

FRF,i − F(q)
RF,i

)H
X(n)

(
FRF,i − F(q)

RF,i

) (90)

where X(n) is a positive semidefinite matrix and satisfies the constraint X(n)�F(n)
BB F(n)

BB
H ;

here, we let X(n) = λmax

(
F(n)

BB F(n)
BB

H
)

I and λmax

(
F(n)

BB F(n)
BB

H
)

represents the maximum

eigenvalue of the matrix F(n)
BB F(n)

BB
H . In conclusion, (89) can be further expressed as:

FH
RF,iF

(n)
BB F(n)

BB
HFRF,i ≤ λmax

(
F(n)

BB F(n)
BB

H
)

FH
RF,iFRF,i + 2<

(
FH

RF,i

(
F(n)

BB F(n)
BB

H − λmax

(
F(n)

BB F(n)
BB

H
)

I
)

FRF,i

)
+F(q)H

RF,i

(
λmax

(
F(n)

BB F(n)
BB

H
)

I− F(n)
BB F(n)

BB
H
)

FRF,i

(91)

According to (90), the surrogate function of the objective function in the problem P3
can be expressed as:

P3 : min
FRF

N
∑

i=1
FH

i Fi − 2<
(

FH
i F(n)

BB FRF,i

)
+ FH

RF,iF
(n)
BB F(n)

BB
H FRF,i ⇒

P4 : min
FRF

N
∑

i=1
FH

i Fi − 2<
(

FH
i F(n)

BB FRF,i

)
+ λ

(
F(n)

BB F(n)
BB

H
)H

RF,i
RF,imax

+2<(FH
RF,i(F(n)

BB F(n)
BB

H−

λ(F(n)
BB F(n)

BB
H)max()RF,i)()

(q)H
RF,i (λ(F(n)

BB F(n)
BB

H)
(n)
BB

(n)
BB

H
max()RF,i)),

(92)

It is worth noting that the first and third terms of the objective function in the problem
P4 are constant terms, and the last term is independent of the variable FH

RF,i. After ignoring
the above three items, the problem P4 can be converted to the following projection problem:

P5 : min
FRF

N

∑
i=1

∥∥∥FRF,i − c(q)i

∥∥∥2

2
, (93)

s.t. C1 : FRF ∈ F, (94)

where c(q)i = F(n)
BB Fi −

(
F(n)

BB F(n)
BB

H − λmax

(
F(n)

BB F(n)
BB

H
)

I
)

F(q)H
RF,i .

Therefore, the following closed form solution can be obtained for the problem P5,
which is reflected in line three of the inner algorithm in Algorithm 3:

FRF,i = ejarg(c(q)i ), ∀i, (95)

FRF = e−jarg(C(q)T), (96)

where C(q) = F(n)
BB FH −

(
F(n)

BB F(n)
BB

H − λmax

(
F(n)

BB F(n)
BB

H
)

I
)

F(q)H
RF , which is reflected in line

two of the inner algorithm in Algorithm 3.



Sensors 2022, 22, 6858 24 of 31

7.4. Solution of The Digital Beamforming Matrix

Based on the analog beamforming matrix FRF obtained in the previous section, the
solution problem of the digital beamforming matrix FBB can be modeled as follows:

P6 : min
FBB

∥∥∥F− F(n)
RF FBB

∥∥∥2

F
, (97)

s.t.
∥∥∥F(n)

RF FBB

∥∥∥2

F
= PT , (98)

where F(n)
RF represents the estimated value of the analog beamforming matrix FRF at the nth

iteration. Due to the quadratic form and the convex equality constraint in the problem P6,
the problem P6 is a nonconvex QCQP form problem.

One of the ways to solve the problem P6 is to relax the equality constraint into the
inequality constraint, and then convert the problem P6 into a convex minimization problem,
which can be solved with the CVX toolbox, but the complexity of this method is high.
To this end, based on the fact that the hybrid beamforming matrix F satisfies the power
constraint, i.e., ‖F‖2

F = PT , the following closed form solution can be obtained for the
problem P6, which is reflected in line two of the main algorithm in Algorithm 3:

FBB =
(

F(n)H
RF F(n)

RF

)−1
F(n)H

RF F, (99)

In conclusion, the MM-AltOpt algorithm for solving FBB and FRF can be described as
the main algorithm and the inner algorithm, as follows:

Algorithm 3: Design algorithm of the digital beamforming matrix and the analog
beamforming matrix.

Main algorithm: MM-AltOpt algorithm.
Input: Hybrid beamforming matrix F, initial: F(n=0)

RF ∈ F, iteration index n = 0, threshold
ε3 = 10−3, the solution of the objective function of the problem P1 in the nth iteration is δ(n).

1. while
∣∣∣δ(n) − δ(n−1)

∣∣∣ ≥ ε3

2. Based on F(n)RF , calculate F(n+1)
BB according to FBB =

(
F(n)H

RF F((n))RF

)−1
F(n)H

RF F.

3. Based on F(n+1)
BB , calculate F(n+1)

RF according to the inner algorithm.
4. Set n = n + 1.
5. end
Output: FRF,FBB, normalize FBB =

√
PT

‖FRF FBB‖F

FBB.

Inner algorithm: Algorithm for solving the analog beamforming matrix.
Input: Hybrid beamforming matrix F, F(n)BB , F(q=0)

RF ∈ F, iteration index q = 0, threshold ε4 = 10−3,

the solution of the objective function of the problem P5 in the qth iteration is δ
(q)
1 .

1. while
∣∣∣δ(n) − δ(n−1)

∣∣∣ ≥ ε4

2. Calculate C(q) = F(n)BB FH −
(

F(n)BB F(n)BB
H − λmax

(
F(n)BB F(n)BB

H
)

I
)

F(q)H
RF .

3. Calculate FRF = e−jarg(C(q)T).
4. Set q = q + 1.
5. end
Output: F(n)RF .

8. Results and Discussion

In this section, we evaluate the performance of the proposed joint user scheduling
and hybrid beamforming design algorithm by numerical simulations. In the numerical
simulations, we set the number of multicast groups to L = 7, which cover 150 active users,
and set the SINR constraint threshold of each multicast group to SINR0 = 1. To facilitate
analysis, we assume that the CSI errors of different multicast groups are the same, which
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are expressed as σ2
f rsd
d,k,l

= σ2
f rsd
d

and σ2
φτk,l

= σ2
φτ

. The value of P0 can be calculated by [31]. In

addition, the system parameters used in the numerical simulations are shown in Table 1.

Table 1. Simulation parameters.

Parameters Values Parameters Values

N 8× 8 = 64 κ 1.38× 10−23 J·K−1

L 7 P0 21.5 W
κk,l 10 T 300 K

Bandwidth 50 MHz Gleo 3 dB
Orbit altitude 1000 km Gut 3 dB
Beam radius 250 km f 20 GHz

LPat 0.017 dB K 150

Figure 7 shows the convergence trajectory of the EE of the massive MIMO LEO satellite
multigroup multicast communication system, versus the number of iterations for different
CSI errors, different numbers of preselected users and different scheduling algorithms.
In this simulation, two groups of channel errors are set according to Refs. [23,29], i.e.,
σ2

f rsd
d

= 25, σ2
φτ

= 10 and σ2
f rsd
d

= 20, σ2
φτ

= 5. In addition, we set Us = 2 and PT = 50 W.

Meanwhile, we set two different numbers of the preselected users, i.e., Ul,p/Us = 2, Ul,p = 4
and Ul,p/Us = 3, Ul,p = 6. It can be seen that the proposed robust algorithm has higher
performance gain than the traditional nonrobust algorithm, which shows the effectiveness
of the robust algorithm. Meanwhile, it can be seen that when σ2

f rsd
d

= 25, σ2
φτ

= 10 and

σ2
f rsd
d

= 20, and σ2
φτ

= 5, the EE performance gain of the proposed robust algorithm

is improved by 9.8% and 6.7%, respectively, compared with the traditional nonrobust
algorithm. The system EE of the proposed joint user scheduling and hybrid beamforming
design algorithm is higher than that of the decoupling design algorithm, and the more
preselected users, the higher performance improvement.
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Figure 8 compares the EE performance of the proposed algorithm and the traditional
algorithm under different system parameters, versus different transmission power thresh-
olds PT . It can be seen that with the increase in transmission power, the EE performance
shows a trend of first rising and then falling. The reason is that the growth rate of the
system rate is lower than that of the power consumption. Meanwhile, we can see that the
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EE of the joint user scheduling and hybrid beamforming design algorithm is higher than
that of the decoupling design algorithm versus different transmission power thresholds PT .
Under the conditions of σ2

f rsd
d

= 25, σ2
φτ

= 10 and PT = 15 W, when Ul,p/Us = 2, Ul,p = 4

and Ul,p/Us = 3, Ul,p = 6, the EE performance gain of the proposed joint design algorithm
is 28.41% and 45.19% higher than that of the traditional decoupling design algorithm.
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Figure 8. Comparison of system EE of different algorithms with different transmission power
thresholds PT .

Figure 9 indicates the change trend of the SE of the massive MIMO LEO satellite
multigroup multicast communication system versus different transmission power thresh-
olds PT . It can be seen that the SE increases with the increase in the transmission power.
Meanwhile, we can see that the SE of the joint user scheduling and hybrid beamforming
design algorithm is higher than that of the decoupling design algorithm. In addition, the
more preselected users, the higher the system SE. Compared with the traditional algorithm,
the proposed robust joint design algorithm can obtain higher system SE at the same trans-
mission power, and thus can improve the system EE. Under the conditions of σ2

f rsd
d

= 25,

σ2
φτ

= 10 and PT = 30 W, when Ul,p/Us = 2, Ul,p = 4 and Ul,p/Us = 3, Ul,p = 6, with
the improvement of system SE performance, the EE performance gain of the proposed
joint design algorithm is 26.16% and 37.85% higher than that of the traditional decoupling
design algorithm.

Figure 10 shows the SE comparison of different multicast groups. It can be seen that
the SE of each multicast group of the proposed robust algorithm is higher than that of the
nonrobust algorithm. Meanwhile, with the increase in the number of preselected users, the
diversity of users increases, and the performance of the proposed joint user scheduling and
hybrid beamforming design algorithm also improves. This is because with the increase
in the number of preselected users, the range of users that can be scheduled and selected
increases. By scheduling different users in each multicast group, the SE can be further
improved. Meanwhile, with the improvement of the system SE, the system EE performance
gain also increases, which verifies the effectiveness of the joint user scheduling and hybrid
beamforming design algorithm.
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Figure 10. Comparison of SE of different multicast groups.

Figure 11 shows the change trajectory of the system EE and SE versus the different Us.
It can be seen that with the increase in Us, the system EE and SE show a downward trend.
This is because the communication rate of each multicast group is constrained by the user
with the worst SINR in the multicast group. With the increase in Us, if the users’ channel
vectors in the multicast group remain collinear, the EE and SE would remain unchanged.
However, according to the rules of the user preselection and scheduling, with the increase
in Us, the collinearity among users in the multicast group would decrease, which can result
in the increase in interference and the decrease in the worst SINR in each multicast group.
In other words, with the decrease in Us, the users’ SINR will be improved. Therefore, with
the improvement of SINR, the system EE performance gain also increases, as shown in
Figure 11a. Under the condition of Ul,p/Us = 2, Ul,p = 4, when Us = 2, the EE performance
gain is 21.05% higher than when Us = 4.
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Figure 12 shows the performance comparison of different algorithms for solving
FBB and FRF. In this simulation, we set three comparison algorithms, i.e., the optimal
design algorithm, the alternating minimization algorithm based on the phase extraction
(PE-Altmin) algorithm and the orthogonal matching pursuit (OMP) algorithm. The opti-
mal design algorithm refers to the numerical simulation result of the hybrid beamform-
ing matrix F. It can be seen that the system performance of the MM-AltOpt algorithm
is slightly lower than that of the optimal design algorithm. Meanwhile, in Figure 12a,
when PT = 10 W, we can see that the system EE performance gain of the proposed
MM-AltOpt algorithm is improved by about 2% and 5%, respectively, compared with
the PE-Altmin algorithm and the OMP algorithm. In addition, from the perspective of
algorithm complexity, the complexities of the MM-AltOpt algorithm, PE-Altmin algo-
rithm and OMP algorithm are O

(
IMM

(
N3 + IInner2NL2 + NL

))
, O
(

IPE
(

N3 + L3 + NL
))

and O
(

IOMP
(

L4N + L2 + N2L2 + 2L3)), respectively, where IMM, IInner, IPE and IOMP are
the number of iterations of the corresponding algorithm. In conclusion, we can see that the
complexity of the proposed MM-AltOpt algorithm is close to that of the other two algo-
rithms, however, the system EE performance is higher, which can verify the effectiveness
of the proposed algorithm.
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system SE of different algorithms for solving FBB and FRF.
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9. Conclusions

In this paper, we investigated the robust joint user scheduling and hybrid beamforming
design scheme for the massive MIMO LEO satellite multigroup multicast communication
system. The scheme design considered the limited transmission power of the LEO satellite
and the requirement of QoS and analyzed the influence of residual Doppler shift and
phase disturbance on CSI errors. On this basis, taking the system EE as the optimization
objective, we focused on the robust joint user scheduling and hybrid beamforming design.
To reduce the complexity of the algorithm, we proposed the user preselection step, which
can significantly reduce the system complexity while ensuring the system performance.
For the nonconvex problem of the objective function, we adopted the CCCP framework
after transforming the optimization problem into the DC programming problem. For the
rank-one constraint, we proposed the penalty iterative algorithm. Finally, to obtain the
digital and analog beamforming matrices, we adopted the MM-AltOpt algorithm.

Numerical results indicated that the proposed algorithm can effectively improve the
system EE. The EE performance gain of the proposed robust algorithm was improved
by nearly 10% compared with the traditional nonrobust algorithm. Meanwhile, the EE
performance gain of the proposed joint user scheduling and hybrid beamforming design
algorithm was improved by nearly 40% compared with the traditional decoupling design
algorithm. In conclusion, the robust joint user scheduling and hybrid beamforming design
algorithm proposed in this paper can significantly improve the system EE performance.
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Abbreviations
MIMO multi-input multi-output
LEO low earth orbit
UPA uniform planar array
EE energy efficiency
SDP semidefinite programming
CCCP concave convex process
MM majorization-minimization
AltOpt alternative optimization
SE spectrum efficiency
CSI channel state information
GEO geosynchronous earth orbit
QoS quality of service
BFP Boolean fractional programming
QCQP quadratic constraint quadratic programming
DC difference of convex
FEC forward error correction
SINR signal to interference plus noise ratio
SNR signal-to-noise ratio
CRLB Cramer–Rao lower bound
EVD eigenvalue decomposition
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GRA Gaussian randomization algorithm
PE-Altmin alternating minimization algorithm based on the phase extraction
OMP orthogonal matching pursuit
OFDMA orthogonal frequency division multiple access
WMMSE weighted minimum mean-square error
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