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Abstract: This study integrates the array sensing module and the flow leakage algorithm. In this
study, a real-time monitoring deep-sea pipeline damage sensing system is designed to provide
decision-making parameters such as damage coordinates and damage area. The array sensor module
is composed of multiple YF-S201 hall sensors and controllers. YF-S201 hall sensors are arranged
inside the pipeline in an array. The flow signal in the deep-sea pipeline can be transmitted to the
electronic control interface to analyze the leakage position and leakage flowrate of the pipeline. The
theory of this system is based on the conservation of mass. Through the flow of each sensor, it is
judged whether the pipeline is damaged. When the pipeline is not damaged, the flowrate of each
sensor is almost the same. When the pipeline is damaged, the flowrate will drop significantly. When
the actual size of leakage in the pipeline is 5.28 cm2, the size calculated by the flowrate of hall sensors
is 2.58 cm2 in average, indicating the error between experimental data and theoretical data is 46%.
When the actual size of leakage in the pipeline is 1.98 cm2, the size calculated by the flowrate of hall
sensors is 1.31 cm2 in average, indicating the error between experimental data and theoretical data is
21%. This can accurately confirm the location of the broken pipeline, which is between sensor A and
sensor B, so that the AUV/ROV can accurately locate and perform pipeline maintenance in real time.
It is expected to be able to monitor the flowrate through the array magnetic sensing module designed
in this study. It can grasp the status of deep-sea pipelines, improve the quality of deep-sea extraction
and pipeline maintenance speed.

Keywords: hall sensors; leakage sensing system; subsea pipeline; deep-sea water

1. Introduction

The study used hall sensors to form a monitoring system to detect leakage of deep-sea
pipelines on the seafloor. Deep-sea pipelines play an important role in human life because
of the advantages of low cost and no environmental restrictions. Therefore, how to design a
high-accuracy damage detection system is worthy of discussion. There are some techniques
for detecting leakage, such as ultrasound and optical fibers. Muhammad Muzakkir Mohd
Nadzri [1] uses long range ultrasonic testing (LRUT) to detect the condition of a pipeline.
LRUT has the capability of structural safety monitoring and is often used in pipeline
inspection. As a non-destructive testing (NDT), LRUT has the ability to quickly screen and
detect various types of defects. Joseph D Butterfield [2] discovered leakages through leak
noise correlation by placing sensors on either side of the leak and recording and analyzing
its vibroacoustic emissions. The purpose of the study was to predict leakage flowrate in
pipelines using vibroacoustic emission signals. The study found that both the leakage
velocity and the leakage area affect the leak spectrum. Different features were obtained
from the raw signal, which were analyzed to accurately predict the leakage flowrates
without prior knowledge of the pore area. The leakage area can also be accurately predicted
without prior knowledge of the leakage flowrate. The Ahmed Atef [3] method of detecting
and locating leakages in water distribution networks using ground penetrating radar (GPR)
and infrared photography (IR). The method was successfully applied to detect simulated
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leakages and real leakages. The error is small (2.9–5.6%) in estimating the leakage area,
so it can help operators to detect and locate water leakages with high accuracy. A fiber
optic sensor has the advantage of being immune to electromagnetic interference, and has
multi-point sensing points, but the structure of fiber optic sensing is not strong. Fiber optic
sensors need to design a special encapsulation protection structure. Davis [4], in 2013,
studied measurement techniques for a subsea pipeline ring strain in Gulf of Mexico oil
fields. K.S. Ong [5] developed a simple-to-fabricate and low-cost acoustic vibration sensor
based on optical fiber (SMF-28). Optical fiber sensors consist of a bending structure and
use bending loss as a sensing mechanism to detect leakages in pipelines. A measurement
system for the optical fiber sensor is proposed. Jia Zhang [6] applies distributed temperature
sensing (DTS) and localization methods using temperature signals to pipeline networks.
However, it is difficult for DTS to comprehensively monitor pipeline leakage, and DTS has
monitoring blind spots. Continuous low temperature changes are difficult to capture by
optical fibers, so distributed acoustic sensing (DAS) is required to assist in comprehensive
monitoring. The amplitude attenuation model of leakage sound is established, and the law
of vibration sound signal in porous soil is studied. When the pipeline leaks, the amplitude
of the time domain signal and the vibration is obvious. Sonic leakage occurs in a very short
period and the vibration amplitude peaks. Ma Yi-lai [7] analyzes the magnetic circuit of the
magnetization structure of the intelligent magnetic flux leakage detection robot, using the
mechanical structure to adjust the motion posture to meet the detection requirements.

In this paper, several hall sensors were used to build up a monitoring system to
detect the leakage in subsea pipeline. Advantages such as low-cost and being free from
environmental restrictions make subsea pipeline an important role in human life [8,9]. This
method uses the characteristics of the flow field to determine whether there is damage.
It is currently widely used in flowrate detection and water flowrate monitoring systems.
Therefore, this study hopes to use the hydraulic leak detection method to accurately detect
the damaged area and location of deep-sea pipelines; however, factors such as earthquakes
and corrosion can cause broken pipelines and lead to damage to the marine ecosystem
and economy [10–13]. The American scientific institution pointed out that the efficiency of
most leakage detection systems is only 20% [14]. Therefore, designing a system which can
detect the leak accurately is a challenge waiting to be overcome. Today, several techniques
applied to leakage detection include ultrasonic-guided wave and optical fiber. The common
disadvantages of these techniques are high manufacturing cost and the fact that accuracy is
influenced by the shape and material of the pipelines [15]. To address these disadvantages,
the hydraulic leak detection method, which uses flow distribution to detect a potential
leak in the pipeline, was developed in 1960 [16]. Among most hydraulic leak detection
methods, some researchers used hydraulic pressure to detect the leak. However, this
method is more suitable for finding larger leaks in the pipeline [17]. Therefore, the aim
of this research is to use YF-S201 hall sensors to detect the flowrate and find the leak in
the pipeline. The YF-S201 hall sensor consists of a hall IC on the gear. When the water
flows through the sensor, the gear will rotate and lead to the variation of magnetic field,
making the hall effect happen; then, the IC will signal output, and the computer uses this
signal to calculate the flowrate. The hall sensor is widely used in flowrate detecting [18]
and water flow monitoring system [19] because of its low cost. In addition, the sensor
equipped on the gear has high accuracy, and statistics show that this kind of sensor is
one of the most accurate flow sensors. The hall sensor detects the flowrate of each water
intake pipeline. The hall sensor is a turbine-based sensor and can roughly determine the
damaged position and area of the pipeline by the flowrate change. Sood [18] measures the
water flowrate in the irrigation pipeline through the hall sensor, and determines whether
there is a water leak in the irrigation pipeline by detecting the water flowrate. In order to
reduce the waste of water resources and achieve high-efficiency application, Kolhare [20]
developed a microcontroller-based turbine flowmeter system to measure water flowrate in
solar water heaters. The rotational pulse is generated by the turbine rotor, magnet, and hall
effect sensor, and the flowrate can be converted by calculating the number of pulses per
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minute. Sinha [21] has developed a set of non-contact flowrate measurement techniques
using hall effect sensors and rotameters. They measured the change in the magnetic field
through a hall-effect sensor placed outside the rotameter and converted the change into a
DC signal. Finally, the DC signal is transmitted to the computer, and the water flowrate is
calculated through theoretical equation.

In recent years, many hi-tech flowrate sensors have been developed; when using the
sensor, many researches combine sensors with machine learning, which tries to predict the
accuracy of data. In terms of leakage detection systems, some researchers use spherical
detectors to measure the leak sound from the inside of pipeline to detect the leakage, the
system also combined with the SVM model, which makes the accuracy of the system up to
93% [22]. Some researches detect lots of parameters, such as pressure, temperature, and
flowrate, then combine all the data with machine learning to determine the leakage [23].
There is also the raman distributed fiber sensor, which uses the dynamic threshold iden-
tification method to measure the distributed temperature to detect the pipeline leak, and
results shows that the positioning accuracy is 1 m [24]. However, these methods are too
expensive to be widely used in long subsea pipeline. The system is also complex and the
machine learning may take lots of time to design and train. The machine learning model
will also be different when used in different pipeline. Therefore, this research aims to use
a low-cost magnetic module based on YF-S201 hall sensors to accurately detect leakage
in subsea pipeline; a system detects the change of flowrate in the pipeline, and is one of
the hydraulic leak detection methods. The system consists of several YF-S201 hall sensors,
and an Arduino Uno and computer, which is timesaving and easily implemented in most
subsea pipeline. In this paper, the result will show the data of each YF-S201 hall sensor and
prove the feasibility of this method by utilizing that data. A crack estimation algorithm
is established in the research, and practical verification experiments are designed. In the
future, the system can be widely used in pipelines to improve deep-sea water quality.

2. Materials and Methods

The research used an acrylic tube filled with water to simulate the subsea pipeline,
as Figure 1 shows. There are three YF-S201 hall sensors in the acrylic tube to detect the
flowrate in the pipeline. When water flows through the hall sensor, the hall IC on gear
rotates and outputs PWM signal. The software can use the PWM signal to calculate the
flowrate. The research designed a LabVIEW human-machine interface, shown in Figure 2,
enabling researchers to see the situation of the subsea pipelines. The interface is a real-time
monitoring interface, which shows the flowrate of each sensor per second. The interface
is easy to use; when the sensors connect to Arduino Uno, the software will calculate the
flowrate and show the location and the size of leakage on the LabView interface. In addition,
the red warning light in the interface will light up when there is any leakage. By doing so,
the researcher can easily keep track of the situation of the subsea pipelines. Arduino Uno
is applied to read the PWM signals from hall sensors in this study. Besides, a LabVIEW
human-machine interface is also designed to monitor the real time situation from the hall
sensors in the pipeline. The hall sensor can determine the frequency of the flowrate in
the pipeline in a period of time and output PWM signals. The output PWM signals will
be received by Arduino Uno and converted to voltage. The ultimate voltage will then be
shown on the LabVIEW human-machine interface, where we can monitor the condition of
each sensor in the pipeline in real time.

Figure 3 shows the experiment setup. In the experiment, there is a 250 cm long acrylic
tube filled with water and three YF-S201 hall sensors which are placed in a row. The sensors
from the left to right are Sensor A, Sensor B, and Sensor C. The diameter of the tube is
10 cm, and the height of the hall sensor is 3.5 cm. The w90er is poured into the tube from
the left side of Sensor A with flowrate about 920 L/h, 1300 L/h, and 1951 L/h, and the
pipeline is inclined slightly to avoid the reflow of water. The research also added some blue
ink into the water to make the flow field obvious in experiments. Furthermore, in order
to stimulate leakages in the pipeline, the research used an electric drill to drill some holes
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in the tube between Sensor A and Sensor B; the diameter of the holes are 9.4 mm, 9.7 mm,
8.4 mm, and 20.5 mm, respectively. When doing the experiment, we used waterproof tape
to adjust the size of hole.
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The accuracy of the hall sensor is only 90%, therefore, the size of hole needs to be
big enough to be detected. In the following experiments, we decided the size of the holes
should be 1.98 cm2 and 5.28 cm2. With the experiment set up, this research aims to verify
the feasibility of the system for using hall sensors to detect leaks in subsea pipelines.

The voltage-related, frequency-related, and flowrate-related, are given by the
following relations:

The voltage of PWM signal = (making time/total time) × max voltage (1)

Flowrate of hall sensor(L/hour) =
(Gear rotational frequency × 60)

7.5
(2)

Therefore, this research uses the PWM signal to calculate flowrate in the pipeline.
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The research takes the pipeline as a system and lets the control volume surround
the pipeline. The research uses the law of conservation of mass to detect the leakage; the
equation is as follows:

D
Dt

∫
sys

ρ dV = ρ dV +
∫

cs
ρV n̂dA = 0 (3)

where A is the cross-sectional area of pipeline, ρ is the density of the fluid, V is control
volume, V is average velocity of the fluid, Q is flowrate, and

.
m is mass flowrate.

Assume the flow field in the pipeline is stable. Based on Equation (3), when there is
no leakage in the pipeline, as Figure 4 shows, the system can use Equation (4) as follows:

Q1 = Q2 = Q3 (4)

where Q stands for flowrate in the pipeline.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 10 
 

 

The accuracy of the hall sensor is only 90%, therefore, the size of hole needs to be big 

enough to be detected. In the following experiments, we decided the size of the holes 

should be 1.98 cm2 and 5.28 cm2. With the experiment set up, this research aims to verify 

the feasibility of the system for using hall sensors to detect leaks in subsea pipelines. 

The voltage-related, frequency-related, and flowrate-related, are given by the follow-

ing relations: 

𝐓𝐡𝐞 𝐯𝐨𝐥𝐭𝐚𝐠𝐞 𝐨𝐟 𝐏𝐖𝐌 𝐬𝐢𝐠𝐧𝐚𝐥 =  (𝐦𝐚𝐤𝐢𝐧𝐠 𝐭𝐢𝐦𝐞/𝐭𝐨𝐭𝐚𝐥 𝐭𝐢𝐦𝐞) × max voltage (1) 

𝐅𝐥𝐨𝐰𝐫𝐚𝐭𝐞 𝐨𝐟 𝐡𝐚𝐥𝐥 𝐬𝐞𝐧𝐬𝐨𝐫(𝐋/𝐡𝐨𝐮𝐫) =  
(𝐆𝐞𝐚𝐫 𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧𝐚𝐥 𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 × 𝟔𝟎)

𝟕. 𝟓
 (2) 

Therefore, this research uses the PWM signal to calculate flowrate in the pipeline. 

The research takes the pipeline as a system and lets the control volume surround the 

pipeline. The research uses the law of conservation of mass to detect the leakage; the equa-

tion is as follows: 

𝑫

𝑫𝒕
∫ 𝝆

𝒔𝒚𝒔
 dV = 𝝆 𝒅V + ∫ 𝝆𝑽 ∙ �̂�

𝒄𝒔
𝒅𝑨 = 0 (3) 

where 𝐴  is the cross-sectional area of pipeline, 𝜌 is the density of the fluid, V is control 

volume, 𝑉 is average velocity of the fluid, Q is flowrate, and �̇� is mass flowrate. 

Assume the flow field in the pipeline is stable. Based on Equation (3), when there is 

no leakage in the pipeline, as Figure 4 shows, the system can use Equation (4) as follows: 

 

Figure 4. Schematic of pipeline and parameters. 

𝑄1 = 𝑄2 = 𝑄3 (4) 

where 𝑄 stands for flowrate in the pipeline. 

Assume the flow field in the pipeline is stable as before. When there is a leak in the 

pipeline, as Figure 5 shows, the system can use Equation (5) as follows. Using Equation 

(5), the leak can be found from the flowrate. 

 

Figure 5. Schematic of broken pipeline and parameters. 

𝑄1 = 𝑄2 + 𝑄3 (5) 

Then, we put several hall sensors in the pipeline, as Figure 6 shows. According to 

many experiments, the research found that hall sensors only detect 4.7% flowrate in the 

pipeline, as Table 1 shows. 

  

Figure 4. Schematic of pipeline and parameters.

Assume the flow field in the pipeline is stable as before. When there is a leak in the
pipeline, as Figure 5 shows, the system can use Equation (5) as follows. Using Equation (5),
the leak can be found from the flowrate.

Q1 = Q2 + Q3 (5)
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Then, we put several hall sensors in the pipeline, as Figure 6 shows. According to
many experiments, the research found that hall sensors only detect 4.7% flowrate in the
pipeline, as Table 1 shows.
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Table 1. The proportion of flowrate of hall sensor to flowrate of pipeline.

Flowrate of Hall Sensor (L/h) Flowrate of Pipeline (L/h) Proportion

32 604 0.053
45 928 0.048
52 1231 0.042
72 1382 0.052
85 1951 0.044
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According to the result of Table 1, the research uses Equation (6) to calculate the
flowrate of wate Q2 through the leakage:

Q2 = Q∗
3 − Q∗

1/0.047 (6)

where Q* stands for the flowrate of hall sensors.
After we found out the location of the leak, in order to find the size of leakage, the

research uses Bernoulli’s principle to find the water velocity VB at the leak site, as shown in
Figure 7. The Bernoulli’s principle is shown as Equation (7).

PA
r

+ ZA +
V2

A
2g

=
PB
r

+ ZB +
V2

B
2g

(7)

where P stands for pressure, r for specific weight of water, Z for the water level, and V for
the velocity of water.
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Figure 7. Schematic of broken pipeline with hall sensors.

The fact that point A and B contact air allows us to view the pressure of point A and B
as zero, as shown in Equation (8).

PA = PB = 0 (8)

According to the location of point B, the height of point B was considered as zero, as
shown in Equation (9).

ZB = 0 (9)

Therefore, in this research, VB was calculated by the parameter above and then used
to calculate the size of leakage by VB

Aleakage = Q2/VB (10)

3. Results

This research was intended to verify if the flowrate of hall sensors changes when there
is leakage in the pipeline. We put Sensors A, B, and C, in the pipeline and poured water
into the tube from the left of Sensor A. In this research, each experiment was conducted
three times and in Figures 8–10, we used yellow, green, and orange bar charts, to show the
result of each experiment. In addition, we also used all data to draw Figure 11, to show the
relationship between each result.
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Figure 11. Variation of flowrate of hall sensors with respect to different size of leakage, for different
flowrate in the pipeline.

3.1. Finding the Location of Leakage

The total flowrate in the pipeline is 1300 L/h and Figures 8–10 show the flowrate that
the hall sensors detected under different sizes of leakage in the pipeline. In Figure 8, the
average flowrate of three hall sensors is 66 L/h in average. According to the datasheet, the
accuracy error of the YF-S201 hall sensor is 10%; therefore, the flowrate of the three hall
sensors shown in Figure 8 can be considered as the same. The result of the experiment
shows that the flowrate of the hall sensors is approximately the same when there is no
leakage in the pipeline.

To simulate leakage in the pipeline, we made several holes approximately 100 cm
away from the mouth of the pipeline and poured 1300 L/h flowrate of water into pipeline.
According to Figure 9, when there is 1.98 cm2 leakage between Sensors A and B, the flowrate
between Sensor A was the same as in Figure 8; however, the flowrate between Sensors B
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and C declined by 23%, due to the leakage in the pipeline. Thus, through this system, we
can determine that there is a leakage between Sensors A and B, and no leakage between
Sensors B and C. When there is 5.28 cm2 leakage between Sensors A and B, the flowrate of
Sensor A was the same as Figure 8; however, the flowrate of Sensors B and C declined by
53% due to the leakage in the pipeline, as shown in Figure 10. Based on this finding, we
can tell that there is a greater leakage between Sensors A and B, and no leakage between
Sensors B and C.

Besides from the experiments in Figures 8–10, we also did experiments when the
flowrate of the pipeline was 920 L/h and 1951 L/h, and Figure 11 shows all the relationships
of those data. Through Figure 11, we can see the relationship between hall sensor flowrate
and the size of the leakage when the flowrate in the pipeline is different. The result showed
that the bigger the leakage is, the more it declines. Therefore, the experiment proved
that the system can use the flowrate of hall sensors to determine the variation of the size
of leakage.

The above-mentioned experiments proved that the location and size of leakage can
be determined through the flowrate of hall sensors. Through this system, the leakage
in subsea pipeline can be detected by an accurate and low-cost method, which is more
accurate than the raman distributed fiber sensor, which was mentioned in the introduc-
tion section. Additionally, the cost of the system was also lower than the ultrasonic
guided wave, optical fiber, and spherical detector, which was also mentioned in the
introduction section.

3.2. Calculating the Size of Leakage

Meanwhile, the research also used flowrate to calculate the size of the leak. There
are two leakage area modes. Type I leakage area is 5.28 cm2. Type II leakage area is
1.98 cm2. When the actual size of the leak in the pipeline is Type I, the size calculated by
the flowrate of the hall sensors is 2.58 cm2 on average, as listed in Table 2, indicating that
the error between experimental data and theoretical data is 46%. When the actual size of
leakage in the pipeline is Type II, the size calculated by the flowrate of the hall sensors is
1.31 cm2 on average, as listed in Table 3, indicating that the error between the experimental
data and theoretical data is 21%. The cause of this error could be inaccurate flowrate
detection resulted from an unstable flow field. The error is acceptable when detecting
leakage; however, how to decrease the error in order to make the system more precise is an
issue we could address in the future.

Table 2. The result of the size of leakage by the flowrate of sensors for Type I.

Sensor A
(L/h)

Sensor B
(L/h)

Sensor C
(L/h)

Flowrate in the
Leakage (cm3/s)

Flow Velocity in
Leakage (cm/s)

Leakage
Area (cm2)

82.8 44.5 44.5 226.36 79.03 2.86
67.6 31.5 31.5 213.36 72.66 2.94

43.08 20 20 136.41 69.96 1.95

Table 3. The result of the size of leakage by the flowrate of sensors for Type II.

Sensor A
(L/h)

Sensor B
(L/h)

Sensor C
(L/h)

Flowrate in the
Leakage (cm3/s)

Flow Velocity in
Leakage (cm/s)

Leakage
Area (cm2)

82.8 62 44.5 122.93 79.03 1.56
67.6 50.5 31.5 101.06 72.66 1.39

43.08 31.65 20 67.55 69.96 0.97

4. Conclusions

In this study, a real-time monitoring deep-sea pipeline damage sensing system is
designed to provide decision-making parameters such as damage coordinates and damage
area. The array sensor module is composed of multiple YF-S201 hall sensors and controllers.
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The flow signal in the deep-sea pipeline can be transmitted to the electronic control interface
to analyze the leakage position and leakage flowrate of the pipeline. Through the flowrate
of each sensor, the structural safety of the pipeline is judged. After analysis, the location
and area of pipeline damage can be determined. The error rate of damage area judgment
is as low as 21%. How to decrease the error to make the system more precise is an issue
we can address in the future. It is expected to be able to monitor the flow through the
array magnetic array sensing module and flow leakage algorithm designed in this study.
This can grasp the status of deep-sea pipelines, improve the quality of deep-sea extraction
and pipeline maintenance speed, so that the AUV/ROV can accurately locate and perform
pipeline maintenance in real time.
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