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Abstract: The study sought to: (1) evaluate agriculturalists’ characteristics as adopters of IoT smart
agriculture technologies, (2) evaluate traits fostering innovation adoption, (3) evaluate the cycle
of IoT smart agriculture adoption, and, lastly, (4) discern attributes and barriers of information
communication. Researchers utilized a survey design to develop an instrument composed of eight
adoption constructs and one personal characteristic construct and distributed it to agriculturalists at
an agricultural exposition in Rio Grande do Sul. Three-hundred-forty-four (n = 344) agriculturalists
responded to the data collection instrument. Adopter characteristics of agriculturalists were educated,
higher consciousness of social status, larger understanding of technology use, and more likely
identified as opinion leaders in communities. Innovation traits advantageous to IoT adoption
regarding smart agriculture innovations were: (a) simplistic, (b) easily communicated to a targeted
audience, (c) socially accepted, and (d) larger degrees of functionality. Smart agriculture innovation’s
elevated levels of observability and compatibility coupled with the innovation’s low complexity were
the diffusion elements predicting agriculturalists’ adoption. Agriculturalists’ beliefs in barriers to
adopting IoT innovations were excessive complexity and minimal compatibility. Practitioners or
change agents should promote IoT smart agriculture technologies to opinion leaders, reduce the
innovation’s complexity, and amplify educational opportunities for technologies. The existing sum
of IoT smart agriculture adoption literature with stakeholders and actors is descriptive and limited,
which constitutes this inquiry as unique.

Keywords: diffusion barriers; sustainability; Industry 4.0 technologies; agricultural innovation
systems; knowledge transfer

1. Introduction

The technological pillars of the Industry 4.0 revolution include Internet of Things
(IoT), machine learning (ML), artificial intelligence (AI), robots, drones, 5- and 6G systems,
blockchain, virtual and augmented reality, and 3D printing [1]. Improving adoption of
smart agricultural technologies is a focus of global institutions and organizations [2]. Agri-
cultural extension’s success in disseminating information that promotes farmers’ adoption
of contemporary agricultural technology is critical in the adoption cycle [3]. Kilelu, van
der Lee, Koge, and Klerkx [4] identified that farmers’ minimal adoption of technology
negatively affected the demand of Service Providers Enterprises. Knowledge and compre-
hension of an innovation are necessary for agriculturalists’ adoption and diffusion within
their respective social systems [5,6]. Information and communication technologies (ICTs)
provide indigenous information for marginalized farmers in developing countries [6]. The
findings of Zambon et al. [7] revealed that, as Industry 4.0 has rapidly advanced and is
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approaching 5.0, Agriculture 4.0 is not as extensively adopted by stakeholders and is not
widely examined by agricultural sciences scholars.

Agriculturalists in developing nations are prone to more production and technological
barriers than peers in developed nations. Technological and information transmission are
chief barriers experienced by agriculturalists [5]. Low education levels and inadequate
communications contribute to a lack of adoption of smart agriculture innovations [6].
Some authors [8,9] suggested that optimum behavior change theories exist, but a favorable
singular theory to frame an innovation adoption study does not exist for agriculturalists in
developing nations. Agricultural extension change agents require better comprehension
of innovation adoption components to improve professional development efficacy of
the adoption cycle [10]. Barriers prohibiting farmers’ adoption of IoT smart agriculture
technologies may be reduced when professional development experiences for agricultural
extension personnel are offered.

Advancements in education have proven to change individual and organizational
acceptance and use of newer technologies [11]. Extension programming that commu-
nicates the benefits of the innovation may motivate adoption in local communities and
organizations, thereby improving the lives of individuals and communities. Farmer field
schools are a proven outlet to increase agriculturalists’ knowledge respective to innova-
tion’s advantages. Besides the improvement in knowledge, farmer field schools can benefit
improving agriculturalists’ perceptions of new innovations in social learning environments
aligning with agriculturalists’ social norms [12,13]. Additionally, educational experiences
improve access to information and can increase marginalized agriculturalists’ awareness
of IoT smart agriculture innovations. Using preexisting communications platforms, such
as information communication technologies (ICTs), to educate and communicate inno-
vations to agriculturalists has proven to expand knowledge transfer [14]. Concurrently,
communications through existing accepted platforms increase agriculturalists’ knowledge
without the peer pressure to make a decision quickly [15]. The internet and IoT innovations
have materialized as practical educational technologies for agriculturalists in developing
countries to improve their knowledge of innovations. Inadequate computers and minimal
intellectual aptitude with technology are barriers to agriculturalists’ adoption of the internet
as an avenue for knowledge transfer [16]. Developing comprehension of agriculturalists’
educational wishes and gaps addresses chief attributes of enhancing the adoption and
dissemination of innovations in developing nations [17].

The theoretical framework implemented to assess the extent of IoT smart agriculture
adoption and diffusion by Rio Grande do Sul agriculturalists was Rogers’ [18] diffusion
of innovations. Diffusion of innovations is globally recognized and employed to exam-
ine technology and information adoption in diverse environments. Rogers’ [18] pivotal
investigations posited the diffusion of innovations was functional to several fields of study,
including education, business, medicine, and agriculture. Researchers have implemented
diffusion as the scaffold to examine innovation adoption from various multidisciplinary
fields. Interdisciplinary and transdisciplinary inquiries have been developed to ascertain
diffusion theory’s validity in dissimilar environments. MacVaugh and Schiavone [19] re-
ported that increased depth of innovation comprehension of diffusion was accomplished at
various social system stages and subject areas. Information dissemination can be depicted
by the diffusion of innovations at various macro and micro stages. The diffusion of inno-
vations is investigated through the theory’s inclusion in local, national, and international
communities [20]. Evaluating technology adoption has been assessed with diffusion of in-
novations previously. Hilbert [21] harnessed diffusion of innovations to assess the impacts
of technology improvements on Latin American groups and potential outcome impacts.

Rogers [18] discerned five principal innovation characteristics that influence an in-
novation’s adoption and diffusion. The attributes promoting innovation adoption are
the relative advantage of the innovation, its compatibility, the innovation’s complexity,
trialability of the innovation, and the innovation’s visibility, which Rogers coined as ob-
servability. Relative advantage is a perceived advantage of the innovation prior to what is
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used [18]. An innovation’s relative advantage may be promoted or communicated from an
environmental, economic, or societal lens to improve innovation adoption.

The extent an innovation is aligned with the subjective norms, needs, and values of
agriculturalists is referred to as compatibility. When an innovation adheres to subsequent
norms of the target audience, agriculturalists are more likely to adopt the innovation.
Complexity refers to the innovation’s ease of understanding and applied use. Larger
extents of or substantial variations in perceived complexity produce higher probabilities
that an innovation will not be adopted.

The component linked to agriculturalists’ capacity to experiment with an innovation
is called trialability. Rogers suggested opportunities to provide innovation trialability
are predicated on utility of access, change agent and opinion leaders’ communication,
and the innovation’s cost. Elevated trialability experiences produce increased likelihoods
of innovation adoption. Increased experiences regarding innovation trialability produce
higher likelihoods the innovation will be adopted by agriculturalists.

The extent to which agriculturalists can view traits of the innovation is the last attribute,
referred to as observability. The more an innovation is observable, the higher the probability
the innovation will be adopted within the social system [18].

Adopters’ categories are based on agriculturalists’ distinctive characteristics. Rogers [18]
outlined five adopter categories, postulating the progressive shape of the diffusion ‘S’
curve. The adopter classifications developed in Ref. [18] were the innovators, then the
early adopters, the early majority, the late majority, and, finally, the laggards. Venturesome
is used to describe the innovators. The innovators more than likely had higher financial
resources, a larger extent of intellectual astuteness, and were more apt to accept risk.

The highest level of social status in communities belongs to the early adopter members.
The early adopters possessed higher intelligence and aversion to risk capacities. Early
adopters tend to be older and more established than innovators. Early adopters are viewed
as the most credible adopter classification in the social system [18].

Early majority adopters have similar characteristics to early adopters, with the principal
difference that the early majority members did not have leadership roles (Strong et al.) [22].
Another dissimilarity is early majority members do not possess as much aversion to risk as
innovators and early adopters within social systems.

The late majority classification was identified as having larger degrees of cynicism of
the innovation’s advantages, but they were inclined to implement the innovation upon
learning it was mandated or required in their agricultural operation. Late majority adopters
likely own less or have less access to financial resources than the previous three categories
and are more averse to risk.

Laggards was the name given to the fifth adopter classification. Laggards maintained
traditional agricultural practices versus adopting contemporary innovations or techniques.
Laggards have limited access to monetary funds, resulting in the highest aversion to risk
compared to any other adopter category.

Additional scholars have examined individual acceptance of innovations. Gold-
berg [23] developed the five-factor model to describe the extent of the effect of an in-
dividual’s personality on their decision to adopt an innovation. Individuals’ personality
characteristics elicit large amounts of persuasion on individual adoption [24,25]. Individu-
als chose to accept or reject innovations based on their perceived performance expectancy
with the innovation, the effort expectancy with the innovation, social influences promoting
the innovation, and facilitating conditions that provide organizational infrastructure for the
innovation [26]. However, the authors want to be clear that agriculturalists’ personalities
did not constitute the focus or an objective of our study [27].

The study was implemented to assess the extent of IoT smart agriculture adoption and
diffusion by agriculturalists in the Brazilian province of Rio Grande do Sul. Our study’s
objectives were: (1) to understand innovations’ characteristics of IoT smart agriculture
that promote adoption and diffusion; (2) to describe agricultural IoT innovations’ adop-
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tion cycle; and (3) to discern the primary attributes of adoption of and resistance to IoT
smart agriculture.

2. Materials and Methods

Descriptive and correlational paradigms were our study’s research design. The ad-
vantages of descriptive statistics are the illumination of participants’ beliefs, perspectives,
and potential IoT smart agriculture innovations currently adopted [28]. Analyzing any
potential association among variables, to better understand generalizability, was examined
using correlational statistics [29]. Our multi-dimensional research design provided the
inquiry of current construct discrepancies based on the data collected from agriculturalists
in Rio Grande do Sul.

The population of agriculturalists in Rio Grande do Sul was 3289 at the time of the
study. Authors examined 369 similar agriculturalists as a result of the simple random
sampling technique. Data were gathered during meetings of agricultural cooperatives in
Rio Grande do Sul. Researchers limited the sample size to agriculturalists who understood
IoT smart agriculture innovations and approaches cooperatives took to market products,
information, and technologies to members. Researchers omitted twenty-five incomplete
surveys that were submitted, and, therefore, the final number in the data analysis was
344 agriculturalists [30].

Rio Grande do Sul was chosen as the province location due to the population charac-
teristics of agriculturalists in the region. Agriculturalists were uniform and social economic
status was not significantly different among the population. The agriculturalists lived
primarily in rural areas but dispersed geographically in Rio Grande do Sul. Research and
agricultural extension centers are utilized as the central hubs for research and sources of
information. The research team based the IoT smart agriculture adoption instrument on
Moore and Benbasat’s [31] investigating technology innovation adoption assessment. Agri-
cultural professionals in Rio Grande do Sul in collaboration with Texas A&M University
social science researchers and Auburn University researchers assessed content validity
from four instrument iterations before the instrument was distributed to the population.
Researchers concentrated on cultural sensitivity and awareness, the intentionality of the
study, and improved the study’s clarity for the population. Global Speak Translations was
used to translate the English instrument to Portuguese, as Portuguese is the indigenous
Brazilian language, to improve response rate and reduce measurement error. Due to the
English-first culture of the research team and the Portuguese-first language paradigm of the
agriculturalist population, all items in the instrument were developed to reduce sampling
error, coverage error, measurement error, and nonresponse error to improve agriculturalists’
discernment and enable participants to respond correctly [32].

An instrument composed of nine sections was implemented for the data collection.
The instrument’s construction and supervision were advised by the tailored design method
from Dillman et al. [32]. A personal demographics division and eight attitudinal vari-
ables were housed in the instrument. The instrument contained a summated scale with:
1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree, and 5 = strongly
agree in order to measure all attitudinal variables. Higher attitudinal scores equated with
more positivity of IoT smart agriculture innovations. Voluntariness of IoT adoption, relative
advantage of IoT smart agriculture, compatibility of IoT smart agriculture, image of IoT
smart agriculture, IoT smart agriculture ease of use, IoT smart agriculture demonstrability,
IoT smart agriculture visibility, and the trialability of IoT smart agriculture innovations
were the attitudinal variables assessed in the instrument.

Voluntariness of adoption of the innovation was examined with four items. Nine
items were used to measure IoT smart agriculture innovation’s relative advantage. Four
items measured compatibility and five questions assessed the image construct. Four
items examined demonstrability and eight statements assessed the ease-of-use variable.
Five items were utilized to assess visibility and trialability. Participants’ age, level of
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education acquired, gender, and current profession were all the personal or demographic
characteristics gathered in the study.

We pilot tested the questionnaire in Rio Grande do Sul with 33 agricultural individuals.
Our pilot test examined the validity and reliability of the survey instrument. We revised
the instrument based on the validity and reliability pilot data. Our team implemented
Cronbach’s alpha coefficients to measure the internal consistency of all items within each
respective construct. Cronbach theorized reliability coefficients are a social science indicator
for assessing the extent an instrument will produce consistent results [33]. Cronbach’s
alpha coefficients provide an interconnected mean among items within an instrument [34].
In the social sciences, alpha coefficients greater than 0.07 are the lowest threshold for
instrument reliability, with 1 as the highest coefficient threshold [35]. Rogers’ relative
advantage yielded the highest internal consistency with a 0.90, then compatibility at 0.86,
complexity produced a 0.84, the innovation’s visibility was 0.83, voluntariness was 0.82,
demonstrability yielded a 0.79, also a 0.79 for the innovations image, and the trialability
construct produced a coefficient of 0.71 [36].

SPSS 27 was used to analyze data collected. An alpha level of 0.05 significance was
instituted a priori [33,34]. Dispersion of the data was measured using central tendency
and standard deviations [36]. Frequencies and categorical data were utilized to illustrate
categorical data. Authors implemented a regression analysis to describe interactions among
variables. To measure the associations between variables, the authors employed a stepwise
regression model [33]. The variance among constructs was examined using principal
component analyses to describe, explain, and enhance interpretation of the data [35]. The
variables were analyzed using summated scales. Summated scales offered an analytical
foundation to discern and develop implications for the previously identified variables.

The differences, statistically, were analyzed among late and early participant respon-
ders to ensure the study’s external validity [37]. The authors implemented an ANOVA
and t-tests to analyze the differences among late and early participant responders. There
were no statistical discrepancies among early and late participant respondents. Outlined
by Lindner et al. [37], our data are generalizable to the population represented in the study.

3. Results

Our initial objective was to understand the innovation characteristics of IoT smart
agriculture that promote adoption and diffusion in the province. Agriculturalists’ individ-
ual attributes were assessed to understand the innovation and the innovation’s adoption
characteristics. In order to understand the innovation’s characteristics, agriculturalists’
personal characteristics and responses of agriculturalists were used to identify innovative
traits. Mean scores above 4.0 were representative of positive innovation traits. Scores
ranging from 2 to 3.9 illustrated less advantageous or neutral innovation traits. Innovation
elements with mean scores < 1.9 represented negative traits that would prohibit adoption
or slow down the adoption cycle. Each attribute’s weight was evaluated by frequency
statistics. The eight variables included in the instrument were examined for desirable,
neutral, and undesirable traits, leading to adoption and diffusion or rejection.

Voluntariness’ traits of adoption was the first variable we measured. Expectation
of use, voluntariness of use, mandated use, and the usefulness perceptions of IoT smart
agriculture technologies were assessed by four items. The authors reverse coded items “I
am not required to use technology as part of my job”, including “Technology is helpful per-
forming my job” to reduce agreement absentmindedness issues identified by Dillman et al.
Agriculturalists’ reported use expectation produced the largest (M = 4.34, SD = 0.55) vol-
untariness inspiration in the adoption cycle illustrated in Table 1. Positive adoption traits
included required use, voluntary use, and the innovation’s perceived use due to mean
scores over 4.0. Required use yielded the strongest weight of influencing an innovation’s
adoption by more than 95% of agriculturalists. A vast majority of agriculturalists (97%)
reported the anticipation of using the innovation contributed to the adoption, implying
individual objectives and social influence were predictive indicators of voluntariness. The
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grand mean was 4.29 (SD = 0.53) and Cronbach’s alpha was 0.77. The anchors to assess
voluntariness were: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree,
4 = Agree, and 5 = Strongly Agree.

Table 1. Voluntariness Innovation Metrics (n = 334).

Attributes M SD

Use expectation 4.39 0.52
Voluntariness of use 4.32 0.48

Usefulness perceptions 4.29 0.50
Mandated use 4.27 0.51

The perceptions of achieving objectives quicker, developing premium products, mak-
ing life routines simple, easier daily work goals, improving professional outcomes, produc-
ing higher-quality staff, increased individual agility, and enhanced agricultural productivity
were the items used to assess IoT smart agriculture’s relative advantage. The item earning
the highest mean score (M = 4.42, SD = 0.61) was easier daily work goals. Items earning
mean scores > 4.0 indicating positive attributes included IoT smart agriculture that achieves
objectives quicker, improving professional outcomes, enhancing agricultural productivity,
producing higher-quality staff, and increasing individual agility. Making life routines
simpler earned the lowest mean (M = 3.35, SD = 1.22), deemed a neutral versus a positive
characteristic. Researchers examined the influence of the neutrality by excluding making
life routines simpler from another round of Cronbach’s alpha analysis to determine the
reliability coefficient. The majority of agriculturalists (93%) believed IoT smart agriculture
innovations rendered them an easier lifestyle. The grand mean for relative advantage was
M = 4.19, SD = 0.87, and 0.82 was the reliability coefficient. Attributes were measured with
anchors: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree,
and 5 = Strongly Agree (see Table 2).

Table 2. Relative Advantage’s Innovation Metrics (n = 334).

Attributes M SD

Easier daily work goals 4.42 0.61
Develop premium products 4.41 0.66
Achieving objectives quicker 4.39 0.68

Improve professional outcomes 4.33 0.62
Enhanced agricultural productivity 4.29 0.64

Producing higher-quality staff 4.27 0.61
Increased individual agility 4.19 0.61

Makes life routine taskss simpler 3.35 1.22

Compatibility was examined from agriculturalists’ responses to items representative
of the extent specific innovations were recognized as congruent with work mandates,
augment current work techniques, align with work expectations, and align with lifestyle.
The highest compatibility mean score (M = 3.94, SD = 0.74) was produced by a capacity
to align with agriculturalists’ work expectations. Mean scores for each assessed attribute
earned scores from 2.0 to 3.90 as almost 80% of agriculturalists reported agreement or
strong agreement. Data indicated IoT smart agriculture innovation compatibility traits
were neutral statistically or not as suitable for adoption. The capacity of an innovation to
align with agriculturalists’ work expectations and the capability of incorporation in their
daily lifestyle was reported by 70% of agriculturalists. Compatibility’s grand mean was
3.85 (SD = 0.8) and the reliability coefficient was 0.82 (see Table 3). The scale was measured
with: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree,
5 = Strongly Agree.
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Table 3. Compatibility’s Innovation Metrics (n = 334).

Attributes M SD

Aligns with work expectations 3.94 0.74
Augments work techniques 3.89 0.78

Aligns with lifestyle 3.86 0.79
Congruent with work mandates 3.69 0.91

In order to assess image, four attributes were asked of agriculturalists: IoTs improve
an individual’s image, agriculturalists acquire more value in society, increased recognition
from social systems, and if IoTs are representations of status. IoTs improve an individual’s
image was the highest attribute (M = 3.79, SD = 0.72) on agriculturalists’ decision to adopt
IoT smart agriculture technology. Next, agriculturalists acquire more value in society
(M = 3.35, SD = 0.94) earned the second highest mean. Based on mean scores (between
3.11 and 3.79), the data indicated image attributes were neutral at best. The belief IoT smart
agriculture adoption provided a liftoff for agriculturalists’ image was accepted by 67%
of the agriculturalists participating in our study. More than 50% of agriculturalists did
not respond positively to IoT smart agriculture enhancing peers of society’s judgement
as a whole of agriculturalists, including their social status. Image’s grand mean was 3.41
(SD = 0.96) and image’s reliability coefficient was 0.81 (see Table 4). The instrument anchors
were: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree,
5 = Strongly Agree.

Table 4. Beliefs of Agriculturalists’ Image due to IoT Smart Agriculture (n = 334).

Attributes M SD

IoT improves individual’s image 3.79 0.72
Agriculturalists acquire more value in society 3.35 0.94

Increased recognition from social systems 3.21 0.91
IoTs are representations of status 3.11 0.95

Agriculturalists answered individual ease of use attribute items. Measureable at-
tributes included transparency of IoT smart agriculture usage, usage procedures are easy
to cognitively retain, IoT smart agriculture technologies are simple to learn, IoT smart agri-
culture technologies are manageable, IoT smart agriculture technologies usage is easy, IoT
smart agriculture technologies usage is not difficult, IoT smart agriculture technologies are
dependable, and, lastly, IoT smart agriculture technologies usage is routine. Transparency
of IoT smart agriculture usage had the highest mean score (M = 3.87, SD = 0.68) and usage
procedures are easy to cognitively retain (M = 3.83, SD = 0.77) was next. Each ease of
use attribute was assessed to be the most neutral and at the least not containing desired
innovation traits, and 75% of agriculturalists reported transparency of IoT smart agriculture
use was important to them. Data indicated use consistency and the stable ease of use had
the lowest levels of importance due to < 50% of agriculturalists reporting strongly agree or
agree. Ease of use’s grand mean was 3.57 (SD = 0.89) and yielded a reliability coefficient
of 0.92 (see Table 5). The survey anchors included: 1 = Strongly Disagree, 2 = Disagree,
3 = Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree.

Demonstrability, the sixth dissemination attribute variable, was assessed by attributes:
prompt identifiable outcomes, communication easiness to social system peers, demon-
stration easiness to social system peers, and identifiable advantages for agriculturalists.
Agriculturalists reported prompt identifiable outcomes as the chief demonstratability char-
acteristic (M = 3.92, SD = 0.71) due to 79% indicated agreement to strong agreement. All
demonstratability trait characteristics were neutral or non-desirable. The least impactful
attribute (M = 3.39, SD = 0.95) was identifiable advantages for agriculturalists as < 54% of
agriculturalists reported some level of agreement. Demonstratiability earned a grand mean
of 3.77 (SD = 0.81) and a 0.88 for reliability coefficient (see Table 6). The attribute anchors
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were: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree,
5 = Strongly Agree.

Table 5. Ease of Use’s Innovation Metrics (n = 334).

Attributes M SD

Transparency of IoT smart agriculture usage 3.87 0.68
Usage procedures are easy to cognitively retain 3.83 0.77

IoT smart agriculture technologies are simple to learn 3.79 0.77
IoT smart agriculture technologies are manageable 3.75 0.79

IoT smart agriculture technologies usage is easy 3.73 0.81
IoT smart agriculture technologies usage is not difficult 3.31 1.00

IoT smart agriculture technologies are dependable 3.24 0.93
IoT smart agriculture technologies usage is routine 3.18 0.96

Table 6. Demonstrability’s Innovation Metrics (n = 334).

Attributes M SD

Prompt identifiable outcomes 3.92 0.71
Communication easiness to social system peers 3.83 0.78
Demonstration easiness to social system peers 3.75 0.80

Identifiable advantages for agriculturalists 3.39 0.95

Visibility was measured by four attributes. The adoption attributes were social system
use of IoT smart agriculture is observable, noticeable in social system’s agricultural opera-
tions, clear flexibility of IoT smart agriculture innovations, and IoT smart agriculture usage
in the community. The highest scoring mean was social system use of IoT smart agriculture
is observable (M = 4.16, SD = 0.63) and 90% of agriculturalists agreed to strongly agreed.
Agriculturalists further reported agreement of IoT smart agriculture innovations noticeable
in social system’s agricultural operations (M = 4.07, SD = 0.66). Both clear flexibility of
IoT smart agriculture innovations and IoT smart agriculture usage in the community were
neutral or non-desirable characteristics. The grand mean for visibility was 3.96 (SD = 0.71)
and the construct produced a reliability coefficient of 0.94 (see Table 7). The visibility an-
chors were: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree,
5 = Strongly Agree.

Table 7. Visibility’s Innovation Metrics (n = 334).

Attributes M SD

Social system use of IoT smart agriculture is observable 4.16 0.63
Noticeable in social system’s agricultural operations 4.07 0.66
Clear flexibility of IoT smart agriculture innovations 3.99 0.68

IoT smart agriculture usage in the community 3.69 0.79

Trialability was our last variable to assess and was measured using five attributes. The
characteristics included the easiness of finding new IoT smart agriculture technologies,
new experiences with IoT smart agriculture technologies, adequate to experiment with IoT
smart agriculture technologies, convenience of IoT smart agriculture technologies usage,
and opportunities to test IoT smart agriculture technologies. Indeed, 62% of agriculturalists
reported some level of agreement with the easiness of finding new IoT smart agriculture
technologies (M = 3.67, SD = 0.89). Agriculturalists reported opportunities for new experi-
ences with IoT smart agriculture technologies met trialability metrics (M = 3.56, SD = 0.92).
Data indicated all trialability attributes were not positive. Agriculturalists reported < 50%
agreed the timeframe to acquire and test IoT smart agriculture was adequate. Trialability’s
grand mean was 3.41 (SD = 0.94) and the construct produced a reliability coefficient of
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0.70 (see Table 8). The scale anchors were: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither
Agree nor Disagree, 4 = Agree, 5 = Strongly Agree.

Table 8. Trialability’s Innovation Metrics (n = 334).

Attributes M SD

The easiness of finding new IoT smart agriculture technologies 3.67 0.89
New experiences with IoT smart agriculture technologies 3.56 0.92

Adequate to experiment with IoT smart agriculture technologies 3.41 0.91
Convenience of IoT smart agriculture technologies’ usage 3.37 0.94
Opportunities to test IoT smart agriculture technologies 3.31 0.93

Our third objective sought to identify IoT smart agriculture’s adoption cycle by Rio
Grande do Sul agriculturalists. The researchers categorized agriculturalists into adopter
categories: (1) innovators, (2) early adopters, (3) early majority, (4) late majority, and (5) lag-
gards based on the results from responses to the eight adoption variables. The researchers
sought to comprehend agriculturalists’ characteristics specific to each individual classifi-
cation. Adopting IoT smart agriculture voluntarily was used to determine voluntariness.
IoT smart agriculture offering opportunities for simpler work was the innovation’s relative
advantage, and the extent agriculturalists incorporated IoT smart agriculture into their
agricultural operation indicated compatibility. Status symbol responses were utilized to
determine image, and IoTs manageable characteristics were employed to answer easiness
of usage. Demonstrability and visibility were assessed using the promptness of IoT smart
agriculture outcomes and the simpleness of observable use in communities. Agricultur-
alists’ capacity to experiment with IoT smart agriculture technologies was implemented
to measure trialability. Innovators were assigned to those reporting strong agreement to
all eight variables. Early adopters were designated to agriculturalists responding with
agreement to strong agreement but removing innovator responses. The early majority was
determined by examining agriculturalists responding neither agree or disagree, agree, or
strongly agree in the eight constructs but not previously categorized as early adopters
or innovators. Agriculturalists were identified in the late majority if responding strongly
agree, agree, neither agree or disagree, and disagree and not initially assigned to the inno-
vator, early adopter, or early majority classifications. Seventeen agriculturalists perceived
themselves as laggards and one agriculturalist reported being an innovator (see Table 9).

Table 9. Metrics of Agriculturalists’ Adopter Classifications (n = 294).

Adopter Categories f %

Late majority 135 40.4
Early majority 101 30.2
Early Adopters 40 12.0

Laggards 17 5.1
Innovators 1 0.3

At the conclusion of the adopter category analyses, the researchers implemented a
stepwise regression model. The purpose of the stepwise regression model was to categorize
IoT smart agriculture adopters from examining each variable attribute. Our independent or
antecedent variables were the voluntariness of the innovation, IoTs’ relative advantage, IoTs’
compatibility, agriculturalists’ image from adoption of IoTs, IoTs’ easiness of usage, IoTs’
demonstrability, the visibility of IoTs, and the extent IoTs were trialable. The dependent
variable was adopter classifications.

The stepwise regression findings revealed, out of 45 items, nine attributes described
63.8% of adoption variance. Antecedent variables are delineated in Table 10. Data from
the stepwise regression indicated adoption was enlarged as agriculturalists’ pressure from
peers also increased. The robustness of attitudes regarding IoT smart agriculture enhanced
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productivity, and higher levels of adopter classifications regarding life routines were
achieved. The individual’s work, the perception of using technology as a status symbol, the
perception that technology is easy to manipulate, observing others in the community using
technology, the ability to easily communicate technology, and the ability to properly test a
new innovation were found to enhance the adoption process. Agriculturalists reporting
challenges in feeling the initial impact of IoT smart agriculture was an indicator of those
individuals moving down the adopter classifications, resulting in nonadoption. Earning
statistically significance were demonstrability, agriculturalists’ image, IoTs’ voluntary
adoption, IoT smart agriculture observability, and opportunities for IoT trialability with
p < 0.05. Not statistically significant indicators of adopter classifications were IoTs’ relative
advantage, IoTs’ compatibility, and IoTs’ easiness of use. The stepwise regression model
produced R2 = 0.64, F = 43.11.

Table 10. IoT Smart Agriculture Adoption Constructs.

Antecedent Constructs Beta t p

The social system wants me to use IoT smart agriculture technologies −0.96 −2.30 0.01 *
IoT smart agriculture technologies usage improves productivity −0.01 −0.09 0.87

IoT smart agriculture technologies align with my agricultural routines −0.02 −0.33 0.79
IoT smart agriculture technologies are compatible with agricultural operations −0.08 −1.60 0.10

IoT smart agriculture technologies are community status symbols −0.54 −12.67 0.00 *
IoT smart agriculture technologies are simple to manage −0.07 −1.60 0.09

IoT smart agriculture technologies are easily communicable 0.11 2.45 0.00 *
My community’s IoT smart agriculture technologies are easily observable −0.23 −5.21 0.00 *

IoT smart agriculture technologies were tested before I used them −0.30 −6.36 0.00 *
* Note: p < 0.05.

Our study’s fourth aim sought to describe primary characteristics and IoT smart
agriculture resistors precluding innovation adoption in Rio Grande do Sul. A stepwise
regression was employed to assess innovation rejection attributes predicting knowledge
transfer barriers. The researchers included dummy variables. Non-adopters were denoted
with a zero value and adopters were identified with one as their numerical value. All
attributes within our instrument were employed as antecedent variables in the stepwise
regression. The significant attributes were utilized to describe characteristics of IoT smart
agriculture innovations impacting rate of adoption. Table 11 illustrates the SPSS version
27 output of voluntariness use of IoTs, the relative advantage of IoTs, IoTs’ compatibility,
agriculturalists’ image, and IoTs’ easiness of use.

Table 11. IoT Smart Agriculture Adoption Attributes.

Antecedent Constructs Beta t p

My social system wants me using IoT smart agriculture technology 0.04 1.64 0.18
IoT smart agriculture technology makes me more productive 0.03 0.86 0.48

IoT smart agriculture technology makes my routine easier 0.00 −1.29 0.17
IoT smart agriculture technology aligns with my work patterns −0.01 −0.48 0.65
Having IoT smart agriculture technology increases my status 0.08 6.13 0.00 *

Learning IoT smart agriculture technology is simple 0.06 1.97 0.09
IoT smart agriculture technology is challenging −0.04 −2.34 0.00 *

IoT smart agriculture technologies are simple to control 0.01 0.92 0.46
IoT smart agriculture technologies are easily observable in my community 0.06 3.31 0.00 *

The timeframe to try out IoT smart agriculture technologies is adequate 0.12 5.39 0.00 *
* Note: p < 0.05.

The model described 41.6% in adopter categories variance. IoT smart agriculture tech-
nololgies improving social status, were not challenging to use, were easily observable, and
offered an adequate timeframe for agriculturalists to test positively influenced stakeholder
adoption and diffusion. On the contrary, IoT smart agriculture innovations solely making
routibnes easier, not easily manageable, not perceived as increasing performance, and were
complex to understand were not indicative of IoT smart agriculture adoption or diffusion.
As one unit increased, the probability of adoption increased. As a unit of my social system
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wants me using IoT smart agriculture technology increased by 0.04, the probability of
IoT smart agriculture technology adoption improved. The regression model produced
R2 = 0.42, F = 14.93 and * p < 0.05.

4. Discussion

Communication methods, strategies, and accessibility are not keeping pace with the ex-
ponential rate that new IoT smart agriculture technologies are being introduced. Improving
communication rates, outlets, and accessibility is paramount to increase the rate of adoption
as future multifaceted IoT smart agriculture innovations increase with advancements in
technology [5,6]. If conventional communication channels do not have the capability to
successfully communicate the advantageous innovation attributes to agriculturalists, then
the low rate of adoption will persist. Based on Rogers [18], in a social system, change agents
should emphasize relationship building, development, and communication of opinion
leaders to improve the communication of positive attributes of IoT smart agriculture to
stakeholders in order to enhance the rate of adoption. We recommend information dis-
semination for the agriculturalist be aligned with the innovation’s characteristics and the
targeted audience goals and individual characteristics.

Complex IoT smart agriculture futures markets exhibited a reduced frequency of
engagement in the population. This study revealed profits from IoT smart agriculture
adoption served as a relative advantage for agriculturalists and would enhance adoption
over potential risks by providing economic incentives [38]. Reducing the innovation’s com-
plexity coupled with purposeful and succinct communication of the IoT smart agriculture
technology’s advantages to agriculturalists and opinion leaders will improve adoption
and diffusion within the social system. Our data indicated targeting communications at
agriculturalists’ work location and in localized communities would offer the maximum
successful strategies to disseminate IoT smart agriculture information. It is imperative for
practitioners to communicate the benefits of IoT smart agriculture technologies to agricul-
tural owners and managers, as well as community leaders, to advance the livelihoods and
sustainability of individuals and resulting community impacts. Communications from
researchers to practitioners and practitioners to agriculturalists have to be distinct and
succinct for the adoption cycle and diffusion of IoT smart agriculture technologies [39].
Organizations promoting IoT smart agriculture ought to have the innovations promptly
accessible for agriculturalists as soon as individuals have decided to test the technology
per the trialability stage to improve the rate of adoption [18]. Avenues exist to increase IoT
smart agriculture adoption, such as farmer field schools, the Ministry of Agriculture and in-
stitutional research stations in local communities, vocational education at local agricultural
colleges, and agricultural field days and expositions [40].

To improve IoT smart agriculture adoption, we recommend newer innovations be
visually appealing to stakeholders. As identified by Rogers [18], practitioner comprehen-
sion of social status and pressure from peers are critical for enhancing the adoption rate of
early and late majority agriculturalists. The data indicated that resources for promoting IoT
smart agriculture adoption ought to be understandable, practical, and offer client-oriented
technical advice for the targeted audience so as to reduce the innovation’s complexity
beliefs [41]. Ideally, IoT smart agriculture innovations would be diverse in application and
functionality for agriculturalists.

The data did not specify educational discrepancies between agricultural adopters
and resistors. Both adopters and rejectors of the innovation had attained equal levels of
education. We recommend that change agents striving to promote successful adoption and
diffusion of IoT smart agriculture emphasize enriching the innovation’s communication
and purposely training the target audiences, resulting in progressively influencing IoT
smart agriculture’s adoption [11].

Additional Brazilian smart agriculture adoption and diffusion research questions
were revealed throughout the study, warranting future examination. Inquiries centered
on diffusion in developing nations are limited in number and breadth. We recommend
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replicating our study in other regions of the world to increase our collective understanding
of IoT smart agriculture stakeholders, adoption characteristics, and the resulting impacts of
IoT adoption.

The impact of opinion leadership during the adoption cycle was statistically significant
on the prospect of adoption and diffusion. The greater the social status bestowed to the
innovation’s adoption, the more this influenced IoT smart agriculture adoption in our
study [18]. Rejectors of innovations bequeath trust on adopters and opinion leaders based
on their decisions, but the level trust is not necessarily a tipping point characteristic for
rejectors to move to the title of adopter. However, measuring trust and the resulting
variance trust sways in the adoption cycle, from an unequivocal paradigm, is challenging
to ascertain. Discerning the significance of trust as a construct that predicts or influences
the adoption cycle is worthy of additional investigation. Future studies should assess
techniques or approaches that change agents could employ to positively promote IoT smart
agriculture adoption among stakeholders.

As one of the largest agricultural producers in the Western Hemisphere, understanding
Brazilian agriculturalists’ adoption and rejection of innovations designed to improve food
security and sustainability [42] is a necessity given agriculturalists’ impact locally, nationally,
and across the continent and the world. Extra analysis into the IoT smart agriculture
adoption cycle is necessary throughout Brazil and South America to assess innovation traits
and personal characteristics of adopters that potentially promote adoption and diffusion.
The supplementary data would expand our body of knowledge and potentially allow
generalizability on a much larger scale [6].

Our study demonstrated the dissimilarity among age between adopters and those
rejecting the IoT smart agriculture innovations. The literature indicated more training
and educational opportunities for agriculturalists enhances their acceptance of the latest
technologies regardless of the individual’s age [5]. Additional inquiries are needed to
investigate impactful communication channels improving the communication of smart
agriculture’s positive characteristics from researchers to practitioners and then practitioners
to agriculturalists.

Societal influences and social status should not be disrespected in the adoption and
diffusion IoT smart agriculture process. Both attributes were common denominators
that floated to the top of the analysis and were illuminated throughout the study. We
found escalating agriculturalists’ awareness and knowledge of IoT smart agriculture as an
innovation boosted the adoption of the innovation per the adoption cycle, as identified
in Ref. [18]. Auxiliary examinations of the distinctive characteristics of opinion leaders,
change agents, and innovators should be performed to assist researchers’ and practitioners’
comprehension respective to agriculturalists’ social dynamics that foster the IoT smart
agriculture adoption and diffusion process [34].

It is important to the inquiry’s field to develop the capacity of IoT smart agriculture
adoption rate and the innovation’s traits improving adoption and diffusion. Experimental
designs and longitudinal studies are necessary to measure potential associations between
characteristics of the innovation, categories of adopters, and an innovation’s rate of adop-
tion. The authors recommend similar investigations for virtual reality, artificial intelligence,
and additional technology innovations. More robust comprehension of potential affiliations
and linkages would enhance researchers’ and practitioners’ knowledge of attributes that
predict IoT smart agriculture, virtual reality, artificial intelligence, innovation systems, and
other technological innovations’ adoption and stakeholder diffusion.

5. Conclusions and Future Work

Agriculturalists’ adoption is predicted by their belief in IoT smart agriculture as
providing a relative advantage, compatible with their existing needs, not challenging to use,
easily testable to examine how to use the innovations, and possessing easily discernible
benefits. Individuals’ adopter categories within the social system also affect adoption and
diffusion of the IoT innovations. Our data highlighted that opinion leaders’ influence on
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the rate of adoption is essential for IoT researchers and practitioners in local communities
to understand. The data supported Rogers’ research that rate of adoption and subsequent
diffusion is maximized by inclusion communications with opinion leaders and utilizing
their trust within the community to foster IoT smart agriculture adoption. The studies
by Goldberg and McCrae and Costa Jr. on the five traits warrant inclusion in future
IoT smart agriculture adoption inquiries. Globally, we need to better understand and
predict social science decisions and impacts from adopted IoT, virtual reality, artificial
intelligence, machine learning [43] and in every technical facet of agricultural innovation
systems. Moving the needle forward for Agriculture 4.0 and eventually 5.0 in terms of
innovation adoption and diffusion is essential to understand given global issues that
include climate change, food security, water, sustainability, nutrition, and improving the
lives of marginalized citizens across our world.

Future plans are to implement randomized control trials with adopters as the treatment
and non-adopters or resistors of IoT smart agriculture as the control to better understand
resulting individual, community, economic, social, and environmentally sustainable im-
pacts due to innovation adoption. Our expansion of this inquiry is continuing in Africa
and Northern Europe. Tremendous gains have been made in technology development and
technology efficiency. However, as our data reported, innovations are only valuable to the
extent that stakeholders choose to use them to advance their goals.
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